To investigate the cellular mechanisms underlying the unique GH secretory apparatus of the androgen-resistant testicular feminized (Tfm) rat we employed a reverse hemolytic plaque assay to assess GH secretion by individual cells from normal male, normal female, and Tfm rats. Acutely dispersed pituitary cells were incubated for 90 min with GH anti-serum in the presence of medium alone, 0.01, 0.1, 1, 10, or 100 nM GHRH, or 3 microM forskolin after which hemolytic plaques were developed over an additional 30 min. Body weights of the Tfm rats [318 +/- 7 g (mean +/- SEM)] were intermediate between intact males (372 +/- 18 g) and females (218 +/- 7 g). The total number of cells recovered from dispersion of Tfm rat pituitaries [3.20 +/- 0.42 X 10(6) (mean +/- SEM)] was greater than that from males (1.43 +/- 0.12 X 10(6); P = 0.001), but not distinguishable from that from females (2.31 +/- 0.30 X 10(6); P = 0.06). However, the absolute population of recovered somatotropes from the Tfm animals (1.24 +/- 0.22 X 10(6) exceeded both male (0.56 +/- 0.10 X 10(6); P = 0.002) and female (0.80 +/- 0.14 X 10(6); P = 0.046) values. Mean basal and maximal GH plaque areas were greater for cells from male rats than for those from either female or Tfm rats (P less than 0.05) regardless of whether GHRH or forskolin was used as the secretagogue. Plaque areas from female and Tfm cells were indistinguishable under all study conditions. These data suggest that a deficiency of androgen receptors prevents establishment of the greater GH secretory capacity of individual somatotropes characteristic of the adult male rat. This androgen receptor-dependent modulation of GH secretory capacity appears to occur at a step distal to the GHRH receptor. The data also suggest that an increase in the absolute population of somatotropes is an additional consequence of androgen receptor deficiency. This combination of individual somatotropes, each possessing a GH secretory capacity similar to that of cells from normal females, but present in greater absolute numbers, may explain the intermediate values found during previous studies of the Tfm rat GH axis which were based on assessment of large mixed populations of pituitary cells.