1. Detectability of biosignatures in warm, water-rich atmospheres
- Author
-
Taysum, Benjamin, van Zelst, Iris, Grenfell, John Lee, Schreier, Franz, Cabrera, Juan, and Rauer, Heike
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Warm rocky exoplanets within the habitable zone of Sun-like stars are favoured targets for current and future missions. Theory indicates these planets could be wet at formation and remain habitable long enough for life to develop. In this work we test the climate-chemistry response, maintenance, and detectability of biosignatures in warm, water-rich atmospheres with Earth biomass fluxes within the framework of the planned LIFE mission. We used the coupled climate-chemistry column model 1D-TERRA to simulate the composition of planetary atmospheres at different distances from the Sun, assuming Earth's planetary parameters and evolution. We increased the incoming instellation by up to 50 percent in steps of 10 percent, corresponding to orbits of 1.00 to 0.82 AU. Simulations were performed with and without modern Earth's biomass fluxes. Emission spectra of all simulations were produced using the GARLIC radiative transfer model. LIFEsim was then used to add noise to and simulate observations of these spectra to assess how biotic and abiotic atmospheres of Earth-like planets can be distinguished. Increasing instellation leads to surface water vapour pressures rising from 0.01 bar (1.13%) to 0.61 bar (34.72%). In the biotic scenarios, the ozone layer survives because hydrogen oxide reactions with nitrogen oxides prevent the net ozone chemical sink from increasing. Synthetic observations with LIFEsim, assuming a 2.0 m aperture and resolving power of R = 50, show that O3 signatures at 9.6 micron reliably point to Earth-like biosphere surface fluxes of O2 only for systems within 10 parsecs. Increasing the aperture to 3.5 m increases this range to 22.5 pc. The differences in atmospheric temperature due to differing H2O profiles also enables observations at 15.0 micron to reliably identify planets with a CH4 surface flux equal to that of Earth's biosphere., Comment: To be published in Astronomy and Astrophysics; 14 pages, 12 figures
- Published
- 2024