1. Impact of electron correlations on two-particle charge response in electron- and hole-doped cuprates
- Author
-
Nag, Abhishek, Zinni, Luciano, Choi, Jaewon, Li, J., Tu, Sijia, Walters, A. C., Agrestini, S., Hayden, S. M., Bejas, Matías, Lin, Zefeng, Yamase, H., Jin, Kui, García-Fernández, M., Fink, J., Greco, Andrés, and Zhou, Ke-Jin
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Estimating many-body effects that deviate from an independent particle approach, has long been a key research interest in condensed matter physics. Layered cuprates are prototypical systems, where electron-electron interactions are found to strongly affect the dynamics of single-particle excitations. It is however, still unclear how the electron correlations influence charge excitations, such as plasmons, which have been variously treated with either weak or strong correlation models. In this work, we demonstrate the hybridised nature of collective valence charge fluctuations leading to dispersing acoustic-like plasmons in hole-doped La$_{1.84}$Sr$_{0.16}$CuO$_{4}$ and electron-doped La$_{1.84}$Ce$_{0.16}$CuO$_{4}$ using the two-particle probe, resonant inelastic x-ray scattering. We then describe the plasmon dispersions in both systems, within both the weak mean-field Random Phase Approximation (RPA) and strong coupling $t$-$J$-$V$ models. The $t$-$J$-$V$ model, which includes the correlation effects implicitly, accurately describes the plasmon dispersions as resonant excitations outside the single-particle intra-band continuum. In comparison, a quantitative description of the plasmon dispersion in the RPA approach is obtained only upon explicit consideration of re-normalized electronic band parameters. Our comparative analysis shows that electron correlations significantly impact the low-energy plasmon excitations across the cuprate doping phase diagram, even at long wavelengths. Thus, complementary information on the evolution of electron correlations, influenced by the rich electronic phases in condensed matter systems, can be extracted through the study of two-particle charge response., Comment: 6 Figures
- Published
- 2024