Since the last decennials, fertility is decreasing in industrial countries, and nowadays, infertility reaches a prevalence of 9 to 18% of the general population, with a significant proportion of cases being due to defective gametogenesis. Accordingly, fertility preservation raises a growing concern. Nowadays, a growing number of couples undergo Assisted Reproductive Technology with little success due to the lack of knowledge on mechanisms orchestrating germ cell differentiation. Little is known about how primordial germ cells become gametogenesis-competent cells (gonocytes), because of the lack of suitable physiological models. Primordial germ cells give rise to the next generation by differentiating from pluripotent progenitors into highly specialized cells, the gametes, which in turn generate a totipotent zygote after fertilization. After specification in the early embryo, primordial germ cells colonize the gonad, lose pluripotency and gain their capacity for irreversible sexual differentiation. Gonocytes then become either female (oogonia) or male (spermatogonia), and eventually progress into meiotic divisions. So far, the mechanisms of germ cell changes in potency remain largely elusive.My host laboratory has demonstrated that activation of the canonical WNT/β-catenin signalling is required for ovarian development. Thus, absence of WNT/β-catenin activation eventually triggers defects in germ cell proliferation and sexual differentiation. However, genetic models of cell-specific ablation of Ctnnb1 (encoding β-catenin) were still missing to assess the contribution of WNT/β-catenin in the germ cells. We decided to analyse the role of this signalling pathway by generating specific mouse models for β-catenin loss or gain of function and by investigating the consequences of WNT/β-catenin deregulation in either the somatic or the germ cells of the developing gonad. We first demonstrated that WNT/β-catenin regulates spermatogonial stem cell proliferation and differentiation in the post-natal testis, demonstrating that this signalling activity must be finely tuned over time to ensure spermatogenesis.Secondly, we showed that genetic elimination of Ctnnb1 in mouse primordial germ cells in vivo leads to a precocious loss of pluripotency and to premature germ cell differentiation into gonocytes. We demonstrated, for the first time in vivo, that while ovarian development is getting forward, β-catenin forms proteic complexes containing POU5F1 and CDH1 that transit from the nucleus of the germ cells to their membrane, thus allowing primordial germ cells to exit pluripotency and eventually differentiate. Our results also reveal that the ZNRF3 E3-ubiquitine ligase negatively regulates germ cell exit from pluripotency through a negative feedback loop.Collectively, our results show that the WNT/β-catenin signalling is necessary for determining the proper window of differentiation in both somatic and germ cells. Moreover, WNT/β-catenin controls the germ cell exit from pluripotency through β-catenin non-transcriptional activity, eventually coordinating the development of the different cell types of the fetal ovary. In the future, our results might help to recapitulate gametogenesis in vitro., La préservation de la fertilité suscite une inquiétude croissante. Depuis les dernières décennies, la fertilité a diminué dans les pays industrialisés. En conséquence, un nombre croissant de couples a recours à la procréation médicalement assistée, sans grand succès par manque de connaissances sur les cellules reproductrices (cellules germinales). L’étude de ces cellules constitue un socle essentiel pour des applications médicales, mais jusqu’à présent, les mécanismes moléculaires qui régissent leur développement restent peu compris en raison de l’absence de modèles d'étude physiologiques.Les cellules germinales sont produites au cours du développement embryonnaire, se multiplient pour constituer un stock suffisant, se différencient dans la gonade en fonction du sexe de l'embryon, puis entrent en méiose pour devenir des gamètes fertiles, les ovocytes (femelles) et les spermatozoïdes (mâles). Mon laboratoire d’accueil a démontré que la voie de signalisation canonique WNT/β-catenin est nécessaire au développement de l'ovaire in vivo et qu'en absence d'activation de cette voie dans l'ovaire embryonnaire de souris, la prolifération et la différenciation des cellules germinales primordiales sont perturbées.Tirant partie de notre expertise dans l'analyse de modèles de différenciation gonadique, nous nous sommes intéressés au mécanisme d'action de la voie WNT/β-catenin dans la différenciation des cellules germinales, en analysant au moyen de modèles murins de perte et gain de fonction de β-catenin les conséquences de la modification de son expression dans les cellules de la gonade.Dans un premier temps, nous avons démontré que le maintien, après la naissance, de l'activité de la voie WNT/β-catenin dans les cellules souches spermatogoniales du testicule de souris stimule leur prolifération de manière massive, provoquant un défaut de différenciation en spermatozoïdes. Dans un deuxième temps, nous avons montré que l'ablation génétique du gène Ctnnb1 (codant pour β-catenin) dans les cellules germinales primordiales in vivo entraîne une perte précoce de leur pluripotence et une différenciation prématurée en ovogonies. Nous avons démontré, pour la première fois in vivo, que tandis que le développement ovarien progresse, β-catenin forme des complexes protéiques avec POU5F1 et CDH1 qui transitent du noyau des cellules germinales à leur membrane, permettant ainsi leur sortie de pluripotence et leur différenciation. Nos résultats indiquent que l'E3-ubiquitine ligase ZNRF3 régule la pluripotence des cellules germinales par une boucle de rétroaction négative.Ces données indiquent que dans l'ovaire comme dans le testicule, une régulation fine de l'activité de la voie de signalisation WNT/β-catenin est requise pour déterminer la fenêtre de différenciation des cellules germinales primordiales in vivo. De plus, la voie WNT/β-catenin contrôle la sortie de pluripotence des cellules germinales primordiales via une activité non-transcriptionnelle de β-catenin, permettant à terme de coordonner le développement des cellules somatiques et germinales de la gonade. Dans les années à venir, nos travaux pourraient aider à la génération des gamètes in vitro.