Annick Blaise, Jacques Epelbaum, Laurent Kappeler, Pascale Cervera, Carlos De Magalhaes Filho, Catherine Loudes, Yves Le Bouc, Patricia Leneuve, Joëlle Dupont, Martin Holzenberger, Rüdiger Klein, Laurence Perin, Centre de Recherche Saint-Antoine (UMRS893), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Physiologie de la reproduction et des comportements [Nouzilly] (PRC), Institut National de la Recherche Agronomique (INRA)-Institut Français du Cheval et de l'Equitation [Saumur] (IFCE)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Service d'anatomie et cytologie pathologiques [CHU Saint-Antoine], Université Pierre et Marie Curie - Paris 6 (UPMC)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Saint-Antoine [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU), Neurobiologie de la Croissance et de la Senescence, Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Department of Molecular Neurobiology [Martinsried], Max Planck Institute of Neurobiology (MPIN), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Funding Agence National pour la Recherche (grant NT05-3 42491) and European Union Network of Excellence LifeSpan (036894), Le Ministère de l'Education Nationale, de la Recherche et de la Technologie (MENRT), and Groupement d'Intérêt Scientifique Institut du Vieillissement sponsored this study with grants to MH and YLB. ARC, Inserm, and MENRT supported LK and CDMF., Autard, Delphine, Centre de Recherche Saint-Antoine ( UMRS893 ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Physiologie de la reproduction et des comportements [Nouzilly] ( PRC ), Institut National de la Recherche Agronomique ( INRA ) -Institut Français du Cheval et de l'Equitation [Saumur]-Université de Tours-Centre National de la Recherche Scientifique ( CNRS ), Service d'anatomie et cytologie pathologiques, Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Assistance publique - Hôpitaux de Paris (AP-HP)-CHU Saint-Antoine [APHP], Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Max Planck Institute of Neurobiology ( MPIN ), Institut National de la Recherche Agronomique (INRA)-Institut Français du Cheval et de l'Equitation [Saumur]-Université de Tours-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut Français du Cheval et de l'Equitation [Saumur]-Institut National de la Recherche Agronomique (INRA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Saint-Antoine [APHP], CHU Saint-Antoine [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), and Institut National de la Recherche Agronomique (INRA)-Institut Français du Cheval et de l'Equitation [Saumur]-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
Mutations that decrease insulin-like growth factor (IGF) and growth hormone signaling limit body size and prolong lifespan in mice. In vertebrates, these somatotropic hormones are controlled by the neuroendocrine brain. Hormone-like regulations discovered in nematodes and flies suggest that IGF signals in the nervous system can determine lifespan, but it is unknown whether this applies to higher organisms. Using conditional mutagenesis in the mouse, we show that brain IGF receptors (IGF-1R) efficiently regulate somatotropic development. Partial inactivation of IGF-1R in the embryonic brain selectively inhibited GH and IGF-I pathways after birth. This caused growth retardation, smaller adult size, and metabolic alterations, and led to delayed mortality and longer mean lifespan. Thus, early changes in neuroendocrine development can durably modify the life trajectory in mammals. The underlying mechanism appears to be an adaptive plasticity of somatotropic functions allowing individuals to decelerate growth and preserve resources, and thereby improve fitness in challenging environments. Our results also suggest that tonic somatotropic signaling entails the risk of shortened lifespan., Author Summary Using a mouse model relevant for humans, we showed that lifespan can be significantly extended by reducing the signaling selectively of a protein called IGF-I in the central nervous system. This effect occurred through changes in specific neuroendocrine pathways. Dissecting the pathophysiological mechanism, we discovered that IGF receptors in the mammalian brain efficiently steered the development of the somatotropic axis, which in turn affected the individual growth trajectory and lifespan. Our work confirms experimentally that continuously low IGF-I and low growth hormone levels favor extended lifespan and postpone age-related mortality. Together with other recent reports, our results further challenge the view that administration of GH can prevent, or even counteract human aging. This knowledge is important since growth hormone is often prescribed to elderly people in an attempt to compensate the unwanted effects of aging. Growth hormone and IGF-I are also substances frequently used for doping in sports., Inactivating IGF receptors in the brain decreased growth hormone and IGF-I, and increased lifespan in healthy mice. Such neuroendocrine longevity could be a physiological response to environment.