79 results on '"Bedr'Eddine Ainseba"'
Search Results
2. Internal exact controllability of the linear population dynamics with diffusion
- Author
-
Bedr'Eddine Ainseba and Sebastian Anita
- Subjects
Exact controllability ,age-structured population dynamics. ,Mathematics ,QA1-939 - Abstract
We consider the internal exact controllability of a linear age and space structured population model with nonlocal birth process. The control acts only in a spatial subdomain and only for small age classes. The methods we use combine the Carleman estimates for the backward adjoint system, some estimates in the theory of parabolic boundary value problems in $L^k$ and the Banach fixed point theorem.
- Published
- 2004
3. Optimal control for a nonlinear age-structured population dynamics model
- Author
-
Bedr'Eddine Ainseba, Sebastian Anita, and Michel Langlais
- Subjects
Optimal control ,optimality conditions ,age-structured population dynamics. ,Mathematics ,QA1-939 - Abstract
We investigate the optimal harvesting problem for a nonlinear age-dependent and spatially structured population dynamics model where the birth process is described by a nonlocal and nonlinear boundary condition. We establish an existence and uniqueness result and prove the existence of an optimal control. We also establish necessary optimality conditions.
- Published
- 2003
4. Local exact controllability of the age-dependent population dynamics with diffusion
- Author
-
Bedr'eddine Ainseba and Sebastian Anita
- Subjects
Mathematics ,QA1-939 - Abstract
We investigate the local exact controllability of a linear age and space population dynamics model where the birth process is nonlocal. The methods we use combine the Carleman estimates for the backward adjoint system, some estimates in the theory of parabolic boundary value problems in L k and the Banach fixed point theorem.
- Published
- 2001
- Full Text
- View/download PDF
5. Control Strategies for TB Epidemics.
- Author
-
Bedr'Eddine Ainseba, Z. Feng, Mimmo Iannelli, and Fabio Augusto Milner
- Published
- 2017
- Full Text
- View/download PDF
6. PSO with Tikhonov Regularization for the Inverse Problem in Electrocardiography.
- Author
-
Alejandro Lopez Rincon, Miguel Cienfuegos, Bedr'Eddine Ainseba, and Mostafa Bendahmane
- Published
- 2013
- Full Text
- View/download PDF
7. Computing the electrical activity of the heart with a dynamic inverse monodomain operator.
- Author
-
Alejandro Lopez Rincon, Mostafa Bendahmane, and Bedr'Eddine Ainseba
- Published
- 2013
- Full Text
- View/download PDF
8. Software for inverse voltage calculations in the heart's surface.
- Author
-
Bedr'Eddine Ainseba, Mostafa Bendahmane, and Alejandro Lopez Rincon
- Published
- 2012
- Full Text
- View/download PDF
9. A Sex-Age-Structured Entomological Model with Hibernation Stage
- Author
-
Sidi Mohammed Abderrahim, Bedr’Eddine Ainseba, and Ali Moussaoui
- Published
- 2023
- Full Text
- View/download PDF
10. On 3D numerical inverse problems for the bidomain model in electrocardiology.
- Author
-
Alejandro Lopez Rincon, Mostafa Bendahmane, and Bedr'Eddine Ainseba
- Published
- 2015
- Full Text
- View/download PDF
11. Optimization of Cytostatic Leukemia Therapy in an Advection-Reaction-Diffusion Model.
- Author
-
Chahrazed Benosman, Bedr'Eddine Ainseba, and Arnaud Ducrot
- Published
- 2015
- Full Text
- View/download PDF
12. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology.
- Author
-
Bedr'Eddine Ainseba, Mostafa Bendahmane, and Yuan He
- Published
- 2015
- Full Text
- View/download PDF
13. An Age-Structured Model for T Cell Homeostasis in Vivo.
- Author
-
Bedr'Eddine Ainseba, Houssein Ayoub, and Michel Langlais
- Published
- 2014
- Full Text
- View/download PDF
14. Two-step genetic algorithm to solve the inverse problem in electrocardiography for cardiac sources.
- Author
-
Alejandro Lopez Rincon, Mostafa Bendahmane, and Bedr'Eddine Ainseba
- Published
- 2014
- Full Text
- View/download PDF
15. Exact Null Controllability of a Stage and Age-Structured Population Dynamics System.
- Author
-
Yuan He and Bedr'Eddine Ainseba
- Published
- 2013
- Full Text
- View/download PDF
16. CML dynamics: Optimal control of age-structured stem cell population.
- Author
-
Bedr'Eddine Ainseba and Chahrazed Benosman
- Published
- 2011
- Full Text
- View/download PDF
17. Optimal control problem on insect pest populations.
- Author
-
Delphine Picart, Bedr'Eddine Ainseba, and Fabio Milner
- Published
- 2011
- Full Text
- View/download PDF
18. A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation.
- Author
-
Mahiéddine Kouche and Bedr'Eddine Ainseba
- Published
- 2010
- Full Text
- View/download PDF
19. Sensing of Airborne Infochemicals for Green Pest Management: What Is the Challenge?
- Author
-
Denis Thiéry, Thierry Toupance, Bedr'Eddine Ainseba, Pascal Tardy, Yohann Nicolas, and Petra Ivaskovic
- Subjects
Fluid Flow and Transfer Processes ,Integrated pest management ,education.field_of_study ,Volatile Organic Compounds ,Global challenges ,business.industry ,Process Chemistry and Technology ,Population ,Pest control ,Public concern ,Bioengineering ,Plants ,Natural resource ,Pheromones ,Ambient air ,Chemical ecology ,Odorants ,Environmental science ,Animals ,Biochemical engineering ,business ,education ,Electronic Nose ,Instrumentation - Abstract
One of the biggest global challenges for our societies is to provide natural resources to the rapidly expanding population while maintaining sustainable and ecologically friendly products. The increasing public concern about toxic insecticides has resulted in the rapid development of alternative techniques based on natural infochemicals (ICs). ICs (e.g., pheromones, allelochemicals, volatile organic compounds) are secondary metabolites produced by plants and animals and used as information vectors governing their interactions. Such chemical language is the primary focus of chemical ecology, where behavior-modifying chemicals are used as tools for green pest management. The success of ecological programs highly depends on several factors, including the amount of ICs that enclose the crop, the range of their diffusion, and the uniformity of their application, which makes precise detection and quantification of ICs essential for efficient and profitable pest control. However, the sensing of such molecules remains challenging, and the number of devices able to detect ICs in air is so far limited. In this review, we will present the advances in sensing of ICs including biochemical sensors mimicking the olfactory system, chemical sensors, and sensor arrays (e-noses). We will also present several mathematical models used in integrated pest management to describe how ICs diffuse in the ambient air and how the structure of the odor plume affects the pest dynamics.
- Published
- 2021
20. Mathematical analysis of an age structured problem modelling phenotypic plasticity in mosquito behaviour
- Author
-
Claudia Pio Ferreira, Lin Lin Li, Bedr'Eddine Ainseba, Université de Bordeaux, Universidade Estadual Paulista (Unesp), Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Asymptotic behaviour ,Blood-feeding behaviour ,Plasticity ,01 natural sciences ,Infinitesimal generator ,Mathematics - Analysis of PDEs ,Operator (computer programming) ,FOS: Mathematics ,Applied mathematics ,[MATH]Mathematics [math] ,0101 mathematics ,Age structured ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Phenotypic plasticity ,Applied Mathematics ,010102 general mathematics ,Spectrum (functional analysis) ,General Engineering ,General Medicine ,010101 applied mathematics ,Computational Mathematics ,General Economics, Econometrics and Finance ,Analysis ,Analysis of PDEs (math.AP) - Abstract
Made available in DSpace on 2019-10-06T17:02:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-08-01 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) This paper presents an age structured problem modelling mosquito blood-feeding plasticity in a natural environment. We first investigate the analytical asymptotic solution through studying the spectrum of an operator A which is the infinitesimal generator of a C 0 -semigroup. Indeed, the study of the spectrum of A per se is interesting. Additionally, we get the existence and nonexistence of nonnegative steady solutions under some conditions. Institut de Mathématiques de Bordeaux Université de Bordeaux Department of Biostatistics Institute of Biosciences São Paulo State University (UNESP) Department of Biostatistics Institute of Biosciences São Paulo State University (UNESP) FAPESP: 14/07615-3
- Published
- 2019
- Full Text
- View/download PDF
21. Global dynamics of an age-structured model with relapse
- Author
-
Tarik Mohammed Touaoula, Bedr'Eddine Ainseba, Mohammed Nor Frioui, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Lyapunov function ,Class (set theory) ,education.field_of_study ,Applied Mathematics ,010102 general mathematics ,Population ,01 natural sciences ,Stability (probability) ,010101 applied mathematics ,Combinatorics ,symbols.namesake ,symbols ,Discrete Mathematics and Combinatorics ,[MATH]Mathematics [math] ,0101 mathematics ,Structured model ,Epidemic model ,education ,Basic reproduction number ,Age structured ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
The aim of this paper is to study a general class of $ SIRI $ age infection structured model where infectivity depends on the age since infection and where some individuals from the $ R $ class, also called quarantaine class in this work, can return to the infectiousness class after a while. Using classical technics we compute a basic reproductive number $ R_0 $ and show that the disease dies out when $ R_0 1 $. Some Lyapunov suitable functions are derived to prove global stability for the disease free equilibrium (DFE) when $ R_0 1 $. Using numerical results we show that the non homogeneous infectivity combined with the feedback to the infectiousness class of a part of the quarantaine population modifies drastically the behavior of the epidemic.
- Published
- 2020
- Full Text
- View/download PDF
22. Large-time behavior of matured population in an age-structured model
- Author
-
Bedr'Eddine Ainseba, Lin Lin Li, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
education.field_of_study ,Applied Mathematics ,010102 general mathematics ,Population ,01 natural sciences ,010101 applied mathematics ,Econometrics ,Quantitative Biology::Populations and Evolution ,Discrete Mathematics and Combinatorics ,0101 mathematics ,[MATH]Mathematics [math] ,education ,Age structured ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
In this paper, we model a mosquito plasticity problem and investigate the large time behavior of matured population under different control strategies. We prove that when the control is small, then the matured population will become large for large time and when the control is large, then the matured population will become small for large time. In the intermediate case, we derive a time-delayed model for the matured population which can be governed by a sub-equation and a super-equation. We prove the existence of traveling fronts for the sub-equation and use it to prove that the matured population will finally be between the positive states of the sub-equation and super-equation. At last, we present numerical simulations.
- Published
- 2020
- Full Text
- View/download PDF
23. Control design of an HIV-1 model
- Author
-
Bedr'Eddine Ainseba, Amel Rahmoun, and Djamila Benmerzouk
- Subjects
Oncology ,medicine.medical_specialty ,business.industry ,General Mathematics ,Internal medicine ,Human immunodeficiency virus (HIV) ,Medicine ,Mathematical biology, nonlinear systems, stabilization of systems by feedback, Lie derivatives, simulations ,business ,medicine.disease_cause ,Control (linguistics) - Abstract
In this paper, we formulate a dynamic mathematical model that describes the interaction of the immune system with the human immunodeficiency virus (HIV), combined with nonlinear continuous feedback control. The detailed computations of two linearizing inputs is presented. It results in the design of a first fully linearizable system and a second partially linearizable one. The proposed controllers have the ability to drive the system close to the healthy equilibrium state. Numerical simulations demonstrate them effectiveness by maintaining virus concentration in very low levels and healthy cells in satisfactory levels.
- Published
- 2020
24. On the existence of solution of a four-stage and age-structured population dynamics model
- Author
-
Bedr'Eddine Ainseba, Oumar Traore, and Amidou Traore
- Subjects
education.field_of_study ,Age structure ,Banach fixed-point theorem ,Applied Mathematics ,010102 general mathematics ,Linear system ,Dynamics (mechanics) ,Population ,01 natural sciences ,010101 applied mathematics ,Stage (stratigraphy) ,Applied mathematics ,0101 mathematics ,education ,Analysis ,Second derivative ,Mathematics ,Variable (mathematics) - Abstract
We consider a linear system coming from a population dynamics model with age structuring and nonlocal boundary conditions. Our population dynamics model is a four-stage model with a second derivative with respect to the age variable. Using Banach fixed point theorem, we show the existence and unicity of a non negative solution and illustrations of numerical simulations are given.
- Published
- 2021
- Full Text
- View/download PDF
25. A 3D boundary optimal control for the bidomain-bath system modeling the thoracic shock therapy for cardiac defibrillation
- Author
-
Eloïse Comte, Nagaiah Chamakuri, Bedr'Eddine Ainseba, Mostafa Bendahmane, Modélisation et calculs pour l'électrophysiologie cardiaque (CARMEN), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IHU-LIRYC, Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-CHU Bordeaux [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences (OeAW), IHU-LIRYC, Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Partial differential equation ,Discretization ,Quantitative Biology::Tissues and Organs ,Applied Mathematics ,Weak solution ,0206 medical engineering ,Mathematical analysis ,Bidomain model ,02 engineering and technology ,Optimal control ,020601 biomedical engineering ,01 natural sciences ,Finite element method ,010101 applied mathematics ,[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Uniqueness ,0101 mathematics ,Temporal discretization ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Analysis ,Mathematics - Abstract
International audience; This work is dedicated to study the cardiac defibrillation problem by using an optimal thoracic electroshock treatment. The problem is formulated as an optimal control problem in a 3D domain surrounded by the bath and including the heart. The control corresponds to the thoracic electroshock and the model describing the electrical activity in the heart is the bidomain model. The bidomain model is coupled with the quasi-static Maxwell's equation to consider the effect of an external bathing medium. The existence and uniqueness of a weak solution for the direct problem is assessed as well as the existence of a weak solution for the adjoint problem. The numerical discretization is realized using a finite element method for the spatial discretization and linearly implicit Runge-Kutta methods for the temporal discretization of the partial differential equations. The numerical results are demonstrated for the termination of re-entry waves.
- Published
- 2016
- Full Text
- View/download PDF
26. Biological consistency of an epidemic model with both vertical and horizontal transmissions
- Author
-
Bedr'Eddine Ainseba, S. Fekih, S.M. Bouguima, Université Abou-Bakr Belkaïd Tlemcen (UABB), and Université Aboubekr Belkaid - University of Belkaïd Abou Bekr [Tlemcen]
- Subjects
Horizontal and vertical ,Applied Mathematics ,Mathematical analysis ,General Engineering ,Banach space ,Fixed-point theorem ,010103 numerical & computational mathematics ,General Medicine ,01 natural sciences ,Computational Mathematics ,Nonlinear system ,Reaction–diffusion system ,[MATH]Mathematics [math] ,0101 mathematics ,Epidemic model ,General Economics, Econometrics and Finance ,Contraction (operator theory) ,Age structured ,ComputingMilieux_MISCELLANEOUS ,Analysis ,Mathematics - Abstract
A system of nonlinear integro-differential equations is investigated. The model describes an age structured S.I.S system of a disease with horizontal and vertical transmission. Global well-posedness is proved in L 1 space. The method is based on the contraction fixed point theorem. We exhibit a closed subset of a Banach space, on which a certain mapping is a strict contraction.
- Published
- 2016
- Full Text
- View/download PDF
27. Mathematical analysis of an age structured epidemic model with a quarantine class
- Author
-
Tarik Mohammed Touaoula, Zakya Sari, Bedr'Eddine Ainseba, Université de Tlemcen, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Class (set theory) ,Applied Mathematics ,010102 general mathematics ,persistence ,Age structure ,Lyapunov functional ,Expression (computer science) ,01 natural sciences ,Stability (probability) ,global stability ,010101 applied mathematics ,Modeling and Simulation ,Stability theory ,Quantitative Biology::Populations and Evolution ,SIQRI model ,basic reproductive number ,Applied mathematics ,Order (group theory) ,relapse rate ,[MATH]Mathematics [math] ,0101 mathematics ,Epidemic model ,Age structured ,Basic reproduction number ,Mathematics - Abstract
In this paper, an age structured epidemic Susceptible-Infected-Quarantined-Recovered-Infected (SIQRI) model is proposed, where we will focus on the role of individuals that leave the R-class before being completely recovered and thus will participate again to the disease transmission. We investigate the asymptotic behavior of solutions by studying the stability of both trivial and positive equilibria. In order to see the impact of the different model parameters like the relapse rate on the qualitative behavior of our system, we firstly, give an explicit expression of the basic reproduction number R0, which is a combination of the classical basic reproduction number for the SIQR model and some other model parameters, corresponding to the individuals infected by the relapsed ones. It will be shown that, if R0 ≤ 1, the disease free equilibrium is globally asymptotically stable and becomes unstable for R0 > 1. Secondly, while R0 > 1, a suitable Lyapunov functional is constructed to prove that the unique endemic equilibrium is globally asymptotically stable on some subset Ω0.
- Published
- 2021
- Full Text
- View/download PDF
28. Optimal control applied on an HIV‐1 within‐host model
- Author
-
Djamila Benmerzouk, Bedr'Eddine Ainseba, Amel Rahmoun, Department of Mathematics [Tlemcen], Université de Tlemcen, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Lyapunov function ,Mathematical optimization ,General Mathematics ,010102 general mathematics ,General Engineering ,Stability (learning theory) ,Human immunodeficiency virus (HIV) ,Host model ,Optimal control ,medicine.disease_cause ,01 natural sciences ,3. Good health ,010101 applied mathematics ,symbols.namesake ,Next-generation matrix ,Control theory ,symbols ,medicine ,[MATH]Mathematics [math] ,0101 mathematics ,Logistic function ,Basic reproduction number ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
The treatment of human immunodeficiency virus (HIV) remains a major challenge, even if significant progress has been made in infection treatment by ‘drug cocktails’. Nowadays, research trend is to minimize the number of pills taken when treating infection. In this paper, an HIV-1 within host model where healthy cells follow a simple logistic growth is considered. Basic reproduction number of the model is calculated using next generation matrix method, steady states are derived; their local, as well as global stability, is discussed using the Routh–Hurwitz criteria, Lyapunov functions and the Lozinskii measure approach. The optimal control policy is formulated and solved as an optimal control problem. Numerical simulations are performed to compare several cases, representing a treatment by Interleukin2 alone, classical treatment by multitherapy drugs alone, then both treatments at the same time. Objective functionals aim to (i) minimize infected cells quantity; (ii) minimize free virus particles number; and (iii) maximize healthy cells density in blood. Copyright © 2015 John Wiley & Sons, Ltd.
- Published
- 2015
- Full Text
- View/download PDF
29. Optimal control of an age-structured problem modelling mosquito plasticity
- Author
-
Claudia Pio Ferreira, Bedr'Eddine Ainseba, Lin Lin Li, Université de Bordeaux, Universidade Estadual Paulista (Unesp), Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Optimality conditions ,Mathematical optimization ,Applied Mathematics ,010102 general mathematics ,General Engineering ,General Medicine ,Plasticity ,Optimal control ,01 natural sciences ,010101 applied mathematics ,Computational Mathematics ,Biological modelling ,Mathematics - Analysis of PDEs ,Optimization and Control (math.OC) ,FOS: Mathematics ,0101 mathematics ,[MATH]Mathematics [math] ,General Economics, Econometrics and Finance ,Age structured ,Mathematics - Optimization and Control ,Analysis ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
Made available in DSpace on 2019-10-06T16:50:53Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-02-01 In this paper, we study an age-structured model which has strong biological background about mosquito plasticity. Firstly, we prove the existence of solutions and the comparison principle for a generalized system. Then, we prove the existence of the optimal control for the best harvesting. Finally, we establish necessary optimality conditions. Institut de Mathématiques de Bordeaux Université de Bordeaux São Paulo State University (UNESP) Institute of Biosciences Department of Biostatistics São Paulo State University (UNESP) Institute of Biosciences Department of Biostatistics
- Published
- 2018
- Full Text
- View/download PDF
30. Mathematical analysis of an HIV infection model including quiescent cells and periodic antiviral therapy
- Author
-
Mahiéddine Kouche, Bedr'Eddine Ainseba, Bilal Boulfoul, Laboratoire International de Recherche en Informatique et Mathématiques Appliquées (LIRIMA), Centre National de la Recherche Scientifique et Technologique (CNRST)-Université Gaston Bergé Sénégal-Université d'Antananarivo-Université Joseph Ki-Zerbo [Ouagadougou] (UJZK)-Université Badji Mokhtar - Annaba [Annaba] (UBMA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Yaoundé I, and Université de Yaoundé I-Université Badji Mokhtar Annaba (UBMA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Joseph Ki-Zerbo [Ouagadougou] (UJZK)-Université d'Antananarivo-Université Gaston Bergé Sénégal-Centre National de la Recherche Scientifique et Technologique (CNRST)
- Subjects
0301 basic medicine ,Discrete mathematics ,Applied Mathematics ,Maximum likelihood ,Human immunodeficiency virus (HIV) ,Antiviral therapy ,Drug efficiency ,medicine.disease_cause ,Virology ,3. Good health ,03 medical and health sciences ,030104 developmental biology ,Modeling and Simulation ,medicine ,Antiretroviral treatment ,Identifiability ,[MATH]Mathematics [math] ,Basic reproduction number ,ComputingMilieux_MISCELLANEOUS ,Clearance ,Mathematics - Abstract
In this paper, we revisit the model by Guedj et al. [J. Guedj, R. Thibaut and D. Commenges, Maximum likelihood estimation in dynamical models of HIV, Biometrics 63 (2007) 198–206; J. Guedj, R. Thibaut and D. Commenges, Practical identifiability of HIV dynamics models, Bull. Math. Biol. 69 (2007) 2493–2513] which describes the effect of treatment with reverse transcriptase (RT) inhibitors and incorporates the class of quiescent cells. We prove that there is a threshold value [Formula: see text] of drug efficiency [Formula: see text] such that if [Formula: see text], the basic reproduction number [Formula: see text] and the infection is cleared and if [Formula: see text], the infectious equilibrium is globally asymptotically stable. When the drug efficiency function [Formula: see text] is periodic and of the bang–bang type we establish a threshold, in terms of spectral radius of some matrix, between the clearance and the persistence of the disease. As stated in related works [L. Rong, Z. Feng and A. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol. 69 (2007) 2027–2060; P. De Leenheer, Within-host virus models with periodic antiviral therapy, Bull. Math. Biol. 71 (2009) 189–210.], we prove that the increase of the drug efficiency or the active duration of drug must clear the infection more quickly. We illustrate our results by some numerical simulations.
- Published
- 2017
- Full Text
- View/download PDF
31. Exact null controllability of the Lobesia botrana model with diffusion
- Author
-
Yuan He and Bedr'Eddine Ainseba
- Subjects
education.field_of_study ,biology ,Applied Mathematics ,Null (mathematics) ,Mathematical analysis ,Population ,Fixed-point theorem ,Interval (mathematics) ,Optimal control ,Lobesia botrana ,biology.organism_classification ,Controllability ,Diffusion (business) ,education ,Analysis ,Mathematics - Abstract
This paper is devoted to analyze the exact null controllability of the diffusive Lobesia botrana model with nonlocal boundary condition. We study the null controllability of butterfly population by acting on eggs, larvas and female moths in a small age interval. We assume that the control of female moths is in a certain given region of the vineyard. The main result is established by combining some estimations and the Carleman inequality for the backward system related to an optimal control problem. A fixed point theorem is then used to draw the conclusion.
- Published
- 2014
- Full Text
- View/download PDF
32. Bifurcation analysis of the HIV-1 within host model
- Author
-
Djamila Benmerzouk, Amel Rahmoun, Bedr'Eddine Ainseba, Department of Mathematics [Tlemcen], Université de Tlemcen, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Equilibrium point ,General Mathematics ,010102 general mathematics ,Mathematical analysis ,General Engineering ,Saddle-node bifurcation ,Bifurcation diagram ,01 natural sciences ,010305 fluids & plasmas ,Transcritical bifurcation ,Bifurcation theory ,Structural stability ,0103 physical sciences ,Applied mathematics ,Multiplication ,0101 mathematics ,[MATH]Mathematics [math] ,Bifurcation ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
In this paper, a bifurcation solution's analysis is proposed for an HIV-1 within the host model around its chronic equilibrium point, this is carried out based on Lyapunov–Schmidt approach. It is shown that the coefficient b, which represents the healthy CD4+ T-cells growth rate, is a bifurcation parameter; this means that the rate of multiplication of healthy cells can have serious effects on the qualitative dynamical properties and structural stability of the infection evolution dynamics. Copyright © 2015 John Wiley & Sons, Ltd.
- Published
- 2016
- Full Text
- View/download PDF
33. Optimal Screening in Structured SIR Epidemics
- Author
-
Mimmo Iannelli and Bedr’Eddine Ainseba
- Subjects
medicine.medical_specialty ,Mathematical optimization ,Infectious disease (medical specialty) ,Modeling and Simulation ,Applied Mathematics ,Epidemiology ,medicine ,Human immunodeficiency virus (HIV) ,Disease ,Biology ,Intensive care medicine ,medicine.disease_cause ,Screening measures - Abstract
We present a model for describing the spread of an infectious disease with public screening measures to control the spread. We want to address the problem of determining an optimal screening strategy for a disease characterized by appreciable duration of the infectiveness period and by variability of the transmission risk. The specific disease we have in mind is the HIV infection. However the model will apply to a disease for which class-age structure is significant and should not be disregarded.
- Published
- 2012
- Full Text
- View/download PDF
34. A model for ovine brucellosis incorporating direct and indirect transmission
- Author
-
Chahrazed Benosman, Bedr'Eddine Ainseba, Pierre Magal, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Tools of automatic control for scientific computing, Models and Methods in Biomathematics (ANUBIS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest
- Subjects
Veterinary medicine ,Indirect Transmission ,Population ,Sheep Diseases ,Biology ,Models, Biological ,01 natural sciences ,Brucellosis ,law.invention ,03 medical and health sciences ,law ,Statistics ,medicine ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Animals ,Computer Simulation ,0101 mathematics ,education ,ComputingMilieux_MISCELLANEOUS ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,0303 health sciences ,education.field_of_study ,Sheep ,Ecology ,010102 general mathematics ,medicine.disease ,Transmission (mechanics) ,Ovine brucellosis - Abstract
In this work, we construct and analyse an ovine brucellosis mathematical model. In this model, the population is divided into susceptible and infected subclasses. Susceptible individuals can contract the disease in two ways: (i) direct mode - caused by contact with infected individuals; (ii) indirect mode - related to the presence of virulent organisms in the environment. We derive a net reproductive number and analyse the global asymptotic behaviour of the model. We also perform some numerical simulations, and investigate the effect of a slaughtering policy.
- Published
- 2010
- Full Text
- View/download PDF
35. Internal nonnegative stabilization for some parabolic equations
- Author
-
Bedr'Eddine Ainseba, Sebastian Aniţa, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Tools of automatic control for scientific computing, Models and Methods in Biomathematics (ANUBIS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Institute of Mathematics 'Octav Mayer', Romanian Academy, Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest
- Subjects
education.field_of_study ,Applied Mathematics ,Mathematical analysis ,Population ,General Medicine ,Parabolic cylinder function ,01 natural sciences ,Parabolic partial differential equation ,Domain (mathematical analysis) ,010305 fluids & plasmas ,010101 applied mathematics ,Elliptic operator ,Elliptic partial differential equation ,Parabolic cylindrical coordinates ,0103 physical sciences ,0101 mathematics ,education ,ComputingMilieux_MISCELLANEOUS ,Analysis ,Eigenvalues and eigenvectors ,Mathematics - Abstract
The internal zero-stabilization of the nonnegative solutions to some parabolic equations is investigated. We provide a necessary and a sufficient condition for nonnegative stabilizability in terms of the sign of the principal eigenvalue of a certain elliptic operator. This principal eigenvalue is related to the rate of the convergence of the solution. We give some evaluations of this principal eigenvalue with respect to the geometry of the domain and of the support of the control. A stabilization result for an age-dependent population dynamics with diffusion is also established.
- Published
- 2008
- Full Text
- View/download PDF
36. Stability of Conductivities in an Inverse Problem in the Reaction-diffusion System in Electrocardiology
- Author
-
Yuan He, Bedr'Eddine Ainseba, Mostafa Bendahmane, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Modélisation et calculs pour l'électrophysiologie cardiaque (CARMEN), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IHU-LIRYC, Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-CHU Bordeaux [Bordeaux], Department of Mathematics and Statistics [Lanzhou], Lanzhou University, Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, and CHU Bordeaux [Bordeaux]-Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]
- Subjects
Statistics and Probability ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,General Engineering ,Stability result ,Systems modeling ,Inverse problem ,01 natural sciences ,Stability (probability) ,Computer Science Applications ,010101 applied mathematics ,Reaction–diffusion system ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,0101 mathematics ,Diffusion (business) ,[MATH]Mathematics [math] ,Mathematics - Abstract
International audience; In this paper, we study the stability result for the conductivities diffusion coefficients to a strongly reaction-diffusion system modeling electrical activity in the heart. To study the problem, we establish a Carleman estimate for our system. The proof is based on the combination of a Carleman estimate and certain weight energy estimates for parabolic systems. 1. Introduction. Let Ω ⊂ R N (N ≥ 1) be a bounded connected open set whose boundary ∂Ω is regular enough. Let T > 0 and ω be a small nonempty subset of Ω. We will denote (0, T) × Ω by Q T and (0, T) × ∂Ω by Σ T. To state the model of the cardiac electric activity in Ω (Ω ⊂ R 3 being the natural domain of the heart), we set u i = u i (t, x) and u e = u e (t, x) to represent the spacial cellular and location x ∈ Ω of the intracellular and extracellular electric potentials respectively. Their difference v = u i − u e is the transmembrane potential. The anisotropic properties of the two media are modeled by intracellular and extracellular conductivity tensors M i (x) and M e (x). The surface capacitance of the membrane is represented by the constant c m > 0. The transmembrane ionic current is represented by a nonlinear function h(v). The equations governing the cardiac electric activity are given by the coupled reaction-diffusion system: c m ∂ t v − div(M i (x)∇u i) + h(v) = f χ ω , in Q T , c m ∂ t v + div(M e (x)∇u e) + h(v) = gχ ω , in Q T , (1) where f and g are stimulation currents applied to Ω. We complete this model with Dirichlet boundary conditions for the intra-and extracellular electric potentials
- Published
- 2015
- Full Text
- View/download PDF
37. Internal stabilizability for a reaction–diffusion problem modeling a predator–prey system
- Author
-
Bedr'Eddine Ainseba and Sebastian Aniţa
- Subjects
Work (thermodynamics) ,education.field_of_study ,Partial differential equation ,Applied Mathematics ,Mathematical analysis ,Population ,Zero (complex analysis) ,Predation ,Reaction–diffusion system ,education ,Spatial domain ,Predator ,Analysis ,Mathematics - Abstract
In this work we consider a 2 × 2 system of semilinear partial differential equations of parabolic-type describing interactions between a prey population and a predator population, featuring a Holling-type II functional response to predation. We address the question of stabilizing the predator population to zero, upon using a suitable internal control supported on a small subdomain ω of the whole spatial domain Ω , and acting on predators. We give necessary and sufficient conditions for this stabilizability result to hold.
- Published
- 2005
- Full Text
- View/download PDF
38. Age-dependent population dynamics diffusive systems
- Author
-
Bedr'Eddine Ainseba, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Tools of automatic control for scientific computing, Models and Methods in Biomathematics (ANUBIS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest
- Subjects
education.field_of_study ,Applied Mathematics ,010102 general mathematics ,Population ,Dynamics (mechanics) ,Age dependent ,010103 numerical & computational mathematics ,01 natural sciences ,Continuation ,Nonlinear system ,Reaction–diffusion system ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Quantitative Biology::Populations and Evolution ,Discrete Mathematics and Combinatorics ,Population growth ,Statistical physics ,0101 mathematics ,education ,Epidemic model ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
A nonlinear and nonlocal reaction-diffusion system of population growth is investigated which allows for consideration of both age-size and spatial effects. The mortality and fertility processes of the population are assumed to be linear to simplify the exposition. Local existence, continuation property, positivity, and global existence are obtained. This theory is applied to some specific reaction-diffusion epidemic model including the SI system, the SIS system with vertical transmission, and the SIR system.
- Published
- 2004
- Full Text
- View/download PDF
39. Parameters identification for a model of T cell homeostasis
- Author
-
Houssein H. Ayoub, Bedr'Eddine Ainseba, Michel Langlais, Rodolphe Thiébaut, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Statistics In System biology and Translational Medicine (SISTM), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)- Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Epidémiologie et Biostatistique [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
T-Lymphocytes ,Biology ,Models, Biological ,T-cell homeostasis ,Mice ,Statistics ,partial differential equations ,t cell homeostasis ,Animals ,Homeostasis ,Applied mathematics ,Computer Simulation ,and phrases ,Cell Proliferation ,parameters ,Partial differential equation ,Applied Mathematics ,Experimental data ,General Medicine ,cd44 ,Expression (computer science) ,Flow Cytometry ,Adoptive Transfer ,Computational Mathematics ,Nonlinear system ,Identification (information) ,Hyaluronan Receptors ,Nonlinear Dynamics ,Modeling and Simulation ,Nonlinear model ,Identifiability ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,General Agricultural and Biological Sciences ,Algorithms ,Cell Division - Abstract
International audience; In this study, we consider a model of T cell homeostasis based on the Smith-Martin model. This nonlinear model is structured by age and CD44 expression. First, we establish the mathematical well-posedness of the model system. Next, we prove the theoretical identifiability regarding the up-regulation of CD44, the proliferation time phase and the rate of entry into division, by using the experimental data. Finally, we compare two versions of the Smith-Martin model and we identify which model fits the experimental data best.
- Published
- 2015
- Full Text
- View/download PDF
40. On 3D Numerical Inverse Problems for the Bidomain Model in Electrocardiology
- Author
-
Mostafa Bendahmane, Bedr'Eddine Ainseba, Alejandro Lopez-Rincon, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Modélisation et calculs pour l'électrophysiologie cardiaque (CARMEN), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IHU-LIRYC, Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-CHU Bordeaux [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), IHU-LIRYC, Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Mathematical optimization ,Non-Homogeneous ,Computer simulation ,Computation ,Electrical potentials ,Bidomain model ,Inverse ,Heart activity ,Numerical simulation ,Inverse problem ,Electrocardiology ,Computational Mathematics ,Computational Theory and Mathematics ,Homogeneous ,Modeling and Simulation ,[SDV.MHEP.PHY]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO] ,Applied mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,[MATH]Mathematics [math] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; In the inverse problem en electrocardiology, the goal is to recover electrophysiological activity in the heart without measuring directly on its surface (without using catheter interventions). Note that today the inverse computation is frequently used by solving the quasi-static model. This model doesnt take into account the heart dynamic in time and may result in considerable errors in the reconstruction of the solution on the heart. In this paper, a 3D numerical inverse problem constrained by the bidomain equations in electrocardiology is investigated. The state equations consisting in a coupled reaction-diffusion system modelling the propagation of the intracelullar and extracellular electrical potentials, and ionic currents, are extended to further consider the effect of an external bathing medium. Thus, we demonstrate that the novel concept of applying electrophysiological data might be useful to improve noninvasive reconstruction of electrical heart activity. Finally, we present numerical experiments representing the effect of the heart dynamic on the inverse solutions.
- Published
- 2015
41. Leukemia mathematical model
- Author
-
Mohamed Helal, Nacera Bouizem, Bedr'Eddine Ainseba, and Abdelkader Lakmeche
- Subjects
Leukemia ,lcsh:T58.5-58.64 ,Computer science ,lcsh:Information technology ,Stability (learning theory) ,medicine ,Applied mathematics ,medicine.disease - Abstract
In this paper, we study a mathematical model of leukemia diseases. We find sufficient conditions for existence and local stability of steady states.
- Published
- 2015
42. An application of homogenization techniques to population dynamics models
- Author
-
William E. Fitzgibbon, Bedr'Eddine Ainseba, Jeff Morgan, and Michel Langlais
- Subjects
Constant coefficients ,education.field_of_study ,Partial differential equation ,Applied Mathematics ,Population ,General Medicine ,Classification of discontinuities ,Homogenization (chemistry) ,Systems of partial differential equations ,Long term behavior ,Applied mathematics ,education ,Analysis ,Mathematics - Abstract
We are interested in partial differential equations and systems of partial differential equations arising in some population dynamics models, for populations living in heterogeneous spatial domains. Discontinuities appear in the coefficients of divergence form operators and in reaction terms as well. Global posedness results are given. For models offering a great a degree of heterogeneity we derive simpler models with constant coefficients by applying homogenization method. Long term behavior is then analyzed.
- Published
- 2002
- Full Text
- View/download PDF
43. Parameter identification for model of T cell proliferation in Lymphopenia conditions
- Author
-
Thea Hogan, Michel Langlais, Rodolphe Thiébaut, Houssein H. Ayoub, Benedict Seddon, Bedr'Eddine Ainseba, Robin E. Callard, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Cork Institute of Technology (CIT), Institute of Child Health [London], University College of London [London] (UCL), Division of Immune Cell Biology, Medical Research Council-Nationale Institute for Medical Research, Epidémiologie et Biostatistique [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Statistics In System biology and Translational Medicine (SISTM), Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Cell division ,T cell ,Transgene ,Genes, RAG-1 ,T-Lymphocytes ,Cell ,General Biochemistry, Genetics and Molecular Biology ,Mice ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Lymphopenia ,medicine ,Animals ,ComputingMilieux_MISCELLANEOUS ,Cell Proliferation ,Mice, Knockout ,Stochastic Processes ,General Immunology and Microbiology ,biology ,Applied Mathematics ,CD44 ,Cell Cycle ,Models, Immunological ,General Medicine ,Mathematical Concepts ,medicine.disease ,T cell deficiency ,Cell biology ,Parameter identification problem ,medicine.anatomical_structure ,Hyaluronan Receptors ,Nonlinear Dynamics ,Modeling and Simulation ,Ordinary differential equation ,Immunology ,biology.protein ,General Agricultural and Biological Sciences ,Algorithms - Abstract
The number of T Lymphocytes (T cells) in the body is under homeostatic control. At equilibrium, the majority of naive T cells are non-dividing and express low levels of the surface protein CD44. In conditions of T cell deficiency (lymphopenia), naive T cells enter into a proliferative phase, undergoing cell division accompanied by a subtle change in their surface expression of CD44. In this study, we use a mathematical modelling approach to analyse the proliferative response of transgenic T cells in lymphopenic conditions. Our nonlinear model is composed of ordinary differential equations and partial differential equations structured by age (maturity of cell) and CD44 expression. To better understand the evolution of CD44 expression on the surface of T cells during cell division, we present a numerical analysis to solve a parameter identification problem. Finally, we show the parameters and the simulations that we obtain from the model and compare them to experimental data.
- Published
- 2014
- Full Text
- View/download PDF
44. On a Population Dynamics Control Problem with Age Dependence and Spatial Structure
- Author
-
Michel Langlais and Bedr'Eddine Ainseba
- Subjects
education.field_of_study ,Applied Mathematics ,Mathematical analysis ,Population ,Optimal control ,Controllability ,Uniqueness theorem for Poisson's equation ,Gronwall's inequality ,Neumann boundary condition ,Uniqueness ,Boundary value problem ,education ,Analysis ,Mathematics - Abstract
We consider the control problem for a population dynamics model with age dependence, spatial structure, and a nonlocal birth process arising as a boundary condition. We examine the controllability at a given time T and show that approximate controllability holds for every fixed finite time T. As a consequence a new uniqueness condition continuation result is proved.
- Published
- 2000
- Full Text
- View/download PDF
45. An age-structured model for T cell homeostasis in vivo
- Author
-
Houssein H. Ayoub, Bedr'Eddine Ainseba, Michel Langlais, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Lyapunov function ,Applied Mathematics ,T cell ,Structure (category theory) ,Limiting case (mathematics) ,Expression (computer science) ,Parameter space ,Quantitative Biology::Cell Behavior ,symbols.namesake ,medicine.anatomical_structure ,In vivo ,Control theory ,Stability theory ,symbols ,medicine ,Applied mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
In this study, we consider a model of T cell proliferation in vivo which is structured by age and CD44 expression. This model is rewritten as an age-structured model system without the CD44 structure, and we investigate its asymptotic behavior. We find that there exists one or three stationary solutions when cells undergo at least five divisions and only one stationary solution when cells undergo at most three divisions. The limiting case with four divisions is numerically handled. By applying the Lyapunov method, we prove that the stationary solution is globally asymptotically stable in some regions of parameter space.
- Published
- 2014
46. Exact Null Controllability of a stage and age-structured population dynamics system
- Author
-
Bedr'Eddine Ainseba, Yuan He, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Control and Optimization ,Applied Mathematics ,010102 general mathematics ,Null (mathematics) ,Mathematical analysis ,Dynamics (mechanics) ,Fixed-point theorem ,Interval (mathematics) ,Management Science and Operations Research ,Optimal control ,01 natural sciences ,010101 applied mathematics ,Controllability ,Theory of computation ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Boundary value problem ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
This paper is concerned with the exact null controllability of an age-dependent life cycle dynamics with nonlocal transition processes arising as boundary conditions. We investigate the controllability for the pest by acting on eggs in a small age interval. The main method is based on the derivation of estimations for the adjoint variables related to an optimal control problem. A fixed point theorem is then used to draw conclusions.
- Published
- 2013
47. Null controllability of a population dynamics with degenerate diffusion
- Author
-
Bedr'Eddine Ainseba, Younes Echarroudi, Lahcen Maniar, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université Cadi Ayyad [Marrakech] (UCA), Unité de modélisation mathématique et informatique des systèmes complexes [Bondy] (UMMISCO), Université Cadi Ayyad [Marrakech] (UCA)-Université de Yaoundé I-Université Gaston Bergé (Saint-Louis, Sénégal)-Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)-Institut de la francophonie pour l'informatique-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Yaoundé I-Institut de la francophonie pour l'informatique-Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)-Université Gaston Bergé (Saint-Louis, Sénégal)-Université Cadi Ayyad [Marrakech] (UCA)
- Subjects
Applied Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,35K65 ,92D25 ,93B05 ,Analysis ,ComputingMilieux_MISCELLANEOUS ,93B07 - Abstract
In this paper, we are interested in the null controllability of a linear population dynamics model with degenerate dispersion coefficient. We develop first a Carleman-type inequality for its adjoint system, and then an observability inequality which allows us to establish the existence of a control acting on a subset of the space domain which steers the population of a certain age to extinction in a finite time.
- Published
- 2013
48. Corrigendum to 'Exact and approximate controllability of the age and space population dynamics structured model' [J. Math. Anal. Appl. 275 (2) (2002) 562–574]
- Author
-
Bedr’Eddine Ainseba
- Subjects
Controllability ,Algebra ,education.field_of_study ,Applied Mathematics ,Dynamics (mechanics) ,Population ,Calculus ,Structured model ,Space (mathematics) ,education ,Analysis ,Mathematics - Published
- 2012
- Full Text
- View/download PDF
49. Software for inverse voltage calculations in the heart's surface
- Author
-
Alejandro Lopez, Mostafa Bendahmane, Bedr'Eddine Ainseba, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematical optimization ,business.industry ,Computer science ,Mathematical analysis ,Inverse ,Inverse problem ,Transfer matrix ,Conductor ,Tikhonov regularization ,Software ,Mesh generation ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,business ,ComputingMilieux_MISCELLANEOUS ,Voltage - Abstract
This article shows the creation of a software that allows simulating the voltage in the epicardium by using inverse problems theory, and Tikhonov regularization. The software takes a mesh file containing two surfaces (heart and thorax) and calculates a transfer matrix using the volume conductor model. Then, with the selection of the Tikhonov regularization parameter gives a possible heart voltage distribution for a given data in the thorax.
- Published
- 2012
- Full Text
- View/download PDF
50. Application des sentinelles à l'identification des pollutions dans une rivière
- Author
-
R. Luce, J.-P. Kernevez, and Bedr'Eddine Ainseba
- Subjects
Numerical Analysis ,Computational Mathematics ,Applied Mathematics ,Modeling and Simulation ,Environmental engineering ,Oxygen deficit ,Analysis ,Mathematics - Published
- 1994
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.