6 results on '"14Q20, 12Y05, 13P05, 68W30"'
Search Results
2. A quasi-linear irreducibility test in K[[x]][y]
- Author
-
Poteaux, Adrien and Weimann, Martin
- Subjects
Mathematics - Number Theory ,Mathematics - Commutative Algebra ,Mathematics - Algebraic Geometry ,14Q20, 12Y05, 13P05, 68W30 - Abstract
We provide an irreducibility test in the ring K[[x]][y] whose complexity is quasi-linear with respect to the discriminant valuation, assuming the input polynomial F square-free and K a perfect field of characteristic zero or greater than deg(F). The algorithm uses the theory of approximate roots and may be seen as a generalisation of Abhyankhar's irreducibility criterion to the case of non algebraically closed residue fields., Comment: 29 pages. arXiv admin note: substantial text overlap with arXiv:1904.00286
- Published
- 2019
3. Using approximate roots for irreducibility and equi-singularity issues in K[[x]][y]
- Author
-
Poteaux, Adrien and Weimann, Martin
- Subjects
Mathematics - Algebraic Geometry ,14Q20, 12Y05, 13P05, 68W30 - Abstract
We provide an irreducibility test in the ring K[[x]][y] whose complexity is quasi-linear with respect to the valuation of the discriminant, assuming the input polynomial F square-free and K a perfect field of characteristic zero or greater than deg(F). The algorithm uses the theory of approximate roots and may be seen as a generalization of Abhyankhar's irreducibility criterion to the case of non algebraically closed residue fields. More generally, we show that we can test within the same complexity if a polynomial is pseudo-irreducible, a larger class of polynomials containing irreducible ones. If $F$ is pseudo-irreducible, the algorithm computes also the valuation of the discriminant and the equisingularity types of the germs of plane curve defined by F along the fiber x=0., Comment: 51 pages. Title modified. Slight modifications in Definition 5 and Proposition 14
- Published
- 2019
4. Computing Puiseux series : a fast divide and conquer algorithm
- Author
-
Poteaux, Adrien and Weimann, Martin
- Subjects
Mathematics - Algebraic Geometry ,14Q20, 12Y05, 13P05, 68W30 - Abstract
Let $F\in \mathbb{K}[X, Y ]$ be a polynomial of total degree $D$ defined over a perfect field $\mathbb{K}$ of characteristic zero or greater than $D$. Assuming $F$ separable with respect to $Y$ , we provide an algorithm that computes the singular parts of all Puiseux series of $F$ above $X = 0$ in less than $\tilde{\mathcal{O}}(D\delta)$ operations in $\mathbb{K}$, where $\delta$ is the valuation of the resultant of $F$ and its partial derivative with respect to $Y$. To this aim, we use a divide and conquer strategy and replace univariate factorization by dynamic evaluation. As a first main corollary, we compute the irreducible factors of $F$ in $\mathbb{K}[[X]][Y ]$ up to an arbitrary precision $X^N$ with $\tilde{\mathcal{O}}(D(\delta + N ))$ arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by $F$ with $\tilde{\mathcal{O}}(D^3)$ arithmetic operations and, if $\mathbb{K} = \mathbb{Q}$, with $\tilde{\mathcal{O}}((h+1)D^3)$ bit operations using a probabilistic algorithm, where $h$ is the logarithmic heigth of $F$., Comment: 27 pages, 2 figures
- Published
- 2017
5. Computing Puiseux series: a fast divide and conquer algorithm
- Author
-
Adrien Poteaux, Martin Weimann, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire de Mathématiques Nicolas Oresme (LMNO), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géométrie Algébrique et Applications à la Théorie de l'Information (GAATI), Université de la Polynésie Française (UPF), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), and Normandie Université (NU)-Normandie Université (NU)
- Subjects
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] ,Polynomial ,Plane curve ,[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] ,010102 general mathematics ,Zero (complex analysis) ,Ocean Engineering ,Field (mathematics) ,010103 numerical & computational mathematics ,01 natural sciences ,Puiseux series ,Separable space ,Combinatorics ,Mathematics - Algebraic Geometry ,Factorization ,Arbitrary-precision arithmetic ,FOS: Mathematics ,0101 mathematics ,complexity ,Algebraic Geometry (math.AG) ,14Q20, 12Y05, 13P05, 68W30 ,Mathematics - Abstract
Let $F\in \mathbb{K}[X, Y ]$ be a polynomial of total degree $D$ defined over a perfect field $\mathbb{K}$ of characteristic zero or greater than $D$. Assuming $F$ separable with respect to $Y$ , we provide an algorithm that computes the singular parts of all Puiseux series of $F$ above $X = 0$ in less than $\tilde{\mathcal{O}}(D\delta)$ operations in $\mathbb{K}$, where $\delta$ is the valuation of the resultant of $F$ and its partial derivative with respect to $Y$. To this aim, we use a divide and conquer strategy and replace univariate factorization by dynamic evaluation. As a first main corollary, we compute the irreducible factors of $F$ in $\mathbb{K}[[X]][Y ]$ up to an arbitrary precision $X^N$ with $\tilde{\mathcal{O}}(D(\delta + N ))$ arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by $F$ with $\tilde{\mathcal{O}}(D^3)$ arithmetic operations and, if $\mathbb{K} = \mathbb{Q}$, with $\tilde{\mathcal{O}}((h+1)D^3)$ bit operations using a probabilistic algorithm, where $h$ is the logarithmic heigth of $F$., Comment: 27 pages, 2 figures
- Published
- 2021
- Full Text
- View/download PDF
6. Computing the equisingularity type of a pseudo-irreducible polynomial
- Author
-
Adrien Poteaux, Martin Weimann, Calcul Formel (CALFOR), Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), Université de Caen Normandie (UNICAEN), Normandie Université (NU), Laboratoire de Géométrie Algébrique et Applications à la Théorie de l'Information (GAATI), Université de la Polynésie Française (UPF), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), and Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,Class (set theory) ,Plane curve ,[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] ,0102 computer and information sciences ,02 engineering and technology ,Type (model theory) ,01 natural sciences ,Mathematics - Algebraic Geometry ,Mathematics::Algebraic Geometry ,0202 electrical engineering, electronic engineering, information engineering ,FOS: Mathematics ,[INFO]Computer Science [cs] ,[MATH]Mathematics [math] ,Algebraic Geometry (math.AG) ,14Q20, 12Y05, 13P05, 68W30 ,Computer Science::Databases ,Mathematics ,[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] ,Algebra and Number Theory ,Mathematics::Commutative Algebra ,Irreducible polynomial ,Mathematics::Complex Variables ,Applied Mathematics ,020206 networking & telecommunications ,Discriminant ,010201 computation theory & mathematics ,Theory of computation ,Gravitational singularity ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Valuation (measure theory) - Abstract
Germs of plane curve singularities can be classified accordingly to their equisingularity type. For singularities over C, this important data coincides with the topological class. In this paper, we characterise a family of singularities, containing irreducible ones, whose equisingularity type can be computed in quasi-linear time with respect to the discriminant valuation of a Weierstrass equation., 26 pages. arXiv admin note: substantial text overlap with arXiv:1904.00286
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.