86 results on '"Castagneyrol, B."'
Search Results
2. Plant size, latitude, and phylogeny explain within-population variability in herbivory
- Author
-
Moreira Tomé, Xoaquín [0000-0003-0166-838X], Robinson, M L, Hahn, P G, Inouye, B D, Underwood, N, Whitehead, S R, Abbott, K C, Bruna, E M, Cacho, N I, Dyer, L A, Abdala-Roberts, L, Allen, W J, Lindroth, R L, LoPresti, E F, Losada, M, Louthan, A M, Luizzi, V J, Lynch, S C, Lynn, J S, Lyon, N J, Maia, L F, Maia, R A, Andrade, J F, Mannall, T L, Martin, B S, Massad, T J, McCall, A C, McGurrin, K, Merwin, A C, Mijango-Ramos, Z, Mills, C H, Moles, A T, Moore, C M, Angulo, D F, Moreira Tomé, Xoaquín, Morrison, C R, Moshobane, M C, Muola, A, Nakadai, R, Nakajima, K, Novais, S, Ogbebor, C O, Ohsaki, H, Pan, V S, Anjos, D, Pardikes, N A, Pareja, M, Parthasarathy, N, Pawar, R R, Paynter, Q, Pearse, I S, Penczykowski, R M, Pepi, A A, Pereira, C C, Phartyal, S S, Anstett, D N, Piper, F I, Poveda, K, Pringle, E G, Puy, J, Quijano Gaudes, Laura, Quintero, C, Rasmann, S, Rosche, C, Rosenheim, L Y, Rosenheim, J A, Bagchi, R, Runyon, J B, Sadeh, A, Sakata, Y, Salcido, D M, Salgado-Luarte, C, Santos, B A, Sapir, Y, Sasal, Y, Sato, Y, Sawant, M, Bagchi, S, Schroeder, H, Schumann, I, Segoli, M, Segre, H, Shelef, O, Shinohara, N, Singh, R P, Smith, D S, Sobral, M, Stotz, G C, Barbosa, M, Tack, Ayco J. M., Tayal, M, Tooker, J F, Torrico-Bazoberry, D, Tougeron, K, Trowbridge, A M, Utsumi, S, Uyi, O, Vaca-Uribe, J L, Valtonen, A, Barrett, S, van Dijk, L J A, Vandvik, V, Villellas, J, Waller, L P, Weber, M G, Yamawo, A, Yim, S, Zarnetske, P L, Zehr, L N, Zhong, Z, Baskett, C A, Wetzel, W C, Ben-Simchon, E, Bloodworth, K J, Bronstein, J L, Buckley, Y M, Burghardt, K T, Bustos-Segura, C, Calixto, E S, Carvalho, R L, Castagneyrol, B, Chiuffo, M C, Cinoğlu, D, Cinto Mejía, E, Cock, M C, Cogni, R, Cope, O L, Cornelissen, T, Cortez, D R, Crowder, D W, Dallstream, C, Dáttilo, W, Davis, J K, Dimarco, R D, Dole, H E, Egbon, I N, Eisenring, M, Ejomah, A, Elderd, B D, Endara, M-J, Eubanks, M D, Everingham, S E, Farah, K N, Farias, R P, Fernandes, A P, Fernandes, G W, Ferrante, M, Finn, A, Florjancic, G A, Forister, M L, Fox, Q N, Frago, E, França, F M, Getman-Pickering, A S, Getman-Pickering, Z, Gianoli, E, Gooden, B, Gossner, M M, Greig, K A, Gripenberg, S, Groenteman, R, Grof-Tisza, P, Haack, N, Hahn, L, Haq, S M, Helms, A M, Hennecke, J, Hermann, S L, Holeski, L M, Holm, S, Hutchinson, M C, Jackson, E E, Kagiya, S, Kalske, A, Kalwajtys, M, Karban, R, Kariyat, R, Keasar, T, Kersch-Becker, M F, Kharouba, H M, Kim, T N, Kimuyu, D M, Kluse, J, Koerner, S E, Komatsu, K J, Krishnan, S, Laihonen, M, Lamelas-López, L, LaScaleia, M C, Lecomte, N, Lehn, C R, Li, X, Moreira Tomé, Xoaquín [0000-0003-0166-838X], Robinson, M L, Hahn, P G, Inouye, B D, Underwood, N, Whitehead, S R, Abbott, K C, Bruna, E M, Cacho, N I, Dyer, L A, Abdala-Roberts, L, Allen, W J, Lindroth, R L, LoPresti, E F, Losada, M, Louthan, A M, Luizzi, V J, Lynch, S C, Lynn, J S, Lyon, N J, Maia, L F, Maia, R A, Andrade, J F, Mannall, T L, Martin, B S, Massad, T J, McCall, A C, McGurrin, K, Merwin, A C, Mijango-Ramos, Z, Mills, C H, Moles, A T, Moore, C M, Angulo, D F, Moreira Tomé, Xoaquín, Morrison, C R, Moshobane, M C, Muola, A, Nakadai, R, Nakajima, K, Novais, S, Ogbebor, C O, Ohsaki, H, Pan, V S, Anjos, D, Pardikes, N A, Pareja, M, Parthasarathy, N, Pawar, R R, Paynter, Q, Pearse, I S, Penczykowski, R M, Pepi, A A, Pereira, C C, Phartyal, S S, Anstett, D N, Piper, F I, Poveda, K, Pringle, E G, Puy, J, Quijano Gaudes, Laura, Quintero, C, Rasmann, S, Rosche, C, Rosenheim, L Y, Rosenheim, J A, Bagchi, R, Runyon, J B, Sadeh, A, Sakata, Y, Salcido, D M, Salgado-Luarte, C, Santos, B A, Sapir, Y, Sasal, Y, Sato, Y, Sawant, M, Bagchi, S, Schroeder, H, Schumann, I, Segoli, M, Segre, H, Shelef, O, Shinohara, N, Singh, R P, Smith, D S, Sobral, M, Stotz, G C, Barbosa, M, Tack, Ayco J. M., Tayal, M, Tooker, J F, Torrico-Bazoberry, D, Tougeron, K, Trowbridge, A M, Utsumi, S, Uyi, O, Vaca-Uribe, J L, Valtonen, A, Barrett, S, van Dijk, L J A, Vandvik, V, Villellas, J, Waller, L P, Weber, M G, Yamawo, A, Yim, S, Zarnetske, P L, Zehr, L N, Zhong, Z, Baskett, C A, Wetzel, W C, Ben-Simchon, E, Bloodworth, K J, Bronstein, J L, Buckley, Y M, Burghardt, K T, Bustos-Segura, C, Calixto, E S, Carvalho, R L, Castagneyrol, B, Chiuffo, M C, Cinoğlu, D, Cinto Mejía, E, Cock, M C, Cogni, R, Cope, O L, Cornelissen, T, Cortez, D R, Crowder, D W, Dallstream, C, Dáttilo, W, Davis, J K, Dimarco, R D, Dole, H E, Egbon, I N, Eisenring, M, Ejomah, A, Elderd, B D, Endara, M-J, Eubanks, M D, Everingham, S E, Farah, K N, Farias, R P, Fernandes, A P, Fernandes, G W, Ferrante, M, Finn, A, Florjancic, G A, Forister, M L, Fox, Q N, Frago, E, França, F M, Getman-Pickering, A S, Getman-Pickering, Z, Gianoli, E, Gooden, B, Gossner, M M, Greig, K A, Gripenberg, S, Groenteman, R, Grof-Tisza, P, Haack, N, Hahn, L, Haq, S M, Helms, A M, Hennecke, J, Hermann, S L, Holeski, L M, Holm, S, Hutchinson, M C, Jackson, E E, Kagiya, S, Kalske, A, Kalwajtys, M, Karban, R, Kariyat, R, Keasar, T, Kersch-Becker, M F, Kharouba, H M, Kim, T N, Kimuyu, D M, Kluse, J, Koerner, S E, Komatsu, K J, Krishnan, S, Laihonen, M, Lamelas-López, L, LaScaleia, M C, Lecomte, N, Lehn, C R, and Li, X
- Abstract
Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth.
- Published
- 2023
3. Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments
- Author
-
Cesarz, S., Craven, D., Auge, Harald, Bruelheide, H., Castagneyrol, B., Gutknecht, J., Hector, A., Jactel, H., Koricheva, J., Messier, C., Muys, B., O’Brien, M.J., Paquette, A., Ponette, Q., Potvin, C., Reich, P.B., Scherer-Lorenzen, M., Smith, A.R., Verheyen, K., Eisenhauer, N., Cesarz, S., Craven, D., Auge, Harald, Bruelheide, H., Castagneyrol, B., Gutknecht, J., Hector, A., Jactel, H., Koricheva, J., Messier, C., Muys, B., O’Brien, M.J., Paquette, A., Ponette, Q., Potvin, C., Reich, P.B., Scherer-Lorenzen, M., Smith, A.R., Verheyen, K., and Eisenhauer, N.
- Abstract
Aim Soil microorganisms are essential for the functioning of terrestrial ecosystems. Although soil microbial communities and functions are linked to tree species composition and diversity, there has been no comprehensive study of the generality or context dependence of these relationships. Here, we examine tree diversity–soil microbial biomass and respiration relationships across environmental gradients using a global network of tree diversity experiments. Location Boreal, temperate, subtropical and tropical forests. Time period 2013. Major taxa studied Soil microorganisms. Methods Soil samples collected from 11 tree diversity experiments were used to measure microbial respiration, biomass and respiratory quotient using the substrate-induced respiration method. All samples were measured using the same analytical device, method and procedure to reduce measurement bias. We used linear mixed-effects models and principal components analysis (PCA) to examine the effects of tree diversity (taxonomic and phylogenetic), environmental conditions and interactions on soil microbial properties. Results Abiotic drivers, mainly soil water content, but also soil carbon and soil pH, significantly increased soil microbial biomass and respiration. High soil water content reduced the importance of other abiotic drivers. Tree diversity had no effect on the soil microbial properties, but interactions with phylogenetic diversity indicated that the effects of diversity were context dependent and stronger in drier soils. Similar results were found for soil carbon and soil pH. Main conclusions Our results indicate the importance of abiotic variables, especially soil water content, for maintaining high levels of soil microbial functions and modulating the effects of other environmental drivers. Planting tree species with diverse water-use strategies and structurally complex canopies and high leaf area might be crucial for maintaining high soil microbial biomass and respiration. Give
- Published
- 2022
4. Meta-analysis of tree diversity effects on the abundance, diversity and activity of herbivores’ enemies
- Author
-
Stemmelen, A., primary, Jactel, H., additional, Brockerhoff, E.G., additional, and Castagneyrol, B., additional
- Published
- 2021
- Full Text
- View/download PDF
5. TRY plant trait database enhanced coverage and open access
- Author
-
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., Werner, G.D.A., Aakala, T., Abedi, M., Acosta, A.T.R., Adamidis, G.C., Adamson, K., Aiba, M., Albert, C.H., Alcántara, J.M., Alcázar, C, C., Aleixo, I., Ali, H., Amiaud, B., Ammer, C., Amoroso, M.M., Anand, M., Anderson, C., Anten, N., Antos, J., Apgaua, D.M.G., Ashman, T.-L., Asmara, D.H., Asner, G.P., Aspinwall, M., Atkin, O., Aubin, I., Baastrup-Spohr, L., Bahalkeh, K., Bahn, M., Baker, T., Baker, W.J., Bakker, J.P., Baldocchi, D., Baltzer, J., Banerjee, A., Baranger, A., Barlow, J., Barneche, D.R., Baruch, Z., Bastianelli, D., Battles, J., Bauerle, W., Bauters, M., Bazzato, E., Beckmann, M., Beeckman, H., Beierkuhnlein, C., Bekker, R., Belfry, G., Belluau, M., Beloiu, M., Benavides, R., Benomar, L., Berdugo-Lattke, M.L., Berenguer, E., Bergamin, R., Bergmann, J., Bergmann, Carlucci, M., Berner, L., Bernhardt-Römermann, M., Bigler, C., Bjorkman, A.D., Blackman, C., Blanco, C., Blonder, B., Blumenthal, D., Bocanegra-González, K.T., Boeckx, P., Bohlman, S., Böhning-Gaese, K., Boisvert-Marsh, L., Bond, W., Bond-Lamberty, B., Boom, A., Boonman, C.C.F., Bordin, K., Boughton, E.H., Boukili, V., Bowman, D.M.J.S., Bravo, S., Brendel, M.R., Broadley, M.R., Brown, K.A., Bruelheide, H., Brumnich, F., Bruun, H.H., Bruy, D., Buchanan, S.W., Bucher, S.F., Buchmann, N., Buitenwerf, R., Bunker, D.E., Bürger, J., Burrascano, Sabina, Burslem, D.F.R.P., Butterfield, B.J., Byun, C., Marques, M., Scalon, M.C., Caccianiga, M., Cadotte, M., Cailleret, M., Camac, J., Camarero, J.J., Campany, C., Campetella, G., Campos Prieto, Juan Antonio, Cano-Arboleda, L., Canullo, R., Carbognani, M., Carvalho, F., Casanoves, F., Castagneyrol, B., Catford, J.A., Cavender-Bares, J., Cerabolini, Bruno E. L., Cervellini, M., Chacón-Madrigal, E., Chapin, K., Chapin, F.S., Chelli, S., Chen, S.-C., Chen, A., Cherubini, P., Chianucci, F., Choat, B., Chung, K.-S., Chytrý, Milan, Ciccarelli, D., Coll, L., Collins, C.G., Conti, L., Coomes, D., Cornelissen, J.H.C., Cornwell, W.K., Corona, P., Coyea, M., Craine, J., Craven, D., Cromsigt, J.P.G.M., Csecserits, A., Cufar, K., Cuntz, M., and da, Silva, A.C
- Abstract
Plant traits the morphological, anatomical, physiological, biochemical and phenological characteristics of plants determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits almost complete coverage for plant growth form . However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives. © 2019 The Authors. Global Change Biology published by John Wiley and Sons Ltd
- Published
- 2020
6. Opposite latitudinal patterns for bird and arthropod predation revealed in experiments with differently colored artificial prey
- Author
-
Zvereva E.L., Castagneyrol B., Cornelissen T., Forsman A., Hernández-Agüero J.A., Klemola T., Paolucci L., Polo V., Salinas N., Theron K.J., Xu G., Zverev V., and Kozlov M.V.
- Subjects
artificial prey ,biotic interactions ,color preference ,purl.org/pe-repo/ocde/ford#4.02.01 [http] ,predation rate ,avian predators ,arthropod predators ,plasticine models ,latitudinal pattern - Abstract
The strength of biotic interactions is generally thought to increase toward the equator, but support for this hypothesis is contradictory. We explored whether predator attacks on artificial prey of eight different colors vary among climates and whether this variation affects the detection of latitudinal patterns in predation. Bird attack rates negatively correlated with model luminance in cold and temperate environments, but not in tropical environments. Bird predation on black and on white (extremes in luminance) models demonstrated different latitudinal patterns, presumably due to differences in prey conspicuousness between habitats with different light regimes. When attacks on models of all colors were combined, arthropod predation decreased, whereas bird predation increased with increasing latitude. We conclude that selection for prey coloration may vary geographically and according to predator identity, and that the importance of different predators may show contrasting patterns, thus weakening the overall latitudinal trend in top-down control of herbivorous insects. © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
- Published
- 2019
7. How do trees respond to species mixing in experimental compared to observational studies?
- Author
-
Kambach, Stephan, Allan, E., Bilodeau-Gauthier, S., Coomes, D.A., Haase, J., Jucker, T., Kunstler, G., Müller, S., Nock, C., Paquette, A., van der Plas, F., Ratcliffe, S., Roger, F., Ruiz‐Benito, P., Scherer‐Lorenzen, M., Auge, Harald, Bouriaud, O., Castagneyrol, B., Dahlgren, J., Gamfeldt, L., Jactel, H., Kändler, G., Koricheva, J., Lehtonen, A., Muys, B., Ponette, Q., Setiawan, N., Van de Peer, T., Verheyen, K., Zavala, M.A., Bruelheide, H., Kambach, Stephan, Allan, E., Bilodeau-Gauthier, S., Coomes, D.A., Haase, J., Jucker, T., Kunstler, G., Müller, S., Nock, C., Paquette, A., van der Plas, F., Ratcliffe, S., Roger, F., Ruiz‐Benito, P., Scherer‐Lorenzen, M., Auge, Harald, Bouriaud, O., Castagneyrol, B., Dahlgren, J., Gamfeldt, L., Jactel, H., Kändler, G., Koricheva, J., Lehtonen, A., Muys, B., Ponette, Q., Setiawan, N., Van de Peer, T., Verheyen, K., Zavala, M.A., and Bruelheide, H.
- Abstract
For decades, ecologists have investigated the effects of tree species diversity on tree productivity at different scales and with different approaches ranging from observational to experimental study designs. Using data from five European national forest inventories (16,773 plots), six tree species diversity experiments (584 plots), and six networks of comparative plots (169 plots), we tested whether tree species growth responses to species mixing are consistent and therefore transferrable between those different research approaches. Our results confirm the general positive effect of tree species mixing on species growth (16% on average) but we found no consistency in species‐specific responses to mixing between any of the three approaches, even after restricting comparisons to only those plots that shared similar mixtures compositions and forest types. These findings highlight the necessity to consider results from different research approaches when selecting species mixtures that should maximize positive forest biodiversity and functioning relationships.
- Published
- 2019
8. Identifying the tree species compositions that maximize ecosystem functioning in European forests
- Author
-
European Commission, Benavides, Raquel [0000-0003-2328-5371], Valladares, Fernando [0000-0002-5374-4682], Bastias, Cristina C. [0000-0002-2479-2001], Allan, Eric [0000-0001-9641-9436], Baeten, L., Bruelheide, H., van der Plas, F., Kambach, S., Ratcliffe, S., Jucker, T., Allan, Eric, Ampoorter, E., Barbaro, L., Bastias, Cristina C., Bauhus, J., Benavides, Raquel, Bonal, D., Bouriaud, O., Bussotti, F., Carnol, M., Castagneyrol, B., Charbonnier, Y., Checko, Ewa, Coomes, David A., Dahlgren, J., Dawud, S.M., De Wandeler, H., Domisch, Timo, Finér, Leena, Fischer, Markus, Fotelli, M., Gessler, A., Grossiord, C., Guyot, V., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, François‐Xavier, Koricheva, J., Lehtonen, A., Müller, S., Muys, Bart, Nguyen, D., Pollastrini, M., Radoglou, K., Raulund-Rasmussen, K., Ruiz-Benito, P., Selvi, F., Stenlid, J., Valladares Ros, Fernando, Vesterdal, L., Verheyen, K., Wirth, C., Zavala, M.A., European Commission, Benavides, Raquel [0000-0003-2328-5371], Valladares, Fernando [0000-0002-5374-4682], Bastias, Cristina C. [0000-0002-2479-2001], Allan, Eric [0000-0001-9641-9436], Baeten, L., Bruelheide, H., van der Plas, F., Kambach, S., Ratcliffe, S., Jucker, T., Allan, Eric, Ampoorter, E., Barbaro, L., Bastias, Cristina C., Bauhus, J., Benavides, Raquel, Bonal, D., Bouriaud, O., Bussotti, F., Carnol, M., Castagneyrol, B., Charbonnier, Y., Checko, Ewa, Coomes, David A., Dahlgren, J., Dawud, S.M., De Wandeler, H., Domisch, Timo, Finér, Leena, Fischer, Markus, Fotelli, M., Gessler, A., Grossiord, C., Guyot, V., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, François‐Xavier, Koricheva, J., Lehtonen, A., Müller, S., Muys, Bart, Nguyen, D., Pollastrini, M., Radoglou, K., Raulund-Rasmussen, K., Ruiz-Benito, P., Selvi, F., Stenlid, J., Valladares Ros, Fernando, Vesterdal, L., Verheyen, K., Wirth, C., and Zavala, M.A.
- Abstract
Forest ecosystem functioning generally benefits from higher tree species richness, but variation within richness levels is typically large. This is mostly due to the contrasting performances of communities with different compositions. Evidence-based understanding of composition effects on forest productivity, as well as on multiple other functions will enable forest managers to focus on the selection of species that maximize functioning, rather than on diversity per se. We used a dataset of 30 ecosystem functions measured in stands with different species richness and composition in six European forest types. First, we quantified whether the compositions that maximize annual above-ground wood production (productivity) generally also fulfil the multiple other ecosystem functions (multifunctionality). Then, we quantified the species identity effects and strength of interspecific interactions to identify the “best” and “worst” species composition for multifunctionality. Finally, we evaluated the real-world frequency of occurrence of best and worst mixtures, using harmonized data from multiple national forest inventories. The most productive tree species combinations also tended to express relatively high multifunctionality, although we found a relatively wide range of compositions with high- or low-average multifunctionality for the same level of productivity. Monocultures were distributed among the highest as well as the lowest performing compositions. The variation in functioning between compositions was generally driven by differences in the performance of the component species and, to a lesser extent, by particular interspecific interactions. Finally, we found that the most frequent species compositions in inventory data were monospecific stands and that the most common compositions showed below-average multifunctionality and productivity. Synthesis and applications. Species identity and composition effects are essential to the development of high-performing product
- Published
- 2019
9. Positive biodiversity–productivity relationships in forests: climate matters
- Author
-
Jactel, H., primary, Gritti, E. S., additional, Drössler, L., additional, Forrester, D. I., additional, Mason, W. L., additional, Morin, X., additional, Pretzsch, H., additional, and Castagneyrol, B., additional
- Published
- 2018
- Full Text
- View/download PDF
10. A million and more trees for science
- Author
-
Paquette, A., Hector, A., Vanhellemont, M., Koricheva, J., Scherer-Lorenzen, M., Verheyen, K., Abdala-Roberts, L., Auge, H., Barsoum, N., Bauhus, J., Baum, C., Bruelheide, H., Castagneyrol, B., Cavender-Bares, J., Eisenhauer, N., Ferlian, O., Ganade, G., Godbold, D., Gravel, D., Hall, J., Hobbs, R., Hoelscher, D., Hulvey, K.B., Huxham, M., Jactel, H., Kreft, H., Liang, J., Mereu, S., Messier, C., Montgomery, R., Muys, B., Nock, C., Parker, J., Parker, W., Parra-Tabla, V., Perring, M.P., Ponette, Q., Potvin, C., Reich, P.B., Rewald, B., Sanden, H., Smith, A., Standish, R., Weih, M., Wollni, M., Zemp, D.C., Paquette, A., Hector, A., Vanhellemont, M., Koricheva, J., Scherer-Lorenzen, M., Verheyen, K., Abdala-Roberts, L., Auge, H., Barsoum, N., Bauhus, J., Baum, C., Bruelheide, H., Castagneyrol, B., Cavender-Bares, J., Eisenhauer, N., Ferlian, O., Ganade, G., Godbold, D., Gravel, D., Hall, J., Hobbs, R., Hoelscher, D., Hulvey, K.B., Huxham, M., Jactel, H., Kreft, H., Liang, J., Mereu, S., Messier, C., Montgomery, R., Muys, B., Nock, C., Parker, J., Parker, W., Parra-Tabla, V., Perring, M.P., Ponette, Q., Potvin, C., Reich, P.B., Rewald, B., Sanden, H., Smith, A., Standish, R., Weih, M., Wollni, M., and Zemp, D.C.
- Abstract
TreeDivNet is the largest network of biodiversity experiments worldwide, but needs to expand. We encourage colleagues to establish new experiments on the relation between tree species diversity and forest ecosystem functioning, and to make use of the platform for collaborative research.
- Published
- 2018
11. Biotic homogenization is more detrimental than local species loss for landscape-scale forest multifunctionality
- Author
-
van der Plas, F., Manning, P., Soliveres, S., Allan, E., Scherer-Lorenzen, M., Verheyen, K., Wirth, C., Zavala, M., Ampoorter, E., Baeten, L., Barbaro, L., Bauhus, J., Benavides, R., Benneter, A., Bonal, D., Bouriaud, O., Bruelheide, H., Bussotti, F., Carnol, M., Castagneyrol, B., Charbonnier, Y., Coomes, D., Coppi, A., Bastias, C., Dawud, S., Wandeler, H., Domisch, T., Finér, L., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F., Jucker, T., Koricheva, J., Milligana, H., Mueller, S., Muys, B., Nguyenb, D., Pollastrini, M., Ratcliffe, S., Raulund-Rasmussen, K., Selvi, F., Stenlid, J., Valladares, F., Vesterdal, L., Zielínski, D., and Fischer, M.
- Abstract
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality
- Published
- 2016
12. Forest biodiversity, ecosystem functioning and the provision of ecosystem services
- Author
-
Brockerhoff, Ecke, Barbaro, Luc, Castagneyrol, B, Forrester, David I, Gardiner, Barry, Gonzalez, Jose Ramon, O'B Lyver, Phil, Meurisse, N, Oxbrough, Anne, Taki, Hisatomo, Thompson, ID, van der Plas, Fons, Jactel, Herve, Brockerhoff, Ecke, Barbaro, Luc, Castagneyrol, B, Forrester, David I, Gardiner, Barry, Gonzalez, Jose Ramon, O'B Lyver, Phil, Meurisse, N, Oxbrough, Anne, Taki, Hisatomo, Thompson, ID, van der Plas, Fons, and Jactel, Herve
- Abstract
Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multi-functionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services.
- Published
- 2017
13. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality
- Author
-
van der Plas, F., Ratcliffe, S., Ruiz-Benito, P., Scherer-Lorenzen, M., Verheyen, K., Wirth, C., Zavala, M.A., Ampoorter, E., Baeten, L., Barbaro, L., Bastias, C.C., Bauhus, J., Benavides, R., Benneter, A., Bonal, D., Bouriaud, O., Bruelheide, H., Bussotti, F., Carnol, M., Castagneyrol, B., Charbonnier, Y., Cornelissen, J.H.C., Dahlgren, J., Checko, E., Coppi, A., Dawud, S.M., Deconchat, M., De Smedt, P., De Wandeler, H., Domisch, T., Finér, L., Fotelli, M., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Haase, J., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F.-X., Jucker, T., Kambach, Stephan, Kaendler, G., Kattge, J., Koricheva, J., Kunstler, G., Lehtonen, A., Liebergesell, M., Manning, P., Milligan, H., Müller, S., Muys, B., Nguyen, D., Nock, C., Ohse, B., Paquette, A., Peñuelas, J., Pollastrini, M., Radoglou, K., Raulund-Rasmussen, K., Roger, F., Seidl, R., Selvi, F., Stenlid, J., Valladares, F., van Keer, J., Vesterdal, L., Fischer, M., Gamfeldt, L., Allan, E., van der Plas, F., Ratcliffe, S., Ruiz-Benito, P., Scherer-Lorenzen, M., Verheyen, K., Wirth, C., Zavala, M.A., Ampoorter, E., Baeten, L., Barbaro, L., Bastias, C.C., Bauhus, J., Benavides, R., Benneter, A., Bonal, D., Bouriaud, O., Bruelheide, H., Bussotti, F., Carnol, M., Castagneyrol, B., Charbonnier, Y., Cornelissen, J.H.C., Dahlgren, J., Checko, E., Coppi, A., Dawud, S.M., Deconchat, M., De Smedt, P., De Wandeler, H., Domisch, T., Finér, L., Fotelli, M., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Haase, J., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F.-X., Jucker, T., Kambach, Stephan, Kaendler, G., Kattge, J., Koricheva, J., Kunstler, G., Lehtonen, A., Liebergesell, M., Manning, P., Milligan, H., Müller, S., Muys, B., Nguyen, D., Nock, C., Ohse, B., Paquette, A., Peñuelas, J., Pollastrini, M., Radoglou, K., Raulund-Rasmussen, K., Roger, F., Seidl, R., Selvi, F., Stenlid, J., Valladares, F., van Keer, J., Vesterdal, L., Fischer, M., Gamfeldt, L., and Allan, E.
- Abstract
Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for ‘win-win’ forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.
- Published
- 2017
14. Biodiversity and ecosystem functioning relations in European forests depend on environmental context
- Author
-
Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K., Allan, E., Benavides, R., Bruelheide, H., Ohse, B., Paquette, A., Ampoorter, E., Bastias, C.C., Bauhus, J., Bonal, D., Bouriaud, O., Bussotti, F., Carnol, M., Castagneyrol, B., Chećko, E., Dawud, S.M., De Wandeler, H., Domisch, T., Finer, L., Fischer, M., Fotelli, M., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Haase, J., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F.-X., Kambach, Stephan, Kolb, S., Koricheva, J., Liebersgesell, M., Milligan, H., Müller, S., Muys, B., Nguyen, D., Nock, C., Pollastrini, M., Purschke, O., Radoglou, K., Raulund-Rasmussen, K., Roger, F., Ruiz-Benito, P., Seidl, R., Selvi, F., Seiferling, I., Stenlid, J., Valladares, F., Vesterdal, L., Baeten, L., Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K., Allan, E., Benavides, R., Bruelheide, H., Ohse, B., Paquette, A., Ampoorter, E., Bastias, C.C., Bauhus, J., Bonal, D., Bouriaud, O., Bussotti, F., Carnol, M., Castagneyrol, B., Chećko, E., Dawud, S.M., De Wandeler, H., Domisch, T., Finer, L., Fischer, M., Fotelli, M., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Haase, J., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F.-X., Kambach, Stephan, Kolb, S., Koricheva, J., Liebersgesell, M., Milligan, H., Müller, S., Muys, B., Nguyen, D., Nock, C., Pollastrini, M., Purschke, O., Radoglou, K., Raulund-Rasmussen, K., Roger, F., Ruiz-Benito, P., Seidl, R., Selvi, F., Seiferling, I., Stenlid, J., Valladares, F., Vesterdal, L., and Baeten, L.
- Abstract
The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity–ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.
- Published
- 2017
15. The impact of tree diversity on different aspects of insect herbivory along a global temperature gradient - a meta-analysis
- Author
-
Kambach, Stephan, Kühn, Ingolf, Castagneyrol, B., Bruelheide, H., Kambach, Stephan, Kühn, Ingolf, Castagneyrol, B., and Bruelheide, H.
- Abstract
Forests with higher tree diversity are often assumed to be more resistant to insect herbivores but whether this effect depends on climatic conditions is so far poorly understood. In particular, a forest’s resistance to herbivory may depend on mean annual temperature (MAT) as a key driver of plant and insect phenology. We carried out a global meta-analysis on regression coefficients between tree diversity and four aspects of insect herbivory, namely herbivore damage, abundance, incidence rate and species richness. To test for a potential shift of tree diversity effects along a global gradient of MAT we applied mixed-effects models and estimated grand mean effect sizes and the influence of MAT, experimental vs. observational studies and herbivores diet breadth. There was no overall effect of tree diversity on the pooled effect sizes of insect herbivore damage, abundance and incidence rate. However, when analysed separately, we found positive grand mean effect sizes for herbivore abundance and species richness. For herbivore damage and incidence rate we found a significant but opposing shift along a gradient of MAT indicating that with increasing MAT diversity effects on herbivore damage tend towards associational resistance whereas diversity effects on incidence rates tend towards associational susceptibility. Our results contradict previous meta-analyses reporting overall associational resistance to insect herbivores in mixed forests. Instead, we report that tree diversity effects on insect herbivores can follow a biogeographic pattern calling for further in-depth studies in this field.
- Published
- 2016
16. Contributions of a global network of tree diversity experiments to sustainable forest plantations
- Author
-
Verheyen, K., Vanhellemont, M., Auge, Harald, Baeten, L., Baraloto, C., Barsoum, N., Bilodeau-Gauthier, S., Bruelheide, H., Castagneyrol, B., Godbold, D., Haase, J., Hector, A., Jactel, H., Koricheva, J., Loreau, M., Mereu, S., Messier, C., Muys, B., Nolet, P., Paquette, A., Parker, J., Perring, M., Ponette, Q., Potvin, C., Reich, P., Smith, A., Weih, M., Scherer-Lorenzen, M., Verheyen, K., Vanhellemont, M., Auge, Harald, Baeten, L., Baraloto, C., Barsoum, N., Bilodeau-Gauthier, S., Bruelheide, H., Castagneyrol, B., Godbold, D., Haase, J., Hector, A., Jactel, H., Koricheva, J., Loreau, M., Mereu, S., Messier, C., Muys, B., Nolet, P., Paquette, A., Parker, J., Perring, M., Ponette, Q., Potvin, C., Reich, P., Smith, A., Weih, M., and Scherer-Lorenzen, M.
- Abstract
The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1–15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network.
- Published
- 2015
17. A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests
- Author
-
Baeten, L., Verheyen, K., Wirth, C., Bruelheide, H., Bussotti, F., Finér, L., Jaroszewicz, B., Selvi, F., Valladares, F., Allan, E., Ampoorter, E., Auge, Harald, Avăcăriei, D., Barbaro, L., Bărnoaiea, I., Bastias, C.C., Bauhus, J., Beinhoff, C., Benavides, R., Benneter, A., Berger, S., Berthold, F., Boberg, J., Bonal, D., Brüggemann, W., Carnol, M., Castagneyrol, B., Charbonnier, Y., Chećko, E., Coomes, D., Coppi, A., Dalmaris, E., Dănilă, G., Dawud, S.M., de Vries, W., De Wandeler, H., Deconchat, M., Domisch, T., Duduman, G., Fischer, M., Fotelli, M., Gessler, A., Gimeno, T.E., Granier, A., Grossiord, C., Guyot, V., Hantsch, L., Hättenschwiler, S., Hector, A., Hermy, M., Holland, V., Jactel, H., Joly, F.-X., Jucker, T., Kolb, S., Koricheva, J., Lexer, M.J., Liebergesell, M., Milligan, H., Müller, S., Muys, B., Nguyen, D., Nichiforel, L., Pollastrini, M., Proulx, R., Rabasa, S., Radoglou, K., Ratcliffe, S., Raulund-Rasmussen, K., Seiferling, I., Stenlid, J., Vesterdal, L., von Wilpert, K., Zavala, M.A., Zielinski, D., Scherer-Lorenzen, M., Baeten, L., Verheyen, K., Wirth, C., Bruelheide, H., Bussotti, F., Finér, L., Jaroszewicz, B., Selvi, F., Valladares, F., Allan, E., Ampoorter, E., Auge, Harald, Avăcăriei, D., Barbaro, L., Bărnoaiea, I., Bastias, C.C., Bauhus, J., Beinhoff, C., Benavides, R., Benneter, A., Berger, S., Berthold, F., Boberg, J., Bonal, D., Brüggemann, W., Carnol, M., Castagneyrol, B., Charbonnier, Y., Chećko, E., Coomes, D., Coppi, A., Dalmaris, E., Dănilă, G., Dawud, S.M., de Vries, W., De Wandeler, H., Deconchat, M., Domisch, T., Duduman, G., Fischer, M., Fotelli, M., Gessler, A., Gimeno, T.E., Granier, A., Grossiord, C., Guyot, V., Hantsch, L., Hättenschwiler, S., Hector, A., Hermy, M., Holland, V., Jactel, H., Joly, F.-X., Jucker, T., Kolb, S., Koricheva, J., Lexer, M.J., Liebergesell, M., Milligan, H., Müller, S., Muys, B., Nguyen, D., Nichiforel, L., Pollastrini, M., Proulx, R., Rabasa, S., Radoglou, K., Ratcliffe, S., Raulund-Rasmussen, K., Seiferling, I., Stenlid, J., Vesterdal, L., von Wilpert, K., Zavala, M.A., Zielinski, D., and Scherer-Lorenzen, M.
- Abstract
One of the current advances in functional biodiversity research is the move away from short-lived test systems towards the exploration of diversity-ecosystem functioning relationships in structurally more complex ecosystems. In forests, assumptions about the functional significance of tree species diversity have only recently produced a new generation of research on ecosystem processes and services. Novel experimental designs have now replaced traditional forestry trials, but these comparatively young experimental plots suffer from specific difficulties that are mainly related to the tree size and longevity. Tree species diversity experiments therefore need to be complemented with comparative observational studies in existing forests. Here we present the design and implementation of a new network of forest plots along tree species diversity gradients in six major European forest types: the FunDivEUROPE Exploratory Platform. Based on a review of the deficiencies of existing observational approaches and of unresolved research questions and hypotheses, we discuss the fundamental criteria that shaped the design of our platform. Key features include the extent of the species diversity gradient with mixtures up to five species, strict avoidance of a dilution gradient, special attention to community evenness and minimal covariation with other environmental factors. The new European research platform permits the most comprehensive assessment of tree species diversity effects on forest ecosystem functioning to date since it offers a common set of research plots to groups of researchers from very different disciplines and uses the same methodological approach in contrasting forest types along an extensive environmental gradient.
- Published
- 2013
18. Community genetics in the time of next-generation molecular technologies
- Author
-
Gugerli, F., Brandl, R., Castagneyrol, B., Franc, A., Jactel, H., Koelewijn, H.P., Martin, F., Peter, M., Pritsch, K., Schröder, H., Smulders, M.J.M., Kremer, A., Ziegenhagen, B., Gugerli, F., Brandl, R., Castagneyrol, B., Franc, A., Jactel, H., Koelewijn, H.P., Martin, F., Peter, M., Pritsch, K., Schröder, H., Smulders, M.J.M., Kremer, A., and Ziegenhagen, B.
- Abstract
Understanding the interactions of co-occurring species within and across trophic levels provides key information needed for understanding the ecological and evolutionary processes that underlie biological diversity. As genetics has only recently been integrated into the study of community-level interactions, the time is right for a critical evaluation of potential new, gene-based approaches to studying communities. Next-generation molecular techniques, used in parallel with field-based observations and manipulative experiments across spatio-temporal gradients, are key to expanding our understanding of community-level processes. Here, we introduce a variety of ‘-omics’ tools, with recent studies of plant–insect herbivores and of ectomycorrhizal systems providing detailed examples of how next-generation approaches can revolutionize our understanding of interspecific interactions. We suggest ways that novel technologies may convert community genetics from a field that relies on correlative inference to one that reveals causal mechanisms of genetic co-variation and adaptations within communities.
- Published
- 2013
19. Plant size, latitude, and phylogeny explain within-population variability in herbivory
- Author
-
Robinson, ML, Hahn, PG, Inouye, BD, Underwood, N, Whitehead, SR, Abbott, KC, Bruna, EM, Cacho, NI, Dyer, LA, Abdala-Roberts, L, Allen, WJ, Andrade, JF, Angulo, DF, Anjos, D, Anstett, DN, Bagchi, R, Bagchi, S, Barbosa, M, Barrett, S, Baskett, CA, Ben-Simchon, E, Bloodworth, KJ, Bronstein, JL, Buckley, YM, Burghardt, KT, Bustos-Segura, C, Calixto, ES, Carvalho, RL, Castagneyrol, B, Chiuffo, MC, Cinolu, D, Cinto Mejía, E, Cock, MC, Cogni, R, Cope, OL, Cornelissen, T, Cortez, DR, Crowder, DW, Dallstream, C, Dáttilo, W, Davis, JK, Dimarco, RD, Dole, HE, Egbon, IN, Eisenring, M, Ejomah, A, Elderd, BD, Endara, MJ, Eubanks, MD, Everingham, SE, Farah, KN, Farias, RP, Fernandes, AP, Fernandes, GW, Ferrante, M, Finn, A, Florjancic, GA, Forister, ML, Fox, QN, Frago, E, França, FM, Getman-Pickering, AS, Getman-Pickering, Z, Gianoli, E, Gooden, B, Gossner, MM, Greig, KA, Gripenberg, S, Groenteman, R, Grof-Tisza, P, Haack, N, Hahn, L, Haq, SM, Helms, AM, Hennecke, J, Hermann, SL, Holeski, LM, Holm, S, Hutchinson, MC, Jackson, EE, Kagiya, S, Kalske, A, Kalwajtys, M, Karban, R, Kariyat, R, Keasar, T, Kersch-Becker, MF, Kharouba, HM, Kim, TN, Kimuyu, DM, Kluse, J, Koerner, SE, Komatsu, KJ, Krishnan, S, Laihonen, M, Lamelas-López, L, LaScaleia, MC, Lecomte, N, Lehn, CR, Li, X, Lindroth, RL, LoPresti, EF, Losada, M, Louthan, AM, Luizzi, VJ, Lynch, SC, Lynn, JS, Lyon, NJ, Maia, RA, Mannall, TL, Martin, BS, Massad, TJ, McCall, AC, McGurrin, K, Merwin, AC, Mijango-Ramos, Z, Mills, CH, Moles, AT, Moore, CM, Moreira, X, Morrison, CR, Moshobane, MC, Muola, A, Nakajima, K, Novais, S, Ogbebor, CO, Ohsaki, H, Pan, VS, Pardikes, NA, Pareja, M, Parthasarathy, N, Pawar, RR, Paynter, Q, Pearse, IS, Penczykowski, RM, Pepi, AA, Pereira, CC, Phartyal, SS, Piper, FI, Poveda, K, Pringle, EG, Puy, J, Quijano, T, Quintero, C, Rasmann, S, Rosche, C, Rosenheim, LY, Runyon, JB, Sadeh, A, Sakata, Y, Salcido, DM, Salgado-Luarte, C, Santos, BA, Sapir, Y, Sasal, Y, Sato, Y, Sawant, M, Schoeder, H, Schumann, I, Segoli, M, Segre, H, Shelef, O, Shinohara, N, Singh, RP, Smith, DS, Sobral, M, Stotz, GC, Tack, AJM, Tayal, M, Tooker, JF, Vaca-Uribe, JL, Valtonen, A, van Dik, LJA, Vandvik, V, Villellas, J, Waller, Lauren, Weber, MG, Yamawo, A, Yim, S, Zarnetske, PL, Zehr, LN, Zhong, Z, and Wetzel, WC
- Published
- 2023
- Full Text
- View/download PDF
20. The ongoing range expansion of the invasive oak lace bug across Europe: current occurrence and potential distribution under climate change.
- Author
-
Ciceu A, Bălăcenoiu F, de Groot M, Chakraborty D, Avtzis D, Barta M, Blaser S, Bracalini M, Castagneyrol B, Chernova UA, Çota E, Csóka G, Dautbasic M, Glavendekic M, Gninenko YI, Hoch G, Hradil K, Husemann M, Meshkova V, Mujezinovic O, Mutun S, Panzavolta T, Paulin M, Riba-Flinch JM, Simov N, Sotirovski K, Vasilciuc S, Zúbrik M, and Schueler S
- Subjects
- Europe, Animals, Ecosystem, Heteroptera, Animal Distribution, Climate Change, Quercus, Introduced Species
- Abstract
In recent years, the oak lace bug, Corythucha arcuata, has emerged as a significant threat to European oak forests. This species, native to North America, has in the last two decades rapidly extended its range in Europe, raising concerns about its potential impact on the continent's invaluable oak populations. To address this growing concern, we conducted an extensive study to assess the distribution, colonization patterns, and potential ecological niche of the oak lace bug in Europe. We gathered 1792 unique presence coordinates from 21 Eurasian countries, utilizing diverse sources such as research observations, citizen science initiatives, GBIF database, and social media reports. To delineate the realized niche and future distribution, we employed an ensemble species distribution modelling (SDM) framework. Two future greenhouse gas scenarios (RCP 4.5 and RCP 8.5) were considered across three-time intervals (2021-2040, 2061-2080, and 2081-2100) to project and evaluate the species' potential distribution in the future. Our analysis revealed that significant hotspots rich in host species occurrence for this invasive insect remain uninvaded so far, even within its suitable habitat. Furthermore, the native ranges of Turkey oak (Quercus cerris L.) and Hungarian oak (Quercus frainetto L.) species offer entirely suitable environments for the oak lace bug. In contrast, the pedunculate oak and sessile oak distribution ranges currently show only 40 % and 50 % suitability for colonization, respectively. However, our predictive models indicate a significant transformation in the habitat suitability of the oak lace bug, with suitability for these two oak species increasing by up to 90 %. This shift underlines an evolving landscape where the oak lace bug may exploit more of its available habitats than initially expected. It emphasises the pressing need for proactive measures to manage and stop its expanding presence, which may lead to a harmful impact on the oak population across the European landscape., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
21. Leaf isotopes reveal tree diversity effects on the functional responses to the pan-European 2018 summer drought.
- Author
-
Jing X, Baum C, Castagneyrol B, Eisenhauer N, Ferlian O, Gebauer T, Hajek P, Jactel H, Muys B, Nock CA, Ponette Q, Rose L, Saurer M, Scherer-Lorenzen M, Verheyen K, and Van Meerbeek K
- Subjects
- Europe, Species Specificity, Droughts, Plant Leaves physiology, Trees physiology, Seasons, Carbon Isotopes analysis, Biodiversity, Nitrogen Isotopes
- Abstract
Recent droughts have strongly impacted forest ecosystems and are projected to increase in frequency, intensity, and duration in the future together with continued warming. While evidence suggests that tree diversity can regulate drought impacts in natural forests, few studies examine whether mixed tree plantations are more resistant to the impacts of severe droughts. Using natural variations in leaf carbon (C) and nitrogen (N) isotopic ratios, that is δ
13 C and δ15 N, as proxies for drought response, we analyzed the effects of tree species richness on the functional responses of tree plantations to the pan-European 2018 summer drought in seven European tree diversity experiments. We found that leaf δ13 C decreased with increasing tree species richness, indicating less drought stress. This effect was not related to drought intensity, nor desiccation tolerance of the tree species. Leaf δ15 N increased with drought intensity, indicating a shift toward more open N cycling as water availability diminishes. Additionally, drought intensity was observed to alter the influence of tree species richness on leaf δ15 N from weakly negative under low drought intensity to weakly positive under high drought intensity. Overall, our findings suggest that dual leaf isotope analysis helps understand the interaction between drought, nutrients, and species richness., (© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)- Published
- 2024
- Full Text
- View/download PDF
22. Tree diversity enhances predation by birds but not by arthropods across climate gradients.
- Author
-
Vázquez-González C, Castagneyrol B, Muiruri EW, Barbaro L, Abdala-Roberts L, Barsoum N, Fründ J, Glynn C, Jactel H, McShea WJ, Mereu S, Mooney KA, Morillas L, Nock CA, Paquette A, Parker JD, Parker WC, Roales J, Scherer-Lorenzen M, Schuldt A, Verheyen K, Weih M, Yang B, and Koricheva J
- Subjects
- Animals, Food Chain, Larva physiology, Arthropods physiology, Predatory Behavior, Birds physiology, Biodiversity, Trees, Climate
- Abstract
Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests., (© 2024 The Authors. Ecology Letters published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
23. Does spatial variation in insect herbivory match variations in plant quality? A meta-analysis.
- Author
-
Zvereva EL, Castagneyrol B, and Kozlov MV
- Subjects
- Animals, Nitrogen metabolism, Nitrogen analysis, Plant Defense Against Herbivory, Plant Leaves physiology, Plants, Herbivory, Insecta physiology
- Abstract
Variation in herbivore pressure has often been predicted from patterns in plant traits considered as antiherbivore defences. Here, we tested whether spatial variation in field insect herbivory is associated with the variation in plant quality by conducting a meta-analysis of 223 correlation coefficients between herbivory levels and the expression of selected plant traits. We found no overall correlation between herbivory and either concentrations of plant secondary metabolites or values of physical leaf traits. This result was due to both the large number of low correlations and the opposing directions of high correlations in individual studies. Field herbivory demonstrated a significant association only with nitrogen: herbivore pressure increased with an increase in nitrogen concentration in plant tissues. Thus, our meta-analysis does not support either theoretical prediction, i.e., that plants possess high antiherbivore defences in localities with high herbivore pressure or that herbivory is low in localities where plant defences are high. We conclude that information about putative plant defences is insufficient to predict plant losses to insects in field conditions and that the only bottom-up factor shaping spatial variation in insect herbivory is plant nutritive value. Our findings stress the need to improve a theory linking plant putative defences and herbivory., (© 2024 The Author(s). Ecology Letters published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
24. Plant size, latitude, and phylogeny explain within-population variability in herbivory.
- Author
-
Robinson ML, Hahn PG, Inouye BD, Underwood N, Whitehead SR, Abbott KC, Bruna EM, Cacho NI, Dyer LA, Abdala-Roberts L, Allen WJ, Andrade JF, Angulo DF, Anjos D, Anstett DN, Bagchi R, Bagchi S, Barbosa M, Barrett S, Baskett CA, Ben-Simchon E, Bloodworth KJ, Bronstein JL, Buckley YM, Burghardt KT, Bustos-Segura C, Calixto ES, Carvalho RL, Castagneyrol B, Chiuffo MC, Cinoğlu D, Cinto Mejía E, Cock MC, Cogni R, Cope OL, Cornelissen T, Cortez DR, Crowder DW, Dallstream C, Dáttilo W, Davis JK, Dimarco RD, Dole HE, Egbon IN, Eisenring M, Ejomah A, Elderd BD, Endara MJ, Eubanks MD, Everingham SE, Farah KN, Farias RP, Fernandes AP, Fernandes GW, Ferrante M, Finn A, Florjancic GA, Forister ML, Fox QN, Frago E, França FM, Getman-Pickering AS, Getman-Pickering Z, Gianoli E, Gooden B, Gossner MM, Greig KA, Gripenberg S, Groenteman R, Grof-Tisza P, Haack N, Hahn L, Haq SM, Helms AM, Hennecke J, Hermann SL, Holeski LM, Holm S, Hutchinson MC, Jackson EE, Kagiya S, Kalske A, Kalwajtys M, Karban R, Kariyat R, Keasar T, Kersch-Becker MF, Kharouba HM, Kim TN, Kimuyu DM, Kluse J, Koerner SE, Komatsu KJ, Krishnan S, Laihonen M, Lamelas-López L, LaScaleia MC, Lecomte N, Lehn CR, Li X, Lindroth RL, LoPresti EF, Losada M, Louthan AM, Luizzi VJ, Lynch SC, Lynn JS, Lyon NJ, Maia LF, Maia RA, Mannall TL, Martin BS, Massad TJ, McCall AC, McGurrin K, Merwin AC, Mijango-Ramos Z, Mills CH, Moles AT, Moore CM, Moreira X, Morrison CR, Moshobane MC, Muola A, Nakadai R, Nakajima K, Novais S, Ogbebor CO, Ohsaki H, Pan VS, Pardikes NA, Pareja M, Parthasarathy N, Pawar RR, Paynter Q, Pearse IS, Penczykowski RM, Pepi AA, Pereira CC, Phartyal SS, Piper FI, Poveda K, Pringle EG, Puy J, Quijano T, Quintero C, Rasmann S, Rosche C, Rosenheim LY, Rosenheim JA, Runyon JB, Sadeh A, Sakata Y, Salcido DM, Salgado-Luarte C, Santos BA, Sapir Y, Sasal Y, Sato Y, Sawant M, Schroeder H, Schumann I, Segoli M, Segre H, Shelef O, Shinohara N, Singh RP, Smith DS, Sobral M, Stotz GC, Tack AJM, Tayal M, Tooker JF, Torrico-Bazoberry D, Tougeron K, Trowbridge AM, Utsumi S, Uyi O, Vaca-Uribe JL, Valtonen A, van Dijk LJA, Vandvik V, Villellas J, Waller LP, Weber MG, Yamawo A, Yim S, Zarnetske PL, Zehr LN, Zhong Z, and Wetzel WC
- Subjects
- Ecosystem, Phylogeny, Animals, Biological Evolution, Herbivory, Plants, Plant Defense Against Herbivory, Biological Variation, Population
- Abstract
Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth.
- Published
- 2023
- Full Text
- View/download PDF
25. Microbial biomarkers of tree water status for next-generation biomonitoring of forest ecosystems.
- Author
-
Cambon MC, Trillat M, Lesur-Kupin I, Burlett R, Chancerel E, Guichoux E, Piouceau L, Castagneyrol B, Le Provost G, Robin S, Ritter Y, Van Halder I, Delzon S, Bohan DA, and Vacher C
- Subjects
- Biological Monitoring, Betula, DNA, Environmental, Pinus, Microbiota genetics
- Abstract
Next-generation biomonitoring proposes to combine machine-learning algorithms with environmental DNA data to automate the monitoring of the Earth's major ecosystems. In the present study, we searched for molecular biomarkers of tree water status to develop next-generation biomonitoring of forest ecosystems. Because phyllosphere microbial communities respond to both tree physiology and climate change, we investigated whether environmental DNA data from tree phyllosphere could be used as molecular biomarkers of tree water status in forest ecosystems. Using an amplicon sequencing approach, we analysed phyllosphere microbial communities of four tree species (Quercus ilex, Quercus robur, Pinus pinaster and Betula pendula) in a forest experiment composed of irrigated and non-irrigated plots. We used these microbial community data to train a machine-learning algorithm (Random Forest) to classify irrigated and non-irrigated trees. The Random Forest algorithm detected tree water status from phyllosphere microbial community composition with more than 90% accuracy for oak species, and more than 75% for pine and birch. Phyllosphere fungal communities were more informative than phyllosphere bacterial communities in all tree species. Seven fungal amplicon sequence variants were identified as candidates for the development of molecular biomarkers of water status in oak trees. Altogether, our results show that microbial community data from tree phyllosphere provides information on tree water status in forest ecosystems and could be included in next-generation biomonitoring programmes that would use in situ, real-time sequencing of environmental DNA to help monitor the health of European temperate forest ecosystems., (© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
26. Is ecology different when studied with citizen scientists? A bibliometric analysis.
- Author
-
Castagneyrol B, Bedessem B, and Julliard R
- Abstract
Ecology is broad and relies on several complementary approaches to study the mechanisms driving the distribution and abundance of organisms and their interactions. One of them is citizen science (CitSci), the co-production of scientific data and knowledge by nonprofessional scientists, in collaboration with, or under the direction of, professional scientists. CitSci has bloomed in the scientific literature over the last decade and its popularity continues to increase, but its qualitative contribution to the development of academic knowledge remains understudied. We used a bibliometric analysis to study whether the epistemic content of CitSci-based articles is different from traditional, non-CitSci ones within the field of ecology. We analyzed keywords and abstracts of articles published in ecology over the last decade, disentangling CitSci articles (those explicitly referring to citizen science) and non-CitSci articles. Keyword co-occurrence and thematic map analyses first revealed that CitSci and non-CitSci articles broadly focused on biodiversity, conservation, and climate change. However, CitSci articles did so in a more descriptive way than non-CitSci articles, which were more likely to address mechanisms. Conservation biology and its links with socio-ecosystems and ecosystem services was a central theme in the CitSci corpus, much less in the non-CitSci corpus. The situation was opposite for climate change and its consequences on species distribution and adaptation, which was a central theme in the non-CitSci corpus only. We only revealed subtle differences in the relative importance of particular themes and in the way these themes are tackled in CitSci and non-CitSci articles, thus indicating that citizen science is well integrated in the main, classical research themes of ecology., Competing Interests: None., (© 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
27. Changes in the foliar fungal community between oak leaf flushes along a latitudinal gradient in Europe.
- Author
-
Gaytán Á, Abdelfattah A, Faticov M, Moreira X, Castagneyrol B, Van Halder I, De Frenne P, Meeussen C, Timmermans BGH, Ten Hoopen JPJG, Rasmussen PU, Bos N, Jaatinen R, Pulkkinen P, Söderlund S, Gotthard K, Pawlowski K, and Tack AJM
- Abstract
Aim: Leaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities are structured and assembled, we assessed to what extent leaf flush and latitude can explain the within- and among-tree variation in foliar fungal communities., Location: A latitudinal gradient spanning c . 20 degrees in latitude in Europe., Taxa: The foliar fungal community associated with a foundation tree species, the pedunculate oak Quercus robur ., Methods: We examined the main and interactive effects of leaf flush and latitude on the foliar fungal community by sampling 20 populations of the pedunculate oak Quercus robur across the tree's range. We used the ITS region as a target for characterization of fungal communities using DNA metabarcoding., Results: Species composition, but not species richness, differed between leaf flushes. Across the latitudinal gradient, species richness was highest in the central part of the oak's distributional range, and foliar fungal community composition shifted along the latitudinal gradient. Among fungal guilds, the relative abundance of plant pathogens and mycoparasites was lower on the first leaf flush, and the relative abundance of plant pathogens and saprotrophs decreased with latitude., Conclusions: Changes in community composition between leaf flushes and along the latitudinal gradient were mostly a result of species turnover. Overall, our findings demonstrate that leaf flush and latitude explain 5%-22% of the small- and large-scale spatial variation in the foliar fungal community on a foundation tree within the temperate region. Using space-for-time substitution, we expect that foliar fungal community structure will change with climate warming, with an increase in the abundance of plant pathogens and mycoparasites at higher latitudes, with major consequences for plant health, species interactions and ecosystem dynamics., Competing Interests: 5All authors declare no conflict of interest., (© 2022 The Authors. Journal of Biogeography published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
28. Recovery of moth and butterfly (Lepidoptera) communities in a polluted region following emission decline.
- Author
-
Kozlov MV, Castagneyrol B, Zverev V, and Zvereva EL
- Subjects
- Animals, Biodiversity, Ecosystem, Environmental Pollution, Insecta physiology, Butterflies, Moths physiology
- Abstract
Environmental pollution is one of the major drivers of the present-day decline in global biodiversity. However, the links between the effects of industrial pollution on insect communities and the underlying species-specific responses remain poorly understood. We explored the spatial pattern in insect communities by analysing 581 samples of moths and butterflies (containing 25,628 individuals of 345 species) collected along a strong pollution gradient in subarctic Russia, and we recorded temporal changes in these communities during the pollution decline that occurred from 1992 to 2006. In the 1990s, the diversity of the Lepidoptera community was positively correlated with the distance from the copper-nickel smelter at Monchegorsk. The overall abundance of Lepidoptera did not change along the pollution gradient, although the abundance of many species decreased with increasing pollution. The responses of each individual species to pollution were associated with its life history traits. The abundances of monophagous species that fed inside live plant tissues and hibernated as imagoes or pupae were not affected by pollution, whereas the abundances of oligophagous and polyphagous species that fed externally on plants and hibernated as larvae generally declined near the smelter. Substantial decreases in aerial emissions from the smelter between 1992 and 2006 resulted in an increase in the diversity of moths and butterflies in severely polluted habitats, whereas their overall abundance did not change. This recovery of the Lepidoptera community occurred due to the reappearance of rare species that had been previously extirpated by pollution and was observed despite the lack of any signs of recovery of the vegetation in the heavily polluted sites. We conclude that the recovery trajectories of insect communities following emission control can be predicted from studies of their changes along spatial pollution gradients by using space-for-time substitution., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
29. The co-existence of multiple oak leaf flushes contributes to the large within-tree variation in chemistry, insect attack and pathogen infection.
- Author
-
Gaytán Á, Moreira X, Castagneyrol B, Van Halder I, De Frenne P, Meeussen C, Timmermans BGH, Ten Hoopen JPJG, Rasmussen PU, Bos N, Jaatinen R, Pulkkinen P, Söderlund S, Covelo F, Gotthard K, and Tack AJM
- Subjects
- Animals, Insecta, Plant Leaves chemistry, Seasons, Quercus, Trees
- Abstract
Many plant species produce multiple leaf flushes during the growing season, which might have major consequences for within-plant variation in chemistry and species interactions. Yet, we lack a theoretical or empirical framework for how differences among leaf flushes might shape variation in damage by insects and diseases. We assessed the impact of leaf flush identity on leaf chemistry, insect attack and pathogen infection on the pedunculate oak Quercus robur by sampling leaves from each leaf flush in 20 populations across seven European countries during an entire growing season. The first leaf flush had higher levels of primary compounds, and lower levels of secondary compounds, than the second flush, whereas plant chemistry was highly variable in the third flush. Insect attack decreased from the first to the third flush, whereas infection by oak powdery mildew was lowest on leaves from the first flush. The relationship between plant chemistry, insect attack and pathogen infection varied strongly among leaf flushes and seasons. Our findings demonstrate the importance of considering differences among leaf flushes for our understanding of within-tree variation in chemistry, insect attack and disease levels, something particularly relevant given the expected increase in the number of leaf flushes with climate change., (© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.)
- Published
- 2022
- Full Text
- View/download PDF
30. Herbivory on the pedunculate oak along an urbanization gradient in Europe: Effects of impervious surface, local tree cover, and insect feeding guild.
- Author
-
Valdés-Correcher E, Popova A, Galmán A, Prinzing A, Selikhovkin AV, Howe AG, Mrazova A, Dulaurent AM, Hampe A, Tack AJM, Bouget C, Lupaștean D, Harvey D, Musolin DL, Lövei GL, Centenaro G, Halder IV, Hagge J, Dobrosavljević J, Pitkänen JM, Koricheva J, Sam K, Barbaro L, Branco M, Ferrante M, Faticov M, Tahadlová M, Gossner M, Cauchoix M, Bogdziewicz M, Duduman ML, Kozlov MV, Bjoern MC, Mamaev NA, Fernandez-Conradi P, Thomas RL, Wetherbee R, Green S, Milanović S, Moreira X, Mellerin Y, Kadiri Y, and Castagneyrol B
- Abstract
Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak ( Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions., Competing Interests: The authors declare no competing financial interests., (© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
31. Combining phytochemicals and multitrophic interactions to control forest insect pests.
- Author
-
Fernandez-Conradi P, Castagneyrol B, Jactel H, and Rasmann S
- Subjects
- Animals, Forests, Herbivory, Microbiota, Trees microbiology, Food Chain, Insecta, Pest Control, Biological, Phytochemicals metabolism, Trees metabolism
- Abstract
Forest pests can cause massive ecological and economic damage worldwide. Ecologically sound solutions to diminish forest insect pest impacts include the use of their natural enemies, such as predators and parasitoids, as well as entomopathogenic fungi, bacteria or viruses. Phytochemical compounds mediate most interactions between these organisms, but knowledge of such chemically mediated multitrophic relationships is still at its infancy for forest systems, particularly when compared to agricultural systems. Here, we highlight the main gaps in how phytochemicals of forest trees facilitate or interfere with trophic interactions between trees, insect herbivores, and interacting organisms including predators, parasitoids and microbes. We propose future avenues of research on phytochemical-based biocontrol of forest pests taking into account the characteristics of trees and forests., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
32. Tree Diversity and Forest Resistance to Insect Pests: Patterns, Mechanisms, and Prospects.
- Author
-
Jactel H, Moreira X, and Castagneyrol B
- Subjects
- Animals, Biodiversity, Forests, Herbivory, Insecta, Plant Defense Against Herbivory, Trees
- Abstract
Ecological research conducted over the past five decades has shown that increasing tree species richness at forest stands can improve tree resistance to insect pest damage. However, the commonality of this finding is still under debate. In this review, we provide a quantitative assessment (i.e., a meta-analysis) of tree diversity effects on insect herbivory and discuss plausible mechanisms underlying the observed patterns. We provide recommendations and working hypotheses that can serve to lay the groundwork for research to come. Based on more than 600 study cases, our quantitative review indicates that insect herbivory was, on average, lower in mixed forest stands than in pure stands, but these diversity effects were contingent on herbivore diet breadth and tree species composition. In particular, tree species diversity mainly reduced damage of specialist insect herbivores in mixed stands with phylogenetically distant tree species. Overall, our findings provide essential guidance for forest pest management.
- Published
- 2021
- Full Text
- View/download PDF
33. Effects of latitude and conspecific plant density on insect leaf herbivory in oak saplings and seedlings.
- Author
-
Moreira X, Abdala-Roberts L, De Frenne P, Galmán A, Gaytán Á, Jaatinen R, Lago-Núñez B, Meeussen C, Pulkkinen P, Rasmussen PU, Ten Hoopen JPJG, Timmermans BGH, Vázquez-González C, Bos N, Castagneyrol B, and Tack AJM
- Subjects
- Animals, Insecta, Plant Leaves, Seedlings, Herbivory, Quercus
- Abstract
Premise: Abiotic factors and plant species traits have been shown to drive latitudinal gradients in herbivory, and yet, population-level factors have been largely overlooked within this context. One such factor is plant density, which may influence the strength of herbivory and may vary with latitude., Methods: We measured insect herbivory and conspecific plant density (CPD) of oak (Quercus robur) seedlings and saplings along a 17° latitudinal gradient (2700 km) to test whether herbivory exhibited a latitudinal gradient, whether herbivory was associated with CPD, and whether such an association changed with latitude., Results: We found a positive but saturating association between latitude and leaf herbivory. Furthermore, we found no significant relationship between CPD and herbivory, and such lack of density effects remained consistent throughout the sampled latitudinal gradient., Conclusions: Despite the apparently negligible influence of plant density on herbivory for Q. robur, further research with other plant taxa and in different types of plant communities are needed to investigate density-dependent processes shaping geographical variation in plant-herbivore interactions., (© 2020 Botanical Society of America.)
- Published
- 2021
- Full Text
- View/download PDF
34. Climate affects neighbour-induced changes in leaf chemical defences and tree diversity-herbivory relationships.
- Author
-
Poeydebat C, Jactel H, Moreira X, Koricheva J, Barsoum N, Bauhus J, Eisenhauer N, Ferlian O, Francisco M, Gottschall F, Gravel D, Mason B, Muiruri E, Muys B, Nock C, Paquette A, Ponette Q, Scherer-Lorenzen M, Stokes V, Staab M, Verheyen K, and Castagneyrol B
- Abstract
Associational resistance theory predicts that insect herbivory decreases with increasing tree diversity in forest ecosystems. However, the generality of this effect and its underlying mechanisms are still debated, particularly since evidence has accumulated that climate may influence the direction and strength of the relationship between diversity and herbivory.We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of silver birch Betula pendula in pure and mixed plots with different tree species composition across 12 tree diversity experiments in different climates. We investigated whether the effects of neighbouring tree species diversity on insect herbivory in birch, that is, associational effects, were dependent on the climatic context, and whether neighbour-induced changes in birch chemical defences were involved in associational resistance to insect herbivory.We showed that herbivory on birch decreased with tree species richness (i.e. associational resistance) in colder environments but that this relationship faded as mean annual temperature increased.Birch leaf chemical defences increased with tree species richness but decreased with the phylogenetic distinctiveness of birch from its neighbours, particularly in warmer and more humid environments.Herbivory was negatively correlated with leaf chemical defences, particularly when birch was associated with closely related species. The interactive effect of tree diversity and climate on herbivory was partially mediated by changes in leaf chemical defences.Our findings confirm that tree species diversity can modify the leaf chemistry of a focal species, hence its quality for herbivores. They further stress that such neighbour-induced changes are dependent on climate and that tree diversity effects on insect herbivory are partially mediated by these neighbour-induced changes in chemical defences.
- Published
- 2021
- Full Text
- View/download PDF
35. Leaf chemical defences and insect herbivory in oak: accounting for canopy position unravels marked genetic relatedness effects.
- Author
-
Valdés-Correcher E, Bourdin A, González-Martínez SC, Moreira X, Galmán A, Castagneyrol B, and Hampe A
- Subjects
- Animals, Insecta, Plant Leaves, Trees genetics, Herbivory, Quercus genetics
- Abstract
Background and Aims: Highly controlled experiments document that plant genetic diversity and relatedness can shape herbivore communities and patterns of herbivory. Evidence from the field is, however, scarce and inconsistent. We assessed whether a genetic signal underlying herbivory can be detected in oak woodlands when accounting for variation at smaller (within-tree) and larger (among-stand) scales., Methods: We tested relationships between tree genetic relatedness, leaf chemical defences and insect herbivory for different canopy layers in 240 trees from 15 pedunculate oak (Quercus robur) forest stands. We partitioned sources of variability in herbivory and defences among stands, individuals and branches., Key Results: Leaf defences, insect herbivory and their relationship differed systematically between the upper and the lower tree canopy. When accounting for this canopy effect, the variation explained by tree genetic relatedness rose from 2.8 to 34.1 % for herbivory and from 7.1 to 13.8 % for leaf defences. The effect was driven by markedly stronger relationships in the upper canopy., Conclusions: Our findings illustrate that considerable effects of the host plant genotype on levels of leaf chemical defences and associated insect herbivory can be detected in natural tree populations when within-individual variation is properly accounted for., (© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
36. Latitudinal variation in seed predation correlates with latitudinal variation in seed defensive and nutritional traits in a widespread oak species.
- Author
-
Moreira X, Abdala-Roberts L, Bruun HH, Covelo F, De Frenne P, Galmán A, Gaytán Á, Jaatinen R, Pulkkinen P, Ten Hoopen JPJG, Timmermans BGH, Tack AJM, and Castagneyrol B
- Subjects
- Animals, Herbivory, Phenotype, Plant Leaves, Seeds, Quercus
- Abstract
Background and Aims: Classic theory on geographical gradients in plant-herbivore interactions assumes that herbivore pressure and plant defences increase towards warmer and more stable climates found at lower latitudes. However, the generality of these expectations has been recently called into question by conflicting empirical evidence. One possible explanation for this ambiguity is that most studies have reported on patterns of either herbivory or plant defences whereas few have measured both, thus preventing a full understanding of the implications of observed patterns for plant-herbivore interactions. In addition, studies have typically not measured climatic factors affecting plant-herbivore interactions, despite their expected influence on plant and herbivore traits., Methods: Here we tested for latitudinal variation in insect seed predation and seed traits putatively associated with insect attack across 36 Quercus robur populations distributed along a 20° latitudinal gradient. We then further investigated the associations between climatic factors, seed traits and seed predation to test for climate-based mechanisms of latitudinal variation in seed predation., Key Results: We found strong but contrasting latitudinal clines in seed predation and seed traits, whereby seed predation increased whereas seed phenolics and phosphorus decreased towards lower latitudes. We also found a strong direct association between temperature and seed predation, with the latter increasing towards warmer climates. In addition, temperature was negatively associated with seed traits, with populations at warmer sites having lower levels of total phenolics and phosphorus. In turn, these negative associations between temperature and seed traits led to a positive indirect association between temperature and seed predation., Conclusions: These results help unravel how plant-herbivore interactions play out along latitudinal gradients and expose the role of climate in driving these outcomes through its dual effects on plant defences and herbivores. Accordingly, this emphasizes the need to account for abiotic variation while testing concurrently for latitudinal variation in plant traits and herbivore pressure., (© The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
37. TRY plant trait database - enhanced coverage and open access.
- Author
-
Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M, Acosta ATR, Adamidis GC, Adamson K, Aiba M, Albert CH, Alcántara JM, Alcázar C C, Aleixo I, Ali H, Amiaud B, Ammer C, Amoroso MM, Anand M, Anderson C, Anten N, Antos J, Apgaua DMG, Ashman TL, Asmara DH, Asner GP, Aspinwall M, Atkin O, Aubin I, Baastrup-Spohr L, Bahalkeh K, Bahn M, Baker T, Baker WJ, Bakker JP, Baldocchi D, Baltzer J, Banerjee A, Baranger A, Barlow J, Barneche DR, Baruch Z, Bastianelli D, Battles J, Bauerle W, Bauters M, Bazzato E, Beckmann M, Beeckman H, Beierkuhnlein C, Bekker R, Belfry G, Belluau M, Beloiu M, Benavides R, Benomar L, Berdugo-Lattke ML, Berenguer E, Bergamin R, Bergmann J, Bergmann Carlucci M, Berner L, Bernhardt-Römermann M, Bigler C, Bjorkman AD, Blackman C, Blanco C, Blonder B, Blumenthal D, Bocanegra-González KT, Boeckx P, Bohlman S, Böhning-Gaese K, Boisvert-Marsh L, Bond W, Bond-Lamberty B, Boom A, Boonman CCF, Bordin K, Boughton EH, Boukili V, Bowman DMJS, Bravo S, Brendel MR, Broadley MR, Brown KA, Bruelheide H, Brumnich F, Bruun HH, Bruy D, Buchanan SW, Bucher SF, Buchmann N, Buitenwerf R, Bunker DE, Bürger J, Burrascano S, Burslem DFRP, Butterfield BJ, Byun C, Marques M, Scalon MC, Caccianiga M, Cadotte M, Cailleret M, Camac J, Camarero JJ, Campany C, Campetella G, Campos JA, Cano-Arboleda L, Canullo R, Carbognani M, Carvalho F, Casanoves F, Castagneyrol B, Catford JA, Cavender-Bares J, Cerabolini BEL, Cervellini M, Chacón-Madrigal E, Chapin K, Chapin FS, Chelli S, Chen SC, Chen A, Cherubini P, Chianucci F, Choat B, Chung KS, Chytrý M, Ciccarelli D, Coll L, Collins CG, Conti L, Coomes D, Cornelissen JHC, Cornwell WK, Corona P, Coyea M, Craine J, Craven D, Cromsigt JPGM, Csecserits A, Cufar K, Cuntz M, da Silva AC, Dahlin KM, Dainese M, Dalke I, Dalle Fratte M, Dang-Le AT, Danihelka J, Dannoura M, Dawson S, de Beer AJ, De Frutos A, De Long JR, Dechant B, Delagrange S, Delpierre N, Derroire G, Dias AS, Diaz-Toribio MH, Dimitrakopoulos PG, Dobrowolski M, Doktor D, Dřevojan P, Dong N, Dransfield J, Dressler S, Duarte L, Ducouret E, Dullinger S, Durka W, Duursma R, Dymova O, E-Vojtkó A, Eckstein RL, Ejtehadi H, Elser J, Emilio T, Engemann K, Erfanian MB, Erfmeier A, Esquivel-Muelbert A, Esser G, Estiarte M, Domingues TF, Fagan WF, Fagúndez J, Falster DS, Fan Y, Fang J, Farris E, Fazlioglu F, Feng Y, Fernandez-Mendez F, Ferrara C, Ferreira J, Fidelis A, Finegan B, Firn J, Flowers TJ, Flynn DFB, Fontana V, Forey E, Forgiarini C, François L, Frangipani M, Frank D, Frenette-Dussault C, Freschet GT, Fry EL, Fyllas NM, Mazzochini GG, Gachet S, Gallagher R, Ganade G, Ganga F, García-Palacios P, Gargaglione V, Garnier E, Garrido JL, de Gasper AL, Gea-Izquierdo G, Gibson D, Gillison AN, Giroldo A, Glasenhardt MC, Gleason S, Gliesch M, Goldberg E, Göldel B, Gonzalez-Akre E, Gonzalez-Andujar JL, González-Melo A, González-Robles A, Graae BJ, Granda E, Graves S, Green WA, Gregor T, Gross N, Guerin GR, Günther A, Gutiérrez AG, Haddock L, Haines A, Hall J, Hambuckers A, Han W, Harrison SP, Hattingh W, Hawes JE, He T, He P, Heberling JM, Helm A, Hempel S, Hentschel J, Hérault B, Hereş AM, Herz K, Heuertz M, Hickler T, Hietz P, Higuchi P, Hipp AL, Hirons A, Hock M, Hogan JA, Holl K, Honnay O, Hornstein D, Hou E, Hough-Snee N, Hovstad KA, Ichie T, Igić B, Illa E, Isaac M, Ishihara M, Ivanov L, Ivanova L, Iversen CM, Izquierdo J, Jackson RB, Jackson B, Jactel H, Jagodzinski AM, Jandt U, Jansen S, Jenkins T, Jentsch A, Jespersen JRP, Jiang GF, Johansen JL, Johnson D, Jokela EJ, Joly CA, Jordan GJ, Joseph GS, Junaedi D, Junker RR, Justes E, Kabzems R, Kane J, Kaplan Z, Kattenborn T, Kavelenova L, Kearsley E, Kempel A, Kenzo T, Kerkhoff A, Khalil MI, Kinlock NL, Kissling WD, Kitajima K, Kitzberger T, Kjøller R, Klein T, Kleyer M, Klimešová J, Klipel J, Kloeppel B, Klotz S, Knops JMH, Kohyama T, Koike F, Kollmann J, Komac B, Komatsu K, König C, Kraft NJB, Kramer K, Kreft H, Kühn I, Kumarathunge D, Kuppler J, Kurokawa H, Kurosawa Y, Kuyah S, Laclau JP, Lafleur B, Lallai E, Lamb E, Lamprecht A, Larkin DJ, Laughlin D, Le Bagousse-Pinguet Y, le Maire G, le Roux PC, le Roux E, Lee T, Lens F, Lewis SL, Lhotsky B, Li Y, Li X, Lichstein JW, Liebergesell M, Lim JY, Lin YS, Linares JC, Liu C, Liu D, Liu U, Livingstone S, Llusià J, Lohbeck M, López-García Á, Lopez-Gonzalez G, Lososová Z, Louault F, Lukács BA, Lukeš P, Luo Y, Lussu M, Ma S, Maciel Rabelo Pereira C, Mack M, Maire V, Mäkelä A, Mäkinen H, Malhado ACM, Mallik A, Manning P, Manzoni S, Marchetti Z, Marchino L, Marcilio-Silva V, Marcon E, Marignani M, Markesteijn L, Martin A, Martínez-Garza C, Martínez-Vilalta J, Mašková T, Mason K, Mason N, Massad TJ, Masse J, Mayrose I, McCarthy J, McCormack ML, McCulloh K, McFadden IR, McGill BJ, McPartland MY, Medeiros JS, Medlyn B, Meerts P, Mehrabi Z, Meir P, Melo FPL, Mencuccini M, Meredieu C, Messier J, Mészáros I, Metsaranta J, Michaletz ST, Michelaki C, Migalina S, Milla R, Miller JED, Minden V, Ming R, Mokany K, Moles AT, Molnár A 5th, Molofsky J, Molz M, Montgomery RA, Monty A, Moravcová L, Moreno-Martínez A, Moretti M, Mori AS, Mori S, Morris D, Morrison J, Mucina L, Mueller S, Muir CD, Müller SC, Munoz F, Myers-Smith IH, Myster RW, Nagano M, Naidu S, Narayanan A, Natesan B, Negoita L, Nelson AS, Neuschulz EL, Ni J, Niedrist G, Nieto J, Niinemets Ü, Nolan R, Nottebrock H, Nouvellon Y, Novakovskiy A, Nystuen KO, O'Grady A, O'Hara K, O'Reilly-Nugent A, Oakley S, Oberhuber W, Ohtsuka T, Oliveira R, Öllerer K, Olson ME, Onipchenko V, Onoda Y, Onstein RE, Ordonez JC, Osada N, Ostonen I, Ottaviani G, Otto S, Overbeck GE, Ozinga WA, Pahl AT, Paine CET, Pakeman RJ, Papageorgiou AC, Parfionova E, Pärtel M, Patacca M, Paula S, Paule J, Pauli H, Pausas JG, Peco B, Penuelas J, Perea A, Peri PL, Petisco-Souza AC, Petraglia A, Petritan AM, Phillips OL, Pierce S, Pillar VD, Pisek J, Pomogaybin A, Poorter H, Portsmuth A, Poschlod P, Potvin C, Pounds D, Powell AS, Power SA, Prinzing A, Puglielli G, Pyšek P, Raevel V, Rammig A, Ransijn J, Ray CA, Reich PB, Reichstein M, Reid DEB, Réjou-Méchain M, de Dios VR, Ribeiro S, Richardson S, Riibak K, Rillig MC, Riviera F, Robert EMR, Roberts S, Robroek B, Roddy A, Rodrigues AV, Rogers A, Rollinson E, Rolo V, Römermann C, Ronzhina D, Roscher C, Rosell JA, Rosenfield MF, Rossi C, Roy DB, Royer-Tardif S, Rüger N, Ruiz-Peinado R, Rumpf SB, Rusch GM, Ryo M, Sack L, Saldaña A, Salgado-Negret B, Salguero-Gomez R, Santa-Regina I, Santacruz-García AC, Santos J, Sardans J, Schamp B, Scherer-Lorenzen M, Schleuning M, Schmid B, Schmidt M, Schmitt S, Schneider JV, Schowanek SD, Schrader J, Schrodt F, Schuldt B, Schurr F, Selaya Garvizu G, Semchenko M, Seymour C, Sfair JC, Sharpe JM, Sheppard CS, Sheremetiev S, Shiodera S, Shipley B, Shovon TA, Siebenkäs A, Sierra C, Silva V, Silva M, Sitzia T, Sjöman H, Slot M, Smith NG, Sodhi D, Soltis P, Soltis D, Somers B, Sonnier G, Sørensen MV, Sosinski EE Jr, Soudzilovskaia NA, Souza AF, Spasojevic M, Sperandii MG, Stan AB, Stegen J, Steinbauer K, Stephan JG, Sterck F, Stojanovic DB, Strydom T, Suarez ML, Svenning JC, Svitková I, Svitok M, Svoboda M, Swaine E, Swenson N, Tabarelli M, Takagi K, Tappeiner U, Tarifa R, Tauugourdeau S, Tavsanoglu C, Te Beest M, Tedersoo L, Thiffault N, Thom D, Thomas E, Thompson K, Thornton PE, Thuiller W, Tichý L, Tissue D, Tjoelker MG, Tng DYP, Tobias J, Török P, Tarin T, Torres-Ruiz JM, Tóthmérész B, Treurnicht M, Trivellone V, Trolliet F, Trotsiuk V, Tsakalos JL, Tsiripidis I, Tysklind N, Umehara T, Usoltsev V, Vadeboncoeur M, Vaezi J, Valladares F, Vamosi J, van Bodegom PM, van Breugel M, Van Cleemput E, van de Weg M, van der Merwe S, van der Plas F, van der Sande MT, van Kleunen M, Van Meerbeek K, Vanderwel M, Vanselow KA, Vårhammar A, Varone L, Vasquez Valderrama MY, Vassilev K, Vellend M, Veneklaas EJ, Verbeeck H, Verheyen K, Vibrans A, Vieira I, Villacís J, Violle C, Vivek P, Wagner K, Waldram M, Waldron A, Walker AP, Waller M, Walther G, Wang H, Wang F, Wang W, Watkins H, Watkins J, Weber U, Weedon JT, Wei L, Weigelt P, Weiher E, Wells AW, Wellstein C, Wenk E, Westoby M, Westwood A, White PJ, Whitten M, Williams M, Winkler DE, Winter K, Womack C, Wright IJ, Wright SJ, Wright J, Pinho BX, Ximenes F, Yamada T, Yamaji K, Yanai R, Yankov N, Yguel B, Zanini KJ, Zanne AE, Zelený D, Zhao YP, Zheng J, Zheng J, Ziemińska K, Zirbel CR, Zizka G, Zo-Bi IC, Zotz G, and Wirth C
- Subjects
- Biodiversity, Ecology, Plants, Access to Information, Ecosystem
- Abstract
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives., (© 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
38. Opposite latitudinal patterns for bird and arthropod predation revealed in experiments with differently colored artificial prey.
- Author
-
Zvereva EL, Castagneyrol B, Cornelissen T, Forsman A, Hernández-Agüero JA, Klemola T, Paolucci L, Polo V, Salinas N, Theron KJ, Xu G, Zverev V, and Kozlov MV
- Abstract
The strength of biotic interactions is generally thought to increase toward the equator, but support for this hypothesis is contradictory. We explored whether predator attacks on artificial prey of eight different colors vary among climates and whether this variation affects the detection of latitudinal patterns in predation. Bird attack rates negatively correlated with model luminance in cold and temperate environments, but not in tropical environments. Bird predation on black and on white (extremes in luminance) models demonstrated different latitudinal patterns, presumably due to differences in prey conspicuousness between habitats with different light regimes. When attacks on models of all colors were combined, arthropod predation decreased, whereas bird predation increased with increasing latitude. We conclude that selection for prey coloration may vary geographically and according to predator identity, and that the importance of different predators may show contrasting patterns, thus weakening the overall latitudinal trend in top-down control of herbivorous insects., Competing Interests: None declared., (© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
39. Responses of forest insect pests to climate change: not so simple.
- Author
-
Jactel H, Koricheva J, and Castagneyrol B
- Subjects
- Air Pollution adverse effects, Animals, Carbon Dioxide, Climate Change, Trees parasitology, Trees physiology, Forests, Herbivory, Insecta physiology
- Abstract
Climate change is a multi-faceted phenomenon, including elevated CO
2 , warmer temperatures, more severe droughts and more frequent storms. All these components can affect forest pests directly, or indirectly through interactions with host trees and natural enemies. Most of the responses of forest insect herbivores to climate change are expected to be positive, with shorter generation time, higher fecundity and survival, leading to increased range expansion and outbreaks. Forest insect pest can also benefit from synergistic effects of several climate change pressures, such as hotter droughts or warmer storms. However, lesser known negative effects are also likely, such as lethal effects of heat waves or thermal shocks, less palatable host tissues or more abundant parasitoids and predators. The complex interplay between abiotic stressors, host trees, insect herbivores and their natural enemies makes it very difficult to predict overall consequences of climate change on forest health. This calls for the development of process-based models to simulate pest population dynamics under climate change scenarios., (Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
40. How do trees respond to species mixing in experimental compared to observational studies?
- Author
-
Kambach S, Allan E, Bilodeau-Gauthier S, Coomes DA, Haase J, Jucker T, Kunstler G, Müller S, Nock C, Paquette A, van der Plas F, Ratcliffe S, Roger F, Ruiz-Benito P, Scherer-Lorenzen M, Auge H, Bouriaud O, Castagneyrol B, Dahlgren J, Gamfeldt L, Jactel H, Kändler G, Koricheva J, Lehtonen A, Muys B, Ponette Q, Setiawan N, Van de Peer T, Verheyen K, Zavala MA, and Bruelheide H
- Abstract
For decades, ecologists have investigated the effects of tree species diversity on tree productivity at different scales and with different approaches ranging from observational to experimental study designs. Using data from five European national forest inventories (16,773 plots), six tree species diversity experiments (584 plots), and six networks of comparative plots (169 plots), we tested whether tree species growth responses to species mixing are consistent and therefore transferrable between those different research approaches. Our results confirm the general positive effect of tree species mixing on species growth (16% on average) but we found no consistency in species-specific responses to mixing between any of the three approaches, even after restricting comparisons to only those plots that shared similar mixtures compositions and forest types. These findings highlight the necessity to consider results from different research approaches when selecting species mixtures that should maximize positive forest biodiversity and functioning relationships., Competing Interests: None declared., (© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
41. Greater phylogenetic distance from native oaks predicts escape from insect leaf herbivores by non-native oak saplings.
- Author
-
Moreira X, Vázquez-González C, Encinas-Valero M, Covelo F, Castagneyrol B, and Abdala-Roberts L
- Subjects
- Animals, Herbivory, Insecta, Phylogeny, Plant Leaves, Spain, Quercus
- Abstract
Premise: Non-native plant species have been hypothesized to experience lower herbivory in novel environments as a function of their phylogenetic distance from native plant species. Although recent work has found support for this prediction, the plant traits responsible for such patterns have been largely overlooked., Methods: In a common garden experiment in northwestern Spain, we tested whether oak species (Quercus spp.) not native to this region that are phylogenetically more distantly related to native species exhibit less insect leaf herbivory. In addition, we also investigated plant traits potentially correlated with any such effect of phylogenetic distance., Results: As expected, phylogenetic distance from native species negatively predicted insect leaf herbivory on non-native oaks. In addition, we found that the leaf traits, namely phosphorus and condensed tannins, were significantly associated with herbivory, suggesting that they are associated with the effect of phylogenetic distance on leaf herbivory on non-native oak species., Conclusions: This study contributes to a better understanding of how evolutionary relationships (relatedness) between native and non-native plant species determine the latter's success in novel environments via locally shared enemies, and encourages more work investigating the plant traits that mediate the effects of phylogenetic distance on enemy escape., (© 2019 Botanical Society of America.)
- Published
- 2019
- Full Text
- View/download PDF
42. Tree diversity drives associational resistance to herbivory at both forest edge and interior.
- Author
-
Guyot V, Jactel H, Imbaud B, Burnel L, Castagneyrol B, Heinz W, Deconchat M, and Vialatte A
- Abstract
Tree diversity is increasingly acknowledged as an important driver of insect herbivory. However, there is still a debate about the direction of associational effects that can range from associational resistance (i.e., less damage in mixed stands than in monocultures) to the opposite, associational susceptibility. Discrepancies among published studies may be due to the overlooked effect of spatially dependent processes such as tree location within forests. We addressed this issue by measuring crown defoliation and leaf damage made by different guilds of insect herbivores on oaks growing among conspecific versus heterospecific neighbors at forest edges versus interior, in two closed sites in SW France forests. Overall, oaks were significantly less defoliated among heterospecific neighbors (i.e., associational resistance), at both forest edge and interior. At the leaf level, guild diversity and leaf miner herbivory significantly increased with tree diversity regardless of oak location within stands. Other guilds showed no clear response to tree diversity or oak location. We showed that herbivore response to tree diversity varied among insect feeding guilds but not between forest edges and interior, with inconsistent patterns between sites. Importantly, we show that oaks were more defoliated in pure oak plots than in mixed plots at both edge and forest interior and that, on average, defoliation decreased with increasing tree diversity from one to seven species. We conclude that edge conditions could be interacting with tree diversity to regulate insect defoliation, but future investigations are needed to integrate them into the management of temperate forests, notably by better understanding the role of the landscape context., Competing Interests: None declared.
- Published
- 2019
- Full Text
- View/download PDF
43. A meta-analysis of herbivore effects on plant attractiveness to pollinators.
- Author
-
Moreira X, Castagneyrol B, Abdala-Roberts L, and Traveset A
- Subjects
- Flowers, Plant Leaves, Reproduction, Herbivory, Pollination
- Abstract
Herbivores may directly or indirectly affect plant attractiveness to pollinators. Although several studies have reported on these effects, there is yet no general consensus on the strength and sign of such interactions or their contingency on herbivory features such as the plant tissue attacked. We performed a meta-analysis of studies testing for effects of herbivores on floral traits, plant attractiveness to pollinators, and plant reproductive success. We also assessed whether herbivore effects depended on the plant tissue attacked by herbivores and if real or simulated herbivory was used. We found an overall significant negative effect of herbivores on floral traits, plant attractiveness to pollinators, and plant reproductive success. These effects were, however, contingent on the plant tissue attacked and on whether real or simulated damage was used. Real floral and leaf, but not root, herbivores showed detrimental effects on floral traits and plant attractiveness to pollinators. In addition, real leaf, but not floral or root herbivory, lowered plant reproductive success. Contrastingly, simulated leaf and floral herbivory showed no effect on any of the response variables. These findings help move forward our understanding of the strength and directionality of herbivore effects on plant attractiveness to pollinators and their underlying mechanisms., (© 2019 by the Ecological Society of America.)
- Published
- 2019
- Full Text
- View/download PDF
44. Oak genotype and phenolic compounds differently affect the performance of two insect herbivores with contrasting diet breadth.
- Author
-
Damestoy T, Brachi B, Moreira X, Jactel H, Plomion C, and Castagneyrol B
- Subjects
- Animals, Genotype, Herbivory, Phenotype, Plant Diseases parasitology, Plant Leaves chemistry, Plant Leaves immunology, Plant Leaves physiology, Quercus chemistry, Quercus immunology, Genetic Variation, Host-Parasite Interactions, Hydroxybenzoates metabolism, Moths physiology, Plant Diseases immunology, Quercus physiology
- Abstract
Research on plant-herbivore interactions has long recognized that plant genetic variation plays a central role in driving insect abundance and herbivory, as well as in determining plant defense. However, how plant genes influence herbivore feeding performances, and which plant defensive traits mediate these effects, remain poorly understood. Here we investigated the feeding performances of two insect leaf chewers with contrasting diet breadth (the generalist Lymantria dispar L. and the specialist Thaumetopoea processionea L.) on different genotypes of pedunculate oak (Quercus robur L.) and tested the role of leaf phenolics. We used leaves from four clones of 30 Q. robur full-sibs grown in a common garden to estimate the performance of both herbivores in laboratory feeding trials and to quantify the concentration of constitutive chemical defences (phenolic compounds). We found that tree genetics influenced leaf consumption by T. processionea but not by L. dispar. However genetic variation among trees did not explain growth rate variation in either herbivore nor in leaf phenolics. Interestingly, all phenolic compounds displayed a positive relationship with L. dispar growth rate, and leaf consumption by both herbivores displayed a positive relationship with the concentrations of condensed tannins, suggesting that highly defended leaves could induce a compensatory feeding response. While genetic variation in oaks did not explain herbivore growth rate, we found positive genetic correlations between the two herbivores for leaf consumption and digestion. Overall, we found that oak genotype and phenolic compounds partly and independently contribute to variability in herbivore performance. We challenged the current view of plant-insect interaction and provided little support to the idea that the effect of plant genotype on associated organisms is driven by plant defences. Together, our results point to the existence of genetically determined resistance traits in oaks whose effects differ between herbivores and motivate further research on mechanisms governing oak-herbivore interactions., (© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
45. Contrasting effects of tree species and genetic diversity on the leaf-miner communities associated with silver birch.
- Author
-
Barantal S, Castagneyrol B, Durka W, Iason G, Morath S, and Koricheva J
- Subjects
- Animals, Biodiversity, Ecosystem, Finland, Genetic Variation, Betula, Trees
- Abstract
Both species and genetic diversity of plant communities can affect insect herbivores, but a few studies have compared the effects of both diversity levels within the same experimental context. We compared the effects of tree species and genetic diversity on abundance, species richness, and β-diversity of leaf-miner communities associated with silver birch using two long-term forest diversity experiments in Finland where birch trees were planted in monocultures and mixtures of birch genotypes or other trees species. Although both abundance and species richness of leaf miners differed among birch genotypes at the tree level, birch genetic diversity had no significant effect on miner abundance and species richness at the plot level. Instead, birch genetic diversity affected leaf-miner β-diversity with species turnover being higher among trees within genotypic mixtures than among trees within monoclonal plots. In contrast, tree species diversity had a significant negative effect on both leaf-miner abundance and species richness at plot level, but no effect on miner β-diversity. Significant tree species diversity effects on leaf-miner abundance and species richness were found only in plots with high tree density. We have demonstrated that plant species and genetic diversity play important but contrasting roles in structuring associated herbivore communities. Tree species diversity largely affects miner abundance and species richness, whereas tree genetic diversity affects miner β-diversity. These results have important implications for conservation and management of woodlands.
- Published
- 2019
- Full Text
- View/download PDF
46. Biotic predictors complement models of bat and bird responses to climate and tree diversity in European forests.
- Author
-
Barbaro L, Allan E, Ampoorter E, Castagneyrol B, Charbonnier Y, De Wandeler H, Kerbiriou C, Milligan HT, Vialatte A, Carnol M, Deconchat M, De Smedt P, Jactel H, Koricheva J, Le Viol I, Muys B, Scherer-Lorenzen M, Verheyen K, and van der Plas F
- Subjects
- Animals, Environment, Europe, Models, Biological, Biodiversity, Birds, Chiroptera, Forests
- Abstract
Bats and birds are key providers of ecosystem services in forests. How climate and habitat jointly shape their communities is well studied, but whether biotic predictors from other trophic levels may improve bird and bat diversity models is less known, especially across large bioclimatic gradients. Here, we achieved multi-taxa surveys in 209 mature forests replicated in six European countries from Spain to Finland, to investigate the importance of biotic predictors (i.e. the abundance or activity of defoliating insects, spiders, earthworms and wild ungulates) for bat and bird taxonomic and functional diversity. We found that nine out of 12 bird and bat diversity metrics were best explained when biotic factors were added to models including climate and habitat variables, with a mean gain in explained variance of 38% for birds and 15% for bats. Tree functional diversity was the most important habitat predictor for birds, while bats responded more to understorey structure. The best biotic predictors for birds were spider abundance and defoliating insect activity, while only bat functional evenness responded positively to insect herbivory. Accounting for potential biotic interactions between bats, birds and other taxa of lower trophic levels will help to understand how environmental changes along large biogeographical gradients affect higher-level predator diversity in forest ecosystems.
- Published
- 2019
- Full Text
- View/download PDF
47. Host plant frequency and secondary metabolites are concurrently associated with insect herbivory in a dominant riparian tree.
- Author
-
Moreira X, Galmán A, Francisco M, Castagneyrol B, and Abdala-Roberts L
- Subjects
- Animals, Phenols analysis, Phylogeny, Plant Leaves chemistry, Spain, Trees, Alnus metabolism, Herbivory, Insecta
- Abstract
Herbivory is strongly influenced by different sources of plant variation, from traits such as secondary metabolites to features associated with population- and community-level variation. However, most studies have assessed the influence of these drivers in isolation. We conducted a large-scale study to evaluate the associations between multiple types of plant-based variation and insect leaf herbivory in alder ( Alnus glutinosa) trees sampled in riparian forests throughout northwestern Spain. We assessed the associations between insect leaf herbivory and alder mean production of leaf secondary metabolites (phenolic compounds), variation among neighbouring alder trees in leaf phenolics and community-related features including alder relative size and frequency and tree species phylogenetic diversity. Structural equation modelling indicated that increasing concentrations of alder leaf flavonoids (but not other types of phenolic compounds) and increasing variation in phenolics among neighbouring alders were both significantly negatively associated with herbivory. In addition, increasing relative frequency of alder was positively associated with leaf damage, whereas the size of alders relative to other trees and phylogenetic diversity were not significantly associated with herbivory. These results demonstrate the concurrent and independent influences of different sources of plant-based variation on insect herbivory and argue for further future work simultaneously addressing multiple plant-based bottom-up controls.
- Published
- 2018
- Full Text
- View/download PDF
48. A million and more trees for science.
- Author
-
Paquette A, Hector A, Castagneyrol B, Vanhellemont M, Koricheva J, Scherer-Lorenzen M, and Verheyen K
- Subjects
- Biodiversity, Conservation of Natural Resources, Forestry, Trees growth & development
- Published
- 2018
- Full Text
- View/download PDF
49. Drought and plant neighbourhood interactively determine herbivore consumption and performance.
- Author
-
Castagneyrol B, Moreira X, and Jactel H
- Subjects
- Animals, Betula parasitology, Herbivory genetics, Humans, Larva physiology, Plant Leaves, Trees parasitology, Water, Droughts, Feeding Behavior, Herbivory physiology, Moths physiology
- Abstract
Both plant neighbourhood composition and drought have well-known independent effects on insect herbivore performance, but their interactive effects remain elusive. In this study we performed a laboratory experiment to investigate the independent and combined effects of plant neighbourhood composition and drought on the performance of Gypsy moth larvae (Lymantria dispar) feeding on silver birch (Betula pendula) leaves. For this, we collected leaf samples from birch trees growing in a field experiment where we manipulated both host-tree species diversity (three levels: birch monocultures, two-species mixtures associating birch with the pedunculate oak Quercus robur or maritime pine Pinus pinaster, and three-species mixture with pedunculate oak, the maritime pine and birch) and water availability (two levels: irrigated vs. non-irrigated). In most cases, plant neighbourhood composition and irrigation treatments independently and interactively affected herbivore performance traits, especially those related to growth and food (i.e. birch leaves) processing. By addressing the interactive effects of tree species diversity and drought on insect herbivory from the herbivore's point of view, our study builds toward a better understanding of the multiple ecological drivers of plant-insect interactions.
- Published
- 2018
- Full Text
- View/download PDF
50. Fungi reduce preference and performance of insect herbivores on challenged plants.
- Author
-
Fernandez-Conradi P, Jactel H, Robin C, Tack AJM, and Castagneyrol B
- Subjects
- Animals, Endophytes, Fungi, Plants microbiology, Herbivory, Insecta
- Abstract
Although insect herbivores and fungal pathogens frequently share the same individual host plant, we lack general insights in how fungal infection affects insect preference and performance. We addressed this question in a meta-analysis of 1,113 case studies gathered from 101 primary papers that compared preference or performance of insect herbivores on control vs. fungus challenged plants. Generally, insects preferred, and performed better on, not challenged plants, regardless of experimental conditions. Insect response to fungus infection significantly differed according to fungus lifestyle, insect feeding guild, and the spatial scale of the interaction (local/distant). Insect performance was reduced on plants challenged by biotrophic pathogens or endophytes but not by necrotrophic pathogens. For both chewing and piercing-sucking insects, performance was reduced on challenged plants when interactions occurred locally but not distantly. In plants challenged by biotrophic pathogens, both preference and performance of herbivores were negatively impacted, whereas infection by necrotrophic pathogens reduced herbivore preference more than performance and endophyte infection reduced only herbivore performance. Our study demonstrates that fungi could be important but hitherto overlooked drivers of plant-herbivore interactions, suggesting both direct and plant-mediated effects of fungi on insect's behavior and development., (© 2017 by the Ecological Society of America.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.