1. Mesenchymal stem/stromal cell quality control: validation of mixed lymphocyte reaction assay using flow cytometry according to ICH Q2(R1)
- Author
-
Tess Nicotra, Aurélie Desnos, Justine Halimi, Hélène Antonot, Loïc Reppel, Thomas Belmas, Alice Freton, Floriane Stranieri, Miryam Mebarki, Jérôme Larghero, Audrey Cras, and Lionel Faivre
- Subjects
Mesenchymal stem/stromal cell ,Lymphocyte proliferation ,Biological assay ,Potency assay ,Quality control ,Mixed lymphocyte reaction ,Medicine (General) ,R5-920 ,Biochemistry ,QD415-436 - Abstract
Abstract Background Mesenchymal stem/stromal cells (MSC) have immunomodulatory properties, studied in a wide range of diseases. Validated quality controls must confirm this activity in the context of clinical trials. This study presents a method’s validation, assessing MSC’s ability to inhibit lymphocyte proliferation, according to the ICH Q2 standard. Methods MSC were co-cultured with CellTrace™ Violet-labeled Peripheral blood mononuclear cells (PBMC) coming from a bank of ten donors, at seven different ratios for 7 days. Cell trace violet PBMC bank was validated in parallel. Flow cytometry analysis was used to obtain the division percentage of T cells. The percentage of inhibition of lymphocyte proliferation by MSC, for each ratio X, was calculated using the formula: Ratio × percentage of inhibition = (control percentage of division—ratio × percentage of division)/control percentage of division. The inhibition percentage of lymphocyte proliferation function of co-culture ratios was represented in a line graph. The corresponding area under the curve was calculated, representing MSC’s ability to inhibit lymphocyte proliferation. Results Two cell trace violet PBMC banks were compared for bank validation. When compared using four different MSC samples coming each from a different donor, their area under the curve did not show any statistical differences and were correlated. Moreover, the stability of one cell trace violet PBMC bank was confirmed up to 509 days of storage. Analytical parameters were investigated for method validation. Analysis of repeatability and reproducibility respectively showed a standard deviation of 6.1% and 4.6%. The assay was robust regarding PBMC, as no statistical differences were found between inhibitory activities when testing three adjacent concentrations of PBMC. Still, attention is needed on MSC quantity as it can influence results. Linearity was evaluated: the percentage of inhibition of lymphocyte proliferation function of co-culture ratios was linear on the exploited range. Finally, the assay measurement range allowed to differentiate MSC presenting different inhibition activities. Conclusion This quantification method displayed low analytical variability and no inter-bank variability of PBMC. However, MSC quantification should be checked before co-culture to reduce variability. Therefore, it could be used for the qualification of MSC batches’ immunomodulatory activity.
- Published
- 2020
- Full Text
- View/download PDF