376 results on '"Pelczar K"'
Search Results
352. DarkSide-50 : a WIMP search with a two-phase argon TPC
- Author
-
P.D. Meyers, P. Agnes, D. Alton, K. Arisaka, H.O. Back, B. Baldin, K. Biery, G. Bonfini, M. Bossa, A. Brigatti, J. Brodsky, F. Budano, L. Cadonati, F. Calaprice, N. Canci, A. Candela, H. Cao, M. Cariello, P. Cavalcante, A. Chavarria, A. Chepurnov, A.G. Cocco, L. Crippa, D. DAngelo, M. D’Incecco, S. Davini, M. De Deo, A. Derbin, F. Di Eusanio, G. Di Pietro, E. Edkins, A. Empl, A. Fan, G. Fiorillo, K. Fomenko, G. Forster, D. Franco, F. Gabriele, C. Galbiati, A. Goretti, L. Grandi, M. Gromov, M. Guan, Y. Guardincerri, B. Hackett, K. Herner, P. Humble, E.V. Hungerford, Al. Ianni, An. Ianni, C. Joliet, K. Keeter, C. Kendziora, S. Kidner, V. Kobychev, G. Koh, D. Korablev, G. Korga, A. Kurlej, P. Li, B. Loer, P. Lombardi, C. Love, L. Ludhova, S. Luitz, Y. Ma, I. Machulin, A. Mandarano, S. Mari, J. Maricic, C.J. Martoff, A. Meregaglia, E. Meroni, R. Milincic, D. Montanari, M. Montuschi, M.E. Monzani, P. Mosteiro, B. Mount, V. Muratova, P. Musico, A. Nelson, M. Okounkova, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, E. Pantic, L. Papp, S. Parmeggiano, R. Parsells, K. Pelczar, N. Pelliccia, S. Perasso, F. Perfetto, A. Pocar, S. Pordes, H. Qian, K. Randle, G. Ranucci, A. Razeto, B. Reinhold, A. Romani, B. Rossi, N. Rossi, S.D. Rountree, D. Sablone, P. Saggese, R. Saldanha, W. Sands, E. Segreto, D. Semenov, E. Shields, M. Skorokhvatov, O. Smirnov, A. Sotnikov, Y. Suvarov, R. Tartaglia, J. Tatarowicz, G. Testera, A. Tonazzo, E. Unzhakov, R.B. Vogelaar, M. Wada, H. Wang, Y. Wang, A. Watson, R. Westerdale, M. Wojcik, A. Wright, J. Xu, C. Yang, J. Yoo, S. Zavatarelli, G. Zuzel, Agnes, P., Alton, D., Arisaka, K., Back, H. O., Baldin, B., Biery, K., Bonfini, G., Bossa, M., Brigatti, A., Brodsky, J., Budano, F., Cadonati, L., Calaprice, F., Canci, N., Candela, A., Cao, H., Cariello, M., Cavalcante, P., Chavarria, A., Chepurnov, A., Cocco, A. G., Crippa, L., Dangelo, D., D’Incecco, M., Davini, S., De Deo, M., Derbin, A., Di Eusanio, F., Di Pietro, G., Edkins, E., Empl, A., Fan, A., Fiorillo, Giuliana, Fomenko, K., Forster, G., Franco, D., Gabriele, F., Galbiati, C., Goretti, A., Grandi, L., Gromov, M., Guan, M., Guardincerri, Y., Hackett, B., Herner, K., Humble, P., Hungerford, E. V., Ianni, A., Joliet, C., Keeter, K., Kendziora, C., Kidner, S., Kobychev, V., Koh, G., Korablev, D., Korga, G., Kurlej, A., Li, P., Loer, B., Lombardi, P., Love, C., Ludhova, L., Luitz, S., Ma, Y., Machulin, I., Mandarano, A., Mari, S., Maricic, J., Martoff, C. J., Meregaglia, A., Meroni, E., Meyers, P. D., Milincic, R., Montanari, D., Montuschi, M., Monzani, M. E., Mosteiro, P., Mount, B., Muratova, V., Musico, P., Nelson, A., Okounkova, M., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Pantic, E., Papp, L., Parmeggiano, S., Parsells, R., Pelczar, K., Pelliccia, N., Perasso, S., Perfetto, F., Pocar, A., Pordes, S., Qian, H., Randle, K., Ranucci, G., Razeto, A., Reinhold, B., Romani, A., Rossi, B., Rossi, N., Rountree, S. D., Sablone, D., Saggese, P., Saldanha, R., Sands, W., Segreto, E., Semenov, D., Shields, E., Skorokhvatov, M., Smirnov, O., Sotnikov, A., Suvarov, Y., Tartaglia, R., Tatarowicz, J., Testera, G., Tonazzo, A., Unzhakov, E., Vogelaar, R. B., Wada, M., Wang, H., Wang, Y., Watson, A., Westerdale, R., Wojcik, M., Wright, A., Xu, J., Yang, C., Yoo, J., Zavatarelli, S., Zuzel, G., Mari, Stefano Maria, and The Darkside, Collaboration
- Subjects
Physics ,Cryostat ,Argon ,Time projection chamber ,chemistry.chemical_element ,WIMP Argon Programme ,Scintillator ,Physics and Astronomy(all) ,Nuclear physics ,Physics and Astronomy (all) ,chemistry ,WIMP ,pacs:95.35.+d, 29.40.Mc ,Neutron ,Cherenkov radiation - Abstract
DarkSide-50 is a two phase argon TPC for direct dark matter detection which is installed at the Gran Sasso underground laboratory, Italy. DarkSide-50 has a 50-kg active volume and will make use of underground argon low in 39 Ar. The TPC is installed inside an active neutron veto made with boron-loaded high radiopurity liquid scintillator. The neutron veto is installed inside a 1000 m 3 water Cherenkov muon veto. The DarkSide-50 TPC and cryostat are assembled in two radon-free clean rooms to reduce radioactive contaminants. The overall design aims for a background free exposure after selection cuts are applied. The expected sensitivity for WIMP-nucleon cross section is of the order of 10 −45 cm 2 for WIMP masses around 100 GeV/c 2 . The commissioning and performance of the detector are described. Details of the low-radioactivity underground argon and other unique features of the projects are reported.
- Published
- 2015
353. Pulse shape discrimination for GERDA Phase I data
- Author
-
S. Hemmer, V. Wagner, A. A. Vasenko, N. Becerici-Schmidt, J. Schreiner, V. I. Lebedev, Thomas Kihm, H. Strecker, Manfred Lindner, L. V. Inzhechik, T. Wester, A.A. Smolnikov, Alessandro Bettini, M. Barnabe Heider, C. Cattadori, Kai Zuber, Allen Caldwell, V. I. Gurentsov, A. Kirsch, M. Heisel, A. A. Machado, D. Budjáš, E. Bellotti, V. Brudanin, Stefan Schönert, K. K. Guthikonda, Xianpeng Liu, Oliver Schulz, K. von Sturm, A. Domula, L. B. Bezrukov, H. Simgen, E. Shevchik, Alberto Pullia, Bayarto Lubsandorzhiev, Christian Bauer, I. R. Barabanov, K. Freund, A. Garfagnini, M. Junker, L. Ioannucci, Marcin Wójcik, S. V. Zhukov, G. Pessina, P. Grabmayr, V. Egorov, M. Allardt, R. Brugnera, A. Lubashevskiy, Luca Stanco, D. R. Zinatulina, Marc Walter, N. Frodyma, V. V. Kuzminov, J. Janicskó Csáthy, Matteo Agostini, Werner Hofmann, Cinzia Sada, Giovanni Benato, Claudio Gotti, M. Balata, C. Macolino, Mikael Hult, T. Bode, A. D. Ferella, B. Schwingenheuer, I. Zhitnikov, G. Heusser, K. T. Knöpfle, A. Hegai, G. Zuzel, O.I. Kochetov, W. Hampel, S. T. Belyaev, A. M. Gangapshev, E. V. Demidova, S. Belogurov, A. Wegmann, Igor Nemchenok, Bela Majorovits, M. Salathe, S. Nisi, Luciano Pandola, I. V. Kirpichnikov, A. A. Klimenko, N. Rumyantseva, B. Lehnert, O. Volynets, Ivano Lippi, K. N. Gusev, W. Maneschg, E. A. Yanovich, Stefano Riboldi, V. N. Kornoukhov, K. Pelczar, E. Andreotti, M. Misiaszek, M. Shirchenko, Laura Baudis, C. A. Ur, N. Barros, H. Y. Liao, Guillaume Lutter, A. Chernogorov, A. M. Bakalyarov, J. Jochum, F. Cossavella, M. Tarka, R. Falkenstein, C. Schmitt, C.M. O'Shaughnessy, A. Lazzaro, Matthias Laubenstein, P. Zavarise, Agostini, M, Allardt, M, Andreotti, E, Bakalyarov, A, Balata, M, Barabanov, I, Barnabé Heider, M, Barros, N, Baudis, L, Bauer, C, Becerici Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, S, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Brudanin, V, Brugnera, R, Budjáš, D, Caldwell, A, Cattadori, C, Chernogorov, A, Cossavella, F, Demidova, E, Domula, A, Egorov, V, Falkenstein, R, Ferella, A, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Gotti, C, Grabmayr, P, Gurentsov, V, Gusev, K, Guthikonda, K, Hampel, W, Hegai, A, Heisel, M, Hemmer, S, Heusser, G, Hofmann, W, Hult, M, Inzhechik, L, Ioannucci, L, Janicskó Csáthy, J, Jochum, J, Junker, M, Kihm, T, Kirpichnikov, I, Kirsch, A, Klimenko, A, Knöpfle, K, Kochetov, O, Kornoukhov, V, Kuzminov, V, Laubenstein, M, Lazzaro, A, Lebedev, V, Lehnert, B, Liao, H, Lindner, M, Lippi, I, Liu, X, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Machado, A, Majorovits, B, Maneschg, W, Misiaszek, M, Nemchenok, I, Nisi, S, O'Shaughnessy, C, Pandola, L, Pelczar, K, Pessina, G, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salathe, M, Schmitt, C, Schreiner, J, Schulz, O, Schwingenheuer, B, Schönert, S, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Strecker, H, Tarka, M, Ur, C, Vasenko, A, Volynets, O, von Sturm, K, Wagner, V, Walter, M, Wegmann, A, Wester, T, Wojcik, M, Yanovich, E, Zavarise, P, Zhitnikov, I, Zhukov, S, Zinatulina, D, Zuber, K, and Zuzel, G
- Subjects
Physics ,Particle physics ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Detector ,Phase (waves) ,chemistry.chemical_element ,FOS: Physical sciences ,Germanium ,Compton edge ,Instrumentation and Detectors (physics.ins-det) ,Type (model theory) ,Shape parameter ,chemistry ,Beta (velocity) ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,Engineering (miscellaneous) ,Nuclear Experiment - Abstract
The GERDA experiment located at the LNGS searches for neutrinoless double beta (0\nu\beta\beta) decay of ^{76}Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched ^{76}Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV \gamma\ rays from ^{208}Tl decays as well as 2\nu\beta\beta\ decays of ^{76}Ge are used as proxies for 0\nu\beta\beta\ decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92$\pm$0.02 of signal-like events while about 80% of the background events at Q_{\beta\beta}=2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0\nu\beta\beta\ decay. It retains 90% of DEP events and rejects about half of the events around Q_{\beta\beta}. The 2\nu\beta\beta\ events have an efficiency of 0.85\pm0.02 and the one for 0\nu\beta\beta\ decays is estimated to be 0.90^{+0.05}_{-0.09}. A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90% of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2\nu\beta\beta\ decays., Comment: 18 pages, 27 figures
- Published
- 2013
354. Direct Search for Dark Matter with DarkSide
- Author
-
Laura Cadonati, L. Papp, Fausto Ortica, Anton Empl, S Luitz, Chung-Yao Yang, A. V. Derbin, M. M. Wojcik, Augusto Brigatti, P. Saggese, K. Randle, L. Crippa, Henning O. Back, P. D. Meyers, M. Wada, Y. Guardincerri, Min-Xin Guan, R. Tartaglia, Thomas Alexander, O. Smirnov, Y. Suvorov, S. Westerdale, J. Tatarowicz, Marco Pallavicini, F. Gabriele, Livia Ludhova, W. Sands, D. Franco, B. Reinhold, S. M. Mari, A. M. Goretti, A. S. Chepurnov, A. K. Alton, A. L. Renshaw, Y. Q. Ma, L. Marini, M. Bossa, N. Canci, A. Tonazzo, H. Cao, S. Perasso, S. Parmeggiano, E. Shields, Cécile Jollet, M. Orsini, K. Arisaka, B. Rossi, B. Baldin, Gioacchino Ranucci, Paolo Musico, B. J. Mount, E. Meroni, C. Stanford, G. Fiorillo, Stuart Derek Walker, A. Fan, G. Di Pietro, D. A. Pugachev, A. Razeto, E. Segreto, E. V. Unzhakov, S. Kidner, A. Wright, S. Odrowski, M. Cariello, P. Cavalcante, Alan Watson, D. Montanari, M. D'Incecco, A. Mandarano, G. Korga, R. B. Vogelaar, Anselmo Meregaglia, H. Qian, I. N. Machulin, C. L. Kendziora, G. Testera, B. R. Hackett, G. Koh, Samuele Sangiorgio, A. Candela, C. J. Martoff, G. Bonfini, B. Loer, Denis Korablev, M. Gromov, Jingke Xu, V. V. Kobychev, K. J. Keeter, D. D'Angelo, K. Pelczar, Frank Calaprice, J. Brodsky, A. Nelson, J. Yoo, X. Xiang, N. Rossi, Cristiano Galbiati, D. A. Semenov, K. Fomenko, F. Budano, G. Forster, M. D. Skorokhvatov, S. Davini, A. Devoto, L. Grandi, L. Pagani, A. G. Cocco, V. N. Muratova, K. Biery, Yanchu Wang, R. Milincic, C. Love, D. Sablone, A. Kurlej, An. Ianni, K. Herner, S. D. Rountree, A. E. Chavarria, Paolo Lombardi, F. Di Eusanio, Han Wang, A. Zec, Aldo Romani, R. Saldanha, S. Pordes, R. Parsells, P. Agnes, E. Pantic, M. Okounkova, Al. Ianni, E. V. Hungerford, E. Edkins, Caoxiang Zhu, Nicomede Pelliccia, A. Sotnikov, P. J. Mosteiro, Michele Montuschi, G. Zuzel, Sandra Zavatarelli, M. E. Monzani, A. Pocar, P. X. Li, J. Maricic, M. De Deo, Agnes, P, Alexander, T, Alton, A, Arisaka, K, Back, H. O, Baldin, B, Biery, K, Bonfini, G, Bossa, M, Brigatti, A, Brodsky, J, Budano, F, Cadonati, L, Calaprice, F, Canci, N, Candela, A, Cao, H, Cariello, M, Cavalcante, P, Chavarria, A, Chepurnov, A, Cocco, A. G, Crippa, L, D'Angelo, D, D'Incecco, M, Davini, S, De Deo, M, Derbin, A, Devoto, A, Eusanio, F. Di, Pietro, G. Di, Edkins, E, Empl, A, Fan, A, Fiorillo, G, Fomenko, K, Forster, G, Franco, D, Gabriele, F, Galbiati, C, Goretti, A, Grandi, L, Gromov, M, Guan, M. Y, Guardincerri, Y, Hackett, B, Herner, K, Hungerford, E. V, Ianni, Al, Ianni, An, Jollet, C, Keeter, K, Kendziora, C, Kidner, S, Kobychev, V, Koh, G, Korablev, D, Korga, G, Kurlej, A, Li, P. X, Loer, B, Lombardi, P, Love, C, Ludhova, L, Luitz, S, Ma, Y. Q, Machulin, I, Mandarano, A, Mari, Stefano Maria, Maricic, J, Marini, L, Martoff, C. J, Meregaglia, A, Meroni, E, Meyers, P. D, Milincic, R, Montanari, D, Montuschi, M, Monzani, M. E, Mosteiro, P, Mount, B, Muratova, V, Musico, P, Nelson, A, Odrowski, S, Okounkova, M, Orsini, M, Ortica, F, Pagani, L, Pallavicini, M, Pantic, E, Papp, L, Parmeggiano, S, Parsells, R, Pelczar, K, Pelliccia, N, Perasso, S, Pocar, A, Pordes, S, Pugachev, D, Qian, H, Randle, K, Ranucci, G, Razeto, A, Reinhold, B, Renshaw, A, Romani, A, Rossi, B, Rossi, N, Rountree, S. D, Sablone, D, Saggese, P, Saldanha, R, Sands, W, Sangiorgio, S, Segreto, E, Semenov, D, Shields, E, Skorokhvatov, M, Smirnov, O, Sotnikov, A, Stanford, C, Suvorov, Y, Tartaglia, R, Tatarowicz, J, Testera, G, Tonazzo, A, Unzhakov, E, Vogelaar, R. B, Wada, M, Walker, S, Wang, H, Wang, Y, Watson, A, Westerdale, S, Wojcik, M, Wright, A, Xiang, X, Xu, J, Yang, C. G, Yoo, J, Zavatarelli, S, Zec, A, Zhu, C, Zuzel, G., Di Eusanio, F, Di Pietro, G, Fiorillo, Giuliana, Ianni, A. L, Ianni, A. N, Mari, S, and Walker, Susan Elizabeth
- Subjects
Physics ,History ,Argon ,Physics::Instrumentation and Detectors ,Cherenkov detector ,Dark matter ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,chemistry.chemical_element ,Scintillator ,WIMP Argon Programme ,Computer Science Applications ,Education ,law.invention ,Nuclear physics ,Physics and Astronomy (all) ,WIMP ,chemistry ,law ,High Energy Physics::Experiment ,Neutron ,Nuclear Experiment - Abstract
Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL upper limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.
- Published
- 2015
- Full Text
- View/download PDF
355. Statistik der Poliklinik des Universitäts-Institutes für Krebsforschung
- Author
-
Zerner, Hans, Blumenthal, Ferdinand, Halberstädter, L., Hirschfeld, Hans, Zerner, Hans, Halberstaedter, L., Erdmann, Rhoda, Reichert, Becker, Simons, Albert, Auler, H., Pelczar, K., Lasnitzki, A., Rosenthal, Otto, Lewin, Carl, Fränkel, Ernst, and Klee-Rawidowicz, Eugenie
- Published
- 1928
- Full Text
- View/download PDF
356. Pain Assessment in Patients Undergoing Maggot Debridement Therapy in the Process of Local Treatment of Chronic Wounds.
- Author
-
Bazaliński D, Sieńczak K, Pytlak K, Przybek-Mita J, Pelczar K, Leppert W, and Więch P
- Abstract
(1) Background: Developing and implementing strategies for local wound care focused on improving the quality of life related to health status and reducing treatment costs for this patient group poses a challenge to contemporary healthcare systems. The utilization of Maggot Debridement Therapy (MDT) is one potential form of local therapy for preparing wounds for the healing process. The debridement of the wound bed with medical maggots is highly precise, and the defensins produced by the larvae eliminate bacteria and stimulate tissue regeneration. However, the presence of larvae in the wound may lead to the occurrence of pain symptoms. The aim of the study was to assess the intensity of pain during larval therapy in patients with chronic wounds treated in outpatient settings. (2) Patients and Methods: The study employed a diagnostic survey and estimation; the tool consisted of a research protocol comprising three parts (questionnaires). Inclusion criteria for the study were voluntary consent to participate (completion of the MDT acceptance questionnaire), chronic wounds of vascular etiology or pressure injuries, full-thickness skin or deep tissue damage, and pain intensity not exceeding four on the NRS (Numerical Rating Scale: 0-no pain, 10-the most severe pain) at the time of the study. Patient observation during the 3-day treatment was conducted by a wound care clinic nurse, assessing pain intensity once every 24 h during the larval dressing changes. (3) Results: Out of 348 individuals who qualified for MDT during the study period, 215 individuals participated in the study: 94 women (43.7%) and 121 men (56.3%). The age of the participants ranged from 28 to 97 years (mean 69.87 ± 12.95). Each participant experienced mild pain (2.26 ± 1.60 on the NRS) on the day of qualification for the study. An increase in pain intensity, according to subjective assessments, was reported by 29.3% of participants (n = 63). On the third day of MDT therapy, an increase in pain intensity was observed, reaching a mean value of 4.79 ± 2.12 ( p < 0.0001). Participants with pressure injuries showed the lowest pain intensity, which increased in consecutive days for all types of wounds. Additionally, the increase in pain intensity in patients with vascular etiology wounds was greater compared to patients with pressure injuries ( p < 0.001). (4) Conclusions: Local wound therapy with Lucilia sericata larvae increases pain intensity in the consecutive days of treatment. The wound area and the time since its occurrence may determine pain symptoms.
- Published
- 2024
- Full Text
- View/download PDF
357. Searches for new physics below twice the electron mass with GERDA.
- Author
-
Agostini M, Alexander A, Araujo G, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Belogurov S, Bettini A, Bezrukov L, Biancacci V, Bossio E, Bothe V, Brugnera R, Caldwell A, Calgaro S, Cattadori C, Chernogorov A, Chiu PJ, Comellato T, D'Andrea V, Demidova EV, Marco ND, Doroshkevich E, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hofmann W, Huang J, Hult M, Inzhechik LV, Csáthy JJ, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kilgus K, Kirpichnikov IV, Klimenko A, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Marshall G, Misiaszek M, Morella M, Müller Y, Nemchenok I, Neuberger M, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Rauscher L, Redchuk M, Riboldi S, Rumyantseva N, Sada C, Sailer S, Salamida F, Schönert S, Schreiner J, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Shtembari L, Simgen H, Smolnikov A, Stukov D, Sullivan S, Vasenko AA, Veresnikova A, Vignoli C, Sturm KV, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zatschler B, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zuber K, and Zuzel G
- Abstract
A search for full energy depositions from bosonic keV-scale dark matter candidates of masses between 65 and 1021 keV has been performed with data collected during Phase II of the GERmanium Detector Array (Gerda) experiment. Our analysis includes direct dark matter absorption as well as dark Compton scattering. With a total exposure of 105.5 kg years, no evidence for a signal above the background has been observed. The resulting exclusion limits deduced with either Bayesian or Frequentist statistics are the most stringent direct constraints in the major part of the 140-1021 keV mass range. As an example, at a mass of 150 keV the dimensionless coupling of dark photons and axion-like particles to electrons has been constrained to α ' / α < 8.7 × 10 - 24 and g ae < 3.3 × 10 - 12 at 90% credible interval (CI), respectively. Additionally, a search for peak-like signals from beyond the Standard Model decays of nucleons and electrons is performed. We find for the inclusive decay of a single neutron in 76 Ge a lower lifetime limit of τ n > 1.5 × 10 24 years and for a proton τ p > 1.3 × 10 24 years at 90% CI. For the electron decay e - → ν e γ a lower limit of τ e > 5.4 × 10 25 years at 90% CI has been determined., Supplementary Information: The online version contains supplementary material available at 10.1140/epjc/s10052-024-13020-0., (© The Author(s) 2024.)
- Published
- 2024
- Full Text
- View/download PDF
358. Final Results of GERDA on the Two-Neutrino Double-β Decay Half-Life of ^{76}Ge.
- Author
-
Agostini M, Alexander A, Araujo GR, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Belogurov S, Bettini A, Bezrukov L, Biancacci V, Bossio E, Bothe V, Brugnera R, Caldwell A, Calgaro S, Cattadori C, Chernogorov A, Chiu PJ, Comellato T, D'Andrea V, Demidova EV, Di Giacinto A, Di Marco N, Doroshkevich E, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hackenmüller S, Hemmer S, Hofmann W, Huang J, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kilgus K, Kirpichnikov IV, Klimenko A, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lehnert B, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Manzanillas L, Marshall G, Miloradovic M, Mingazheva R, Misiaszek M, Morella M, Müller Y, Nemchenok I, Neuberger M, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Rauscher L, Redchuk M, Riboldi S, Rumyantseva N, Sada C, Sailer S, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Shtembari L, Simgen H, Smolnikov A, Stukov D, Sullivan S, Vasenko AA, Veresnikova A, Vignoli C, von Sturm K, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zatschler B, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, and Zuzel G
- Abstract
We present the measurement of the two-neutrino double-β decay rate of ^{76}Ge performed with the GERDA Phase II experiment. With a subset of the entire GERDA exposure, 11.8 kg yr, the half-life of the process has been determined: T_{1/2}^{2ν}=(2.022±0.018_{stat}±0.038_{syst})×10^{21} yr. This is the most precise determination of the ^{76}Ge two-neutrino double-β decay half-life and one of the most precise measurements of a double-β decay process. The relevant nuclear matrix element can be extracted: M_{eff}^{2ν}=(0.101±0.001).
- Published
- 2023
- Full Text
- View/download PDF
359. Search for Dark Matter Particle Interactions with Electron Final States with DarkSide-50.
- Author
-
Agnes P, Albuquerque IFM, Alexander T, Alton AK, Ave M, Back HO, Batignani G, Biery K, Bocci V, Bonivento WM, Bottino B, Bussino S, Cadeddu M, Cadoni M, Calaprice F, Caminata A, Campos MD, Canci N, Caravati M, Cargioli N, Cariello M, Carlini M, Cataudella V, Cavalcante P, Cavuoti S, Chashin S, Chepurnov A, Cicalò C, Covone G, D'Angelo D, Davini S, De Candia A, De Cecco S, De Filippis G, De Rosa G, Derbin AV, Devoto A, D'Incecco M, Dionisi C, Dordei F, Downing M, D'Urso D, Fiorillo G, Franco D, Gabriele F, Galbiati C, Ghiano C, Giganti C, Giovanetti GK, Goretti AM, Grilli di Cortona G, Grobov A, Gromov M, Guan M, Gulino M, Hackett BR, Herner K, Hessel T, Hosseini B, Hubaut F, Hungerford EV, Ianni A, Ippolito V, Keeter K, Kendziora CL, Kimura M, Kochanek I, Korablev D, Korga G, Kubankin A, Kuss M, La Commara M, Lai M, Li X, Lissia M, Longo G, Lychagina O, Machulin IN, Mapelli LP, Mari SM, Maricic J, Messina A, Milincic R, Monroe J, Morrocchi M, Mougeot X, Muratova VN, Musico P, Nozdrina AO, Oleinik A, Ortica F, Pagani L, Pallavicini M, Pandola L, Pantic E, Paoloni E, Pelczar K, Pelliccia N, Piacentini S, Pocar A, Poehlmann DM, Pordes S, Poudel SS, Pralavorio P, Price DD, Ragusa F, Razeti M, Razeto A, Renshaw AL, Rescigno M, Rode J, Romani A, Sablone D, Samoylov O, Sands W, Sanfilippo S, Sandford E, Savarese C, Schlitzer B, Semenov DA, Shchagin A, Sheshukov A, Skorokhvatov MD, Smirnov O, Sotnikov A, Stracka S, Suvorov Y, Tartaglia R, Testera G, Tonazzo A, Unzhakov EV, Vishneva A, Vogelaar RB, Wada M, Wang H, Wang Y, Westerdale S, Wojcik MM, Xiao X, Yang C, and Zuzel G
- Abstract
We present a search for dark matter particles with sub-GeV/c^{2} masses whose interactions have final state electrons using the DarkSide-50 experiment's (12 306±184) kg d low-radioactivity liquid argon exposure. By analyzing the ionization signals, we exclude new parameter space for the dark matter-electron cross section σ[over ¯]_{e}, the axioelectric coupling constant g_{Ae}, and the dark photon kinetic mixing parameter κ. We also set the first dark matter direct-detection constraints on the mixing angle |U_{e4}|^{2} for keV/c^{2} sterile neutrinos.
- Published
- 2023
- Full Text
- View/download PDF
360. Search for Dark-Matter-Nucleon Interactions via Migdal Effect with DarkSide-50.
- Author
-
Agnes P, Albuquerque IFM, Alexander T, Alton AK, Ave M, Back HO, Batignani G, Biery K, Bocci V, Bonivento WM, Bottino B, Bussino S, Cadeddu M, Cadoni M, Calaprice F, Caminata A, Campos MD, Canci N, Caravati M, Cargioli N, Cariello M, Carlini M, Cataudella V, Cavalcante P, Cavuoti S, Chashin S, Chepurnov A, Cicalò C, Covone G, D'Angelo D, Davini S, De Candia A, De Cecco S, De Filippis G, De Rosa G, Derbin AV, Devoto A, D'Incecco M, Dionisi C, Dordei F, Downing M, D'Urso D, Fairbairn M, Fiorillo G, Franco D, Gabriele F, Galbiati C, Ghiano C, Giganti C, Giovanetti GK, Goretti AM, Grilli di Cortona G, Grobov A, Gromov M, Guan M, Gulino M, Hackett BR, Herner K, Hessel T, Hosseini B, Hubaut F, Hungerford EV, Ianni A, Ippolito V, Keeter K, Kendziora CL, Kimura M, Kochanek I, Korablev D, Korga G, Kubankin A, Kuss M, La Commara M, Lai M, Li X, Lissia M, Longo G, Lychagina O, Machulin IN, Mapelli LP, Mari SM, Maricic J, Messina A, Milincic R, Monroe J, Morrocchi M, Mougeot X, Muratova VN, Musico P, Nozdrina AO, Oleinik A, Ortica F, Pagani L, Pallavicini M, Pandola L, Pantic E, Paoloni E, Pelczar K, Pelliccia N, Piacentini S, Pocar A, Poehlmann DM, Pordes S, Poudel SS, Pralavorio P, Price DD, Ragusa F, Razeti M, Razeto A, Renshaw AL, Rescigno M, Rode J, Romani A, Sablone D, Samoylov O, Sandford E, Sands W, Sanfilippo S, Savarese C, Schlitzer B, Semenov DA, Shchagin A, Sheshukov A, Skorokhvatov MD, Smirnov O, Sotnikov A, Stracka S, Suvorov Y, Tartaglia R, Testera G, Tonazzo A, Unzhakov EV, Vishneva A, Vogelaar RB, Wada M, Wang H, Wang Y, Westerdale S, Wojcik MM, Xiao X, Yang C, and Zuzel G
- Abstract
Dark matter elastic scattering off nuclei can result in the excitation and ionization of the recoiling atom through the so-called Migdal effect. The energy deposition from the ionization electron adds to the energy deposited by the recoiling nuclear system and allows for the detection of interactions of sub-GeV/c^{2} mass dark matter. We present new constraints for sub-GeV/c^{2} dark matter using the dual-phase liquid argon time projection chamber of the DarkSide-50 experiment with an exposure of (12 306±184) kg d. The analysis is based on the ionization signal alone and significantly enhances the sensitivity of DarkSide-50, enabling sensitivity to dark matter with masses down to 40 MeV/c^{2}. Furthermore, it sets the most stringent upper limit on the spin independent dark matter nucleon cross section for masses below 3.6 GeV/c^{2}.
- Published
- 2023
- Full Text
- View/download PDF
361. Liquid argon light collection and veto modeling in GERDA Phase II.
- Author
-
Agostini M, Alexander A, Araujo GR, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Belogurov S, Bettini A, Bezrukov L, Biancacci V, Bossio E, Bothe V, Brugnera R, Caldwell A, Calgaro S, Cattadori C, Chernogorov A, Chiu PJ, Comellato T, D'Andrea V, Demidova EV, Di Giacinto A, Di Marco N, Doroshkevich E, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hofmann W, Hult M, Inzhechik LV, Csáthy JJ, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kilgus K, Kirpichnikov IV, Klimenko A, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lehnert B, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Manzanillas L, Marshall G, Miloradovic M, Mingazheva R, Misiaszek M, Morella M, Müller Y, Nemchenok I, Neuberger M, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Rauscher L, Redchuk M, Riboldi S, Rumyantseva N, Sada C, Sailer S, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Shtembari L, Simgen H, Smolnikov A, Stukov D, Sullivan S, Vasenko AA, Veresnikova A, Vignoli C, von Sturm K, Wegmann A, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zatschler B, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, and Zuzel G
- Abstract
The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the Gerda experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of 76 Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the Gerda liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition., (© The Author(s) 2023.)
- Published
- 2023
- Full Text
- View/download PDF
362. Search for tri-nucleon decays of 76 Ge in GERDA.
- Author
-
Agostini M, Alexander A, Araujo G, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Belogurov S, Bettini A, Bezrukov L, Biancacci V, Bossio E, Bothe V, Brugnera R, Caldwell A, Calgaro S, Cattadori C, Chernogorov A, Chiu PJ, Comellato T, D'Andrea V, Demidova EV, Di Giacinto A, Di Marco N, Doroshkevich E, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hofmann W, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kilgus K, Kirpichnikov IV, Klimenko A, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Manzanillas L, Marshall G, Misiaszek M, Morella M, Müller Y, Nemchenok I, Neuberger M, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Rauscher L, Redchuk M, Riboldi S, Rumyantseva N, Sada C, Sailer S, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Shtembari L, Simgen H, Smolnikov A, Stukov D, Sullivan S, Vasenko AA, Veresnikova A, Vignoli C, von Sturm K, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zatschler B, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, and Zuzel G
- Abstract
We search for tri-nucleon decays of 76 Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to 73 Cu, 73 Zn, and 73 Ga nuclei, respectively. These nuclei are unstable and eventually proceed by the beta decay of 73 Ga to 73 Ge (stable). We search for the 73 Ga decay exploiting the fact that it dominantly populates the 66.7 keV 73 m Ga state with half-life of 0.5 s. The nnn-decays of 76 Ge that proceed via 73 m Ge are also included in our analysis. We find no signal candidate and place a limit on the sum of the decay widths of the inclusive tri-nucleon decays that corresponds to a lower lifetime limit of 1.2 × 10 26 yr (90% credible interval). This result improves previous limits for tri-nucleon decays by one to three orders of magnitude., (© The Author(s) 2023.)
- Published
- 2023
- Full Text
- View/download PDF
363. ACE-Inhibitor or ARB-Induced Refractory Hypotension Treated With Vasopressin in Patients Undergoing General Anesthesia for Dentistry: Two Case Reports.
- Author
-
Waters CM, Pelczar K, Adlesic EC, Schwartz PJ, and Giovannitti JA
- Subjects
- Anesthesia, General adverse effects, Angiotensin Receptor Antagonists adverse effects, Angiotensin-Converting Enzyme Inhibitors adverse effects, Dentistry, Humans, Postoperative Complications etiology, Retrospective Studies, Vasopressins adverse effects, Anesthetics, General adverse effects, Hypotension chemically induced, Hypotension drug therapy
- Abstract
Two case reports present the use of vasopressin for treating refractory hypotension associated with continued angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) therapy prior to general anesthesia for oral surgery. Both patients were treated in an ambulatory dental surgery clinic and took either their ACEI or ARB medication for hypertension within 24 hours prior to undergoing an intubated general anesthetic. Persistent profound hypotension was encountered intraoperatively that was refractory to treatment with traditional methods. However, the ACEI- or ARB-induced refractory hypotension was successfully managed with the administration of vasopressin., (© 2022 by the American Dental Society of Anesthesiology.)
- Published
- 2022
- Full Text
- View/download PDF
364. Erratum: First Search for Bosonic Superweakly Interacting Massive Particles with Masses up to 1 MeV/c^{2} with GERDA [Phys. Rev. Lett. 125, 011801 (2020)].
- Author
-
Agostini M, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Borowicz D, Bossio E, Bothe V, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Doroshkevich E, Egorov V, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hiller R, Hofmann W, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kirpichnikov IV, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Rauscher L, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Simgen H, Smolnikov A, Stukov D, Vasenko AA, Veresnikova A, Vignoli C, von Sturm K, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zatschler B, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, and Zuzel G
- Abstract
This corrects the article DOI: 10.1103/PhysRevLett.125.011801.
- Published
- 2022
- Full Text
- View/download PDF
365. Air humidity and annual oscillations in 90 Sr/ 90 Y and 60 Co decay rate measurements.
- Author
-
Pommé S, Pelczar K, and Kajan I
- Abstract
Parkhomov published decay rate measurements of
90 Sr/90 Y and60 Co beta decay sources with Geiger-Müller counters which showed annual cyclic deviations with less than 0.2% amplitude from a purely exponential slope. He investigated instrument instability induced by environmental parameters, yet did not find a clear coincidence with local temperature, atmospheric pressure, and relative humidity. Parkhomov hypothesised that gravitationally-focussed 'slow' cosmic neutrinos influenced beta decay. In the current work, environmental conditions in the Moscow area at the time of the experiment are presented. There appears to be a resemblance of the shape of the annual90 Sr/90 Y decay rate anomalies with the inverse of the absolute air humidity, albeit with an apparent time shift of 0.05-0.15 year. Humidity may have influenced the range of beta particles in air, as well as geometric and electronic properties of the detection set-up, however causality could not be unambiguously demonstrated. The instabilities in the60 Co data were more difficult to correlate with environmental data, except for some similarities with temperature and external dew point., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
366. Role of ambient humidity underestimated in research on correlation between radioactive decay rates and space weather.
- Author
-
Pommé S and Pelczar K
- Published
- 2022
- Full Text
- View/download PDF
367. Pulse shape analysis in Gerda Phase II.
- Author
-
Agostini M, Araujo G, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Biancacci V, Bossio E, Bothe V, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Marco ND, Doroshkevich E, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hiller R, Hofmann W, Huang J, Hult M, Inzhechik LV, Csáthy JJ, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kilgus K, Kirsch A, Kirpichnikov IV, Klimenko A, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Manzanillas L, Miloradovic M, Mingazheva R, Misiaszek M, Müller Y, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Rauscher L, Redchuk M, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Shtembari L, Simgen H, Smolnikov A, Stukov D, Vasenko AA, Veresnikova A, Vignoli C, Sturm KV, Wagner V, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zatschler B, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, and Zuzel G
- Abstract
The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- β decay in 76 Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011-2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015-2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events. Data from regular 228 Th calibrations and physics data were both considered in the evaluation of the pulse shape discrimination performance. In this work, we describe the various methods applied to the data collected in Gerda Phase II corresponding to an exposure of 103.7 kg year. These methods suppress the background by a factor of about 5 in the region of interest around Q β β = 2039 keV, while preserving ( 81 ± 3 ) % of the signal. In addition, an exhaustive list of parameters is provided which were used in the final data analysis., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
368. Probing the Symmetry Energy with the Spectral Pion Ratio.
- Author
-
Estee J, Lynch WG, Tsang CY, Barney J, Jhang G, Tsang MB, Wang R, Kaneko M, Lee JW, Isobe T, Kurata-Nishimura M, Murakami T, Ahn DS, Atar L, Aumann T, Baba H, Boretzky K, Brzychczyk J, Cerizza G, Chiga N, Fukuda N, Gasparic I, Hong B, Horvat A, Ieki K, Inabe N, Kim YJ, Kobayashi T, Kondo Y, Lasko P, Lee HS, Leifels Y, Łukasik J, Manfredi J, McIntosh AB, Morfouace P, Nakamura T, Nakatsuka N, Nishimura S, Otsu H, Pawłowski P, Pelczar K, Rossi D, Sakurai H, Santamaria C, Sato H, Scheit H, Shane R, Shimizu Y, Simon H, Snoch A, Sochocka A, Sumikama T, Suzuki H, Suzuki D, Takeda H, Tangwancharoen S, Toernqvist H, Togano Y, Xiao ZG, Yennello SJ, Zhang Y, and Cozma MD
- Abstract
Many neutron star properties, such as the proton fraction, reflect the symmetry energy contributions to the equation of state that dominate when neutron and proton densities differ strongly. To constrain these contributions at suprasaturation densities, we measure the spectra of charged pions produced by colliding rare isotope tin (Sn) beams with isotopically enriched Sn targets. Using ratios of the charged pion spectra measured at high transverse momenta, we deduce the slope of the symmetry energy to be 42
- Published
- 2021
- Full Text
- View/download PDF
369. Final Results of GERDA on the Search for Neutrinoless Double-β Decay.
- Author
-
Agostini M, Araujo GR, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Biancacci V, Borowicz D, Bossio E, Bothe V, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Doroshkevich E, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hiller R, Hofmann W, Huang J, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kirpichnikov IV, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Manzanillas L, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Müller Y, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Rauscher L, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Shtembari L, Simgen H, Smolnikov A, Stukov D, Vasenko AA, Veresnikova A, Vignoli C, von Sturm K, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zatschler B, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, and Zuzel G
- Abstract
The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-β (0νββ) decay of ^{76}Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in ^{76}Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of 5.2×10^{-4} counts/(keV kg yr) in the signal region and met the design goal to collect an exposure of 100 kg yr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg yr of total exposure. A limit on the half-life of 0νββ decay in ^{76}Ge is set at T_{1/2}>1.8×10^{26} yr at 90% C.L., which coincides with the sensitivity assuming no signal.
- Published
- 2020
- Full Text
- View/download PDF
370. First Search for Bosonic Superweakly Interacting Massive Particles with Masses up to 1 MeV/c^{2} with GERDA.
- Author
-
Agostini M, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Borowicz D, Bossio E, Bothe V, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Doroshkevich E, Egorov V, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hiller R, Hofmann W, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kirpichnikov IV, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Rauscher L, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Simgen H, Smolnikov A, Stukov D, Vasenko AA, Veresnikova A, Vignoli C, von Sturm K, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zatschler B, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, and Zuzel G
- Abstract
We present the first search for bosonic superweakly interacting massive particles (super-WIMPs) as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-β decay experiment which operates high-purity germanium detectors enriched in ^{76}Ge in an ultralow background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c^{2} to 1 MeV/c^{2}. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c^{2} have been set. As an example, at a mass of 150 keV/c^{2} the most stringent direct limits on the dimensionless couplings of axionlike particles and dark photons to electrons of g_{ae}<3×10^{-12} and α^{'}/α<6.5×10^{-24} at 90% credible interval, respectively, were obtained.
- Published
- 2020
- Full Text
- View/download PDF
371. Probing Majorana neutrinos with double-β decay.
- Author
-
Agostini M, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Borowicz D, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Domula A, Doroshkevich E, Egorov V, Falkenstein R, Fomina M, Gangapshev A, Garfagnini A, Giordano M, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hegai A, Heisel M, Hemmer S, Hiller R, Hofmann W, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Kihm T, Kirpichnikov IV, Kirsch A, Kish A, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Riboldi S, Rumyantseva N, Sada C, Sala E, Salamida F, Schmitt C, Schneider B, Schönert S, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Simgen H, Smolnikov A, Stanco L, Stukov D, Vanhoefer L, Vasenko AA, Veresnikova A, von Sturm K, Wagner V, Wegmann A, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, and Zuzel G
- Abstract
A discovery that neutrinos are Majorana fermions would have profound implications for particle physics and cosmology. The Majorana character of neutrinos would make possible the neutrinoless double-β (0νββ) decay, a matter-creating process without the balancing emission of antimatter. The GERDA Collaboration searches for the 0νββ decay of
76 Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg⋅year, we observe no signal and derive a lower half-life limit of T1/2 > 0.9 × 1026 years (90% C.L.). Our T1/2 sensitivity, assuming no signal, is 1.1 × 1026 years. Combining the latter with those from other 0νββ decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 to 0.16 electron volts., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)- Published
- 2019
- Full Text
- View/download PDF
372. Characterization of 30 76 Ge enriched Broad Energy Ge detectors for GERDA Phase II.
- Author
-
Agostini M, Bakalyarov AM, Andreotti E, Balata M, Barabanov I, Baudis L, Barros N, Bauer C, Bellotti E, Belogurov S, Benato G, Bettini A, Bezrukov L, Bode T, Borowicz D, Brudanin V, Brugnera R, Budjáš D, Caldwell A, Cattadori C, Chernogorov A, D'Andrea V, Demidova EV, Di Marco N, Domula A, Doroshkevich E, Egorov V, Falkenstein R, Freund K, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hegai A, Heisel M, Hemmer S, Hiller R, Hofmann W, Hult M, Inzhechik LV, Csáthy JJ, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Kihm T, Kirpichnikov IV, Kirsch A, Kish A, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Kuzminov VV, Laubenstein M, Lazzaro A, Lehnert B, Liao Y, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Marissens G, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Nemchenok I, Panas K, Pandola L, Pelczar K, Pullia A, Ransom C, Riboldi S, Rumyantseva N, Sada C, Salamida F, Salathe M, Schmitt C, Schneider B, Schönert S, Schütz AK, Schulz O, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Simgen H, Smolnikov A, Stanco L, Vanhoefer L, Vasenko AA, Veresnikova A, von Sturm K, Wagner V, Wegmann A, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zhitnikov I, Zhukov SV, Zinatulina D, Zsigmond AJ, Zuber K, and Zuzel G
- Abstract
The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of 76 Ge into 76 Se+2e - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new
76 Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes., (© The Author(s) 2019.)- Published
- 2019
- Full Text
- View/download PDF
373. Constraints on Sub-GeV Dark-Matter-Electron Scattering from the DarkSide-50 Experiment.
- Author
-
Agnes P, Albuquerque IFM, Alexander T, Alton AK, Araujo GR, Asner DM, Ave M, Back HO, Baldin B, Batignani G, Biery K, Bocci V, Bonfini G, Bonivento W, Bottino B, Budano F, Bussino S, Cadeddu M, Cadoni M, Calaprice F, Caminata A, Canci N, Candela A, Caravati M, Cariello M, Carlini M, Carpinelli M, Catalanotti S, Cataudella V, Cavalcante P, Cavuoti S, Cereseto R, Chepurnov A, Cicalò C, Cifarelli L, Cocco AG, Covone G, D'Angelo D, D'Incecco M, D'Urso D, Davini S, De Candia A, De Cecco S, De Deo M, De Filippis G, De Rosa G, De Vincenzi M, Demontis P, Derbin AV, Devoto A, Di Eusanio F, Di Pietro G, Dionisi C, Downing M, Edkins E, Empl A, Fan A, Fiorillo G, Fomenko K, Franco D, Gabriele F, Gabrieli A, Galbiati C, Garcia Abia P, Ghiano C, Giagu S, Giganti C, Giovanetti GK, Gorchakov O, Goretti AM, Granato F, Gromov M, Guan M, Guardincerri Y, Gulino M, Hackett BR, Hassanshahi MH, Herner K, Hosseini B, Hughes D, Humble P, Hungerford EV, Ianni A, Ianni A, Ippolito V, James I, Johnson TN, Kahn Y, Keeter K, Kendziora CL, Kochanek I, Koh G, Korablev D, Korga G, Kubankin A, Kuss M, La Commara M, Lai M, Li X, Lisanti M, Lissia M, Loer B, Longo G, Ma Y, Machado AA, Machulin IN, Mandarano A, Mapelli L, Mari SM, Maricic J, Martoff CJ, Messina A, Meyers PD, Milincic R, Mishra-Sharma S, Monte A, Morrocchi M, Mount BJ, Muratova VN, Musico P, Nania R, Navrer Agasson A, Nozdrina AO, Oleinik A, Orsini M, Ortica F, Pagani L, Pallavicini M, Pandola L, Pantic E, Paoloni E, Pazzona F, Pelczar K, Pelliccia N, Pesudo V, Picciau E, Pocar A, Pordes S, Poudel SS, Pugachev DA, Qian H, Ragusa F, Razeti M, Razeto A, Reinhold B, Renshaw AL, Rescigno M, Riffard Q, Romani A, Rossi B, Rossi N, Sablone D, Samoylov O, Sands W, Sanfilippo S, Sant M, Santorelli R, Savarese C, Scapparone E, Schlitzer B, Segreto E, Semenov DA, Shchagin A, Sheshukov A, Singh PN, Skorokhvatov MD, Smirnov O, Sotnikov A, Stanford C, Stracka S, Suffritti GB, Suvorov Y, Tartaglia R, Testera G, Tonazzo A, Trinchese P, Unzhakov EV, Verducci M, Vishneva A, Vogelaar B, Wada M, Waldrop TJ, Wang H, Wang Y, Watson AW, Westerdale S, Wojcik MM, Wojcik M, Xiang X, Xiao X, Yang C, Ye Z, Zhu C, Zichichi A, and Zuzel G
- Abstract
We present new constraints on sub-GeV dark-matter particles scattering off electrons based on 6780.0 kg d of data collected with the DarkSide-50 dual-phase argon time projection chamber. This analysis uses electroluminescence signals due to ionized electrons extracted from the liquid argon target. The detector has a very high trigger probability for these signals, allowing for an analysis threshold of three extracted electrons, or approximately 0.05 keVee. We calculate the expected recoil spectra for dark matter-electron scattering in argon and, under the assumption of momentum-independent scattering, improve upon existing limits from XENON10 for dark-matter particles with masses between 30 and 100 MeV/c^{2}.
- Published
- 2018
- Full Text
- View/download PDF
374. Low-Mass Dark Matter Search with the DarkSide-50 Experiment.
- Author
-
Agnes P, Albuquerque IFM, Alexander T, Alton AK, Araujo GR, Asner DM, Ave M, Back HO, Baldin B, Batignani G, Biery K, Bocci V, Bonfini G, Bonivento W, Bottino B, Budano F, Bussino S, Cadeddu M, Cadoni M, Calaprice F, Caminata A, Canci N, Candela A, Caravati M, Cariello M, Carlini M, Carpinelli M, Catalanotti S, Cataudella V, Cavalcante P, Cavuoti S, Cereseto R, Chepurnov A, Cicalò C, Cifarelli L, Cocco AG, Covone G, D'Angelo D, D'Incecco M, D'Urso D, Davini S, De Candia A, De Cecco S, De Deo M, De Filippis G, De Rosa G, De Vincenzi M, Demontis P, Derbin AV, Devoto A, Di Eusanio F, Di Pietro G, Dionisi C, Downing M, Edkins E, Empl A, Fan A, Fiorillo G, Fomenko K, Franco D, Gabriele F, Gabrieli A, Galbiati C, Garcia Abia P, Ghiano C, Giagu S, Giganti C, Giovanetti GK, Gorchakov O, Goretti AM, Granato F, Gromov M, Guan M, Guardincerri Y, Gulino M, Hackett BR, Hassanshahi MH, Herner K, Hosseini B, Hughes D, Humble P, Hungerford EV, Ianni A, Ianni A, Ippolito V, James I, Johnson TN, Kahn Y, Keeter K, Kendziora CL, Kochanek I, Koh G, Korablev D, Korga G, Kubankin A, Kuss M, La Commara M, Lai M, Li X, Lisanti M, Lissia M, Loer B, Longo G, Ma Y, Machado AA, Machulin IN, Mandarano A, Mapelli L, Mari SM, Maricic J, Martoff CJ, Messina A, Meyers PD, Milincic R, Mishra-Sharma S, Monte A, Morrocchi M, Mount BJ, Muratova VN, Musico P, Nania R, Navrer Agasson A, Nozdrina AO, Oleinik A, Orsini M, Ortica F, Pagani L, Pallavicini M, Pandola L, Pantic E, Paoloni E, Pazzona F, Pelczar K, Pelliccia N, Pesudo V, Pocar A, Pordes S, Poudel SS, Pugachev DA, Qian H, Ragusa F, Razeti M, Razeto A, Reinhold B, Renshaw AL, Rescigno M, Riffard Q, Romani A, Rossi B, Rossi N, Sablone D, Samoylov O, Sands W, Sanfilippo S, Sant M, Santorelli R, Savarese C, Scapparone E, Schlitzer B, Segreto E, Semenov DA, Shchagin A, Sheshukov A, Singh PN, Skorokhvatov MD, Smirnov O, Sotnikov A, Stanford C, Stracka S, Suffritti GB, Suvorov Y, Tartaglia R, Testera G, Tonazzo A, Trinchese P, Unzhakov EV, Verducci M, Vishneva A, Vogelaar B, Wada M, Waldrop TJ, Wang H, Wang Y, Watson AW, Westerdale S, Wojcik MM, Wojcik M, Xiang X, Xiao X, Yang C, Ye Z, Zhu C, Zichichi A, and Zuzel G
- Abstract
We present the results of a search for dark matter weakly interacting massive particles (WIMPs) in the mass range below 20 GeV/c^{2} using a target of low-radioactivity argon with a 6786.0 kg d exposure. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso. The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 event/keVee/kg/d and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c^{2} for the spin-independent cross section of dark matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8-6 GeV/c^{2}.
- Published
- 2018
- Full Text
- View/download PDF
375. Improved Limit on Neutrinoless Double-β Decay of ^{76}Ge from GERDA Phase II.
- Author
-
Agostini M, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Biernat J, Bode T, Borowicz D, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Domula A, Doroshkevich E, Egorov V, Falkenstein R, Gangapshev A, Garfagnini A, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hegai A, Heisel M, Hemmer S, Hiller R, Hofmann W, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaidic Y, Kihm T, Kirpichnikov IV, Kirsch A, Kish A, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Pullia A, Ransom C, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schmitt C, Schneider B, Schönert S, Schütz AK, Schulz O, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Simgen H, Smolnikov A, Stanco L, Vanhoefer L, Vasenko AA, Veresnikova A, von Sturm K, Wagner V, Wegmann A, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, and Zuzel G
- Abstract
The GERDA experiment searches for the lepton-number-violating neutrinoless double-β decay of ^{76}Ge (^{76}Ge→^{76}Se+2e^{-}) operating bare Ge diodes with an enriched ^{76}Ge fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of 1.0_{-0.4}^{+0.6}×10^{-3} counts/(keV kg yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0νββ experiment. No signal is observed and a new 90% C.L. lower limit for the half-life of 8.0×10^{25} yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8×10^{25} yr.
- Published
- 2018
- Full Text
- View/download PDF
376. [Diversity of nasal polyps in microarray technology research].
- Author
-
Rostkowska-Nadolska B, Kapral M, Gruna-Pelczar K, Fraczek M, Gawron W, and Mazurek U
- Subjects
- Adolescent, Adult, Aged, Case-Control Studies, Female, Gene Expression Profiling, Humans, Inflammation metabolism, Male, Middle Aged, Nasal Polyps metabolism, Protein Array Analysis, RNA, Messenger, Reverse Transcriptase Polymerase Chain Reaction, Transcription, Genetic, Inflammation genetics, Nasal Mucosa metabolism, Nasal Polyps genetics
- Abstract
Unlabelled: Nasal polyps, according to many authors, generate as a result of chronic inflammation process with activation of cytokines, immunological reaction mediators that regulate proliferation, differentiation and cell apoptosis. Clarifying molecular mechanisms present in those disturbances may have diagnostic and prognostic value in evaluation of recurrence, dynamics and differentiation of nasal polyps as well as in their therapy., Aim: The aim of the work was an analysis of nasal polyps on the basis of molecular, histopathological and clinical picture as well as comparing differentiated genes transcription in nasal polyps and proper nasal mucosa., Material and Method: Oligonucleotide array with HGU 133A - Affymetrix were used to analyze the expression of 22,283 genes in nasal polyp tissues from 17 patients. The control group consisted of 8 tissue samples from patients after nasal septoplasty surgery., Results: All the samples could be classified to nasal polyps group or proper mucosa group, it reflected significant differences in genes profile expression in both groups. The evaluation of 22,283 genes transcriptions showed that in most cases nasal polyps tissue reflect classification connected with dominant inflammation cells infiltration. The data obtained let distinguish subgroups connected with clinical condition of the patients. The subgroup with massive nasal and sinus polyposis, eosinophilia and differentiated lower respiratory airways hyperactivity and the subgroup without eosinophilia infiltration may be distinguished. The data obtained suggest that molecular mechanisms may influence on the promotion and kind of inflammation process as well as the clinical course of nasal polyps.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.