251. Word Representations in Factored Neural Machine Translation
- Author
-
Loïc Barrault, Franck Burlot, Fethi Bougares, François Yvon, Mercedes García-Martínez, dev.limsi, dev.limsi, QT21: Quality Translation 21 - QT21 - - H20202015-02-01 - 2018-01-31 - 645452 - VALID, Association for Computational Linguistics, Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Laboratoire d'Informatique de l'Université du Mans (LIUM), Le Mans Université (UM), European Project: 645452,H2020,H2020-ICT-2014-1,QT21(2015), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), and Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Czech ,Vocabulary ,Machine translation ,Computer science ,Speech recognition ,media_common.quotation_subject ,0102 computer and information sciences ,02 engineering and technology ,[INFO] Computer Science [cs] ,computer.software_genre ,01 natural sciences ,[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] ,machine translation ,Example-based machine translation ,Rule-based machine translation ,morphology ,0202 electrical engineering, electronic engineering, information engineering ,[INFO]Computer Science [cs] ,media_common ,business.industry ,Latvian ,language.human_language ,factored machine translation ,010201 computation theory & mathematics ,[INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL] ,language ,Factored language model ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,computer ,Natural language processing ,Word (computer architecture) - Abstract
Translation into a morphologically rich language requires a large output vocabulary to model various morphological phenomena, which is a challenge for neural machine translation architectures. To address this issue, the present paper investigates the impact of having two output factors with a system able to generate separately two distinct representations of the target words. Within this framework, we investigate several word representations that correspond to different distributions of morpho-syntactic information across both factors. We report experiments for translation from English into two morphologically rich languages, Czech and Latvian, and show the importance of explicitly modeling target morphology.
- Published
- 2017