151. Use of a lipid rich strain reveals mechanisms of nitrogen limitation and carbon partitioning in the haptophyte Tisochrysis lutea
- Author
-
Matthieu Garnier, Jean-Paul Cadoret, Aurélie Charrier, Hélène Rogniaux, Ewa Lukomska, Nathalie Schreiber, Gaël Bougaran, Fabienne Le Grand, Marija Pavlović, Jean-Baptiste Bérard, Catherine Rouxel, Gregory Carrier, Bruno Saint-Jean, Physiologie et biotechnologie des Algues (PBA), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Département Systèmes Sous-Marins - IFREMER, Institut National de la Recherche Agronomique (INRA), Institut de Recherche en Horticulture et Semences (IRHS), AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA)-Université d'Angers (UA), Institut de Recherche pour le Développement (IRD)-Institut Universitaire Européen de la Mer (IUEM), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), INRA Plateforme BIBS, Unité de Recherche Biopolymères, Interactions, Assemblages, and Institut de Recherche pour le Développement (IRD)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,0301 basic medicine ,Algae ,Nitrogen ,proteomic [Reverse genomic] ,chemistry.chemical_element ,Reverse genomic: proteomic ,Carbon sequestration ,01 natural sciences ,Haptophyte ,lipids ,03 medical and health sciences ,Botany ,Isochrysis ,algae ,biology ,ACL ,Carbon sink ,Metabolism ,biology.organism_classification ,Lipids ,030104 developmental biology ,chemistry ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Phosphoenolpyruvate carboxykinase ,Agronomy and Crop Science ,Carbon ,010606 plant biology & botany - Abstract
00000; International audience; Haptophytes are a diverse monophyletic group with a worldwide distribution, known to be significantly involved in global climate regulation in their role as a carbon sink. Because nitrogen is a major limiting macronutrient for phytoplankton in oceans and for cultures of microalgae, understanding the involvement of nitrogen availability in haptophyte carbon partitioning is of global and biotechnological importance. Here, we made an ecophysiological study coupled with comprehensive large scale proteomic analysis to examine differences of behavior in reaction to nitrogen availability changes between a wild type strain of Tisochrysis lutea (WTc1) and a mutant strain (2Xc1) known to accumulate more storage lipids. Strains were grown in chemostats and studied under different ecophysiological conditions including N limitation, N repletion and N depletion. Whereas short time N repletion triggered consumption of carbohydrates in both strains, storage lipid degradation and accumulation during changes of ecophysiological status were recorded in 2Xc1 but not in WTc1. After 3 months of continuous culture, 2Xc1 exhibited an unexpected increase of carbon sequestration ability (+ 50%) by producing twofold more carbohydrates for the same nitrogen availability. Deep proteomic analysis by LC-MS/MS identified and compared the abundance of 4332 proteins, i.e. the deepest coverage of a microalgal proteome obtained to date. Results revealed that storage lipid accumulation is favored by an overall reorganization of carbon partitioning in 2Xc1 cells that increases the metabolism of carbon and energy acquisition, and decreases mitochondrial activity and metabolic conversion of storage lipids to phosphoenolpyruvate before gluconeogenesis.
- Published
- 2016
- Full Text
- View/download PDF