21 results on '"Chunta S"'
Search Results
2. A3.1 - Molecularly Imprinted Polymers as Selective Receptors for Sensing Nanosized Species
- Author
-
Chunta, S., primary, Jungmann, C., additional, Schranzhofer, L., additional, Lieberzeit, P. A., additional, and Suedee, R., additional
- Published
- 2016
- Full Text
- View/download PDF
3. Reduced Uptake of Oxidized Low-Density Lipoprotein by Macrophages Using Multiple Aptamer Combinations.
- Author
-
Khongwichit S, Swangphon P, Nualla-Ong A, Prompat N, Amatatongchai M, Lieberzeit PA, and Chunta S
- Subjects
- Mice, Animals, RAW 264.7 Cells, Particle Size, Biocompatible Materials chemistry, Biocompatible Materials pharmacology, Lipoproteins, LDL metabolism, Lipoproteins, LDL chemistry, Macrophages metabolism, Macrophages drug effects, Aptamers, Nucleotide chemistry, Aptamers, Nucleotide pharmacology, Materials Testing
- Abstract
The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores. These four DNA sequences were combined to generate aptamers that selectively bound to labeled Dil-oxLDL, and were subsequently added to murine RAW 264.7 macrophages to test their inhibitory effects using fluorescence spectrometry. The four combined aptamers at 10 μM reduced oxLDL uptake by 79 ± 4% compared to that of the untreated aptamer group. Flow cytometry data demonstrated that macrophages treated with aptamers reached only 32.6% of the Dil-oxLDL signal, a 50% reduction in fluorescence emission relative to that of the untreated group (64.4% Dil-oxLDL signal). Binding the four combined aptamers to the oxLDL surface disrupted the interaction between oxLDL and CD36 via cyclic voltammetry, effectively decreasing the level of uptake of oxLDL by macrophages. Results suggested that these aptamers could be used as alternative compounds to prevent the formation of foam cells, hence providing antiatherosclerosis activity.
- Published
- 2025
- Full Text
- View/download PDF
4. Design of hybrid aptamer-molecularly imprinted polymer nanoparticles for selective binding of oxidized low-density lipoprotein in an ELISA-mimic system.
- Author
-
Chunta S, Khongwichit S, Watanasin P, Lieberzeit PA, and Amatatongchai M
- Abstract
Oxidized low-density lipoprotein (oxLDL) is the leading cause of atherosclerosis and cardiovascular disease development. An enzyme-linked immunosorbent assay (ELISA)-mimic system for sensitive and specific oxLDL determination was developed using selective aptamer-molecularly imprinted polymer nanoparticles (AP-MIP NP) coupled with an immunology-based colorimetric assay. The AP-MIP NP were synthesized using solid-phase molecular imprinting by incorporating aptamers into the MIP NP cavities. This resulted in AP-MIP NP with diameters of 108 ± 28 nm. For AP-MIP NP-ELISA-mimic assay development, the surface of a microplate was coated with the novel AP-MIP NP capture receptors at a concentration of 0.1 mg mL
-1 to capture oxLDL. The reaction time between AP-MIP NP and oxLDL was 20 min. Horseradish peroxidase conjugated anti-oxLDL polyclonal antibody at a concentration of 0.6 μg mL-1 was used as the detection antibody, with a linear response ranging from 24.72 to 1,600 μg dL-1 . The recovery accuracy was 89-106 %. Within-run precision was 3.3-6.7 % of the coefficient of variation, while between-day precision was 3.8-7.1 %. The AP-MIP NP-coated wells were stored at room temperature for one month without a loss of binding ability, retaining over 91 % binding ability after three regeneration cycles. Human serum diluted 1:10 and analyzed by the AP-MIP NP-ELISA-mimic assay showed high correlation with conventional ELISA (R2 = 0.9779). This assay achieved rapid results within 95 min, compared to ELISA at 195 min. The high binding ability and selectivity of the AP-MIP NP shows promise as a selective material against oxLDL for the ELISA-mimic system and other applications., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2025 Elsevier B.V. All rights reserved.)- Published
- 2025
- Full Text
- View/download PDF
5. Computational and experimental investigations of a novel aptamer targeting oxidized low-density lipoprotein.
- Author
-
Khongwichit S, Nualla-Ong A, Prompat N, Amatatongchai M, Lieberzeit PA, and Chunta S
- Subjects
- Humans, Gold chemistry, Metal Nanoparticles chemistry, Lipoproteins, LDL chemistry, Lipoproteins, LDL metabolism, Aptamers, Nucleotide chemistry, Aptamers, Nucleotide metabolism, Apolipoprotein B-100 chemistry, Apolipoprotein B-100 metabolism, Molecular Docking Simulation, Molecular Dynamics Simulation
- Abstract
Oxidized low-density lipoprotein (oxLDL) induces the formation of atherosclerotic plaques. Apolipoprotein B100 (apoB100) is a crucial protein component in low-density lipoprotein (LDL), which includes oxLDL. The oxidation of amino acids and subsequent alterations in their structure generate oxLDL, which is a significant biomarker for the initial phases of coronary artery disease. This study employed molecular docking and molecular dynamics utilizing the MM/GBSA method to identify aptamers with a strong affinity for oxidized apoB100. Molecular docking and molecular dynamics were performed on two sequences of the aptamer candidates (aptamer no.11 (AP11: 5'-CTTCGATGTAGTTTTTGTATGGGGTGCCCTGGTTCCTGCA-3') and aptamer no.26 (AP26: 5'-GCGAACTCGCGAATCCAGAACGGGCTCGGTCCCGGGTCGA-3')), yielding respective binding free energies of -149.08 kcal/mol and -139.86 kcal/mol. Interaction modeling of the simulation revealed a strong hydrogen bond between the AP11-oxidized apoB100 complexes. In an aptamer-based gold nanoparticle (AuNP) aggregation assay, AP11 exhibits a color shift from red to purple with the highest absorbance ratio, and shows strong binding affinity to oxLDL, correlating with the simulation model results. AP11 demonstrated the potential for application as a novel recognition element in diagnostic methodologies and may also contribute to future advancements in preventive therapies for coronary artery disease., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. Point-of-care blood tests using a smartphone-based colorimetric analyzer for health check-up.
- Author
-
Chunta S, Jarujamrus P, Prakobkij A, Khongwichit S, Ditcharoen N, Pencharee S, and Amatatongchai M
- Subjects
- Point-of-Care Testing, Humans, Reagent Kits, Diagnostic, Colorimetry instrumentation, Colorimetry methods, Smartphone, Hematologic Tests instrumentation
- Abstract
A microscale colorimetric assay was designed and implemented for the simultaneous determination of clinical chemistry tests measuring six parameters, including glucose (GLU), total protein (TP), human serum albumin (HSA), uric acid (UA), total cholesterol (TC), and triglycerides (TGs) in plasma samples. The test kit was fabricated using chromogenic reagents, comprising specific enzymes and binding dyes. Multiple colors that appeared on the reaction well when it was exposed to each analyte were captured by a smartphone and processed by the homemade Check6 application, which was designed as a colorimetric analyzer and simultaneously generated a report that assessed test results against gender-dependent reference ranges. Six blood checkup parameters for four plasma samples were conducted within 12 min on one capture picture. The assay achieved wide working concentration ranges of 10.45-600 mg dL
-1 GLU, 1.39-10.0 g dL-1 TP, 1.85-8.0 g dL-1 HSA, 0.86-40.0 mg dL-1 UA, 11.28-600 mg dL-1 TC, and 11.93-400 mg dL-1 TGs. The smartphone-based assay was accurate with recoveries of 93-108% GLU, 93-107% TP, 92-107% HSA, 93-107% UA, 92-107% TC, and 99-113% TGs. The coefficient of variation for intra-assay and inter-assay precision ranged from 3.2-5.2% GLU, 4.6-5.3% TP, 4.3-5.3% HSA, 2.8-6.6% UA, 2.7-6.5% TC, and 1.1-3.9% TGs. This assay demonstrated remarkable accuracy in quantifying the concentration-dependent color intensity of the plasma, even in the presence of other suspected interferences commonly present in serum. The results of the proposed method correlated well with results determined by the microplate spectrophotometer (R2 > 0.95). Measurement of these six clinical chemistry parameters in plasma using a microscale colorimetric test kit coupled with the Check6 smartphone application showed potential for real-time point-of-care analysis, providing cost-effective and rapid assays for health checkup testing., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF
7. Mickey mouse-shaped laminated paper-based analytical device in simultaneous total cholesterol and glucose determination in whole blood.
- Author
-
Prakobkij A, Sukapanon S, Chunta S, and Jarujamrus P
- Subjects
- Reproducibility of Results, Lab-On-A-Chip Devices, Cholesterol, Plasma, Glucose
- Abstract
The microfluidic paper-based analytical device (μPAD) platform is gaining attention as a low-cost, portable, and disposable detection tool. However, the limitations of traditional fabrication methods include poor reproducibility and the use of hydrophobic reagents. In this study, an in-house computer-controlled X-Y knife plotter and pen plotter were used to fabricate μPADs, resulting in a simple, more rapid, reproducible process that consumes less volume of reagents. The μPADs were laminated to increase mechanical strength and reduce sample evaporation during analysis. The resulting laminated paper-based analytical device (LPAD) was used to simultaneously determine glucose and total cholesterol in whole blood using the LF1 membrane as a sample zone. The LF1 membrane selectively separates plasma from whole blood by size exclusion and yields plasma for further enzymatic reaction steps while retaining blood cells and larger proteins. The i1 Pro 3 mini spectrophotometer directly detected color on the LPAD. The results were clinically relevant and in agreement with hospital methods, with a detection limit of 0.16 mmol L⁻
1 for glucose and 0.57 mmol L⁻1 for TC. The LPAD retained color intensity after 60 days of storage. The LPAD offers a low-cost, high-performance option for chemical sensing devices and expands the applicability of markers for diagnosing whole blood samples., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
8. Simple colorimetric assay using pectin hydrogel reagent coupled with camera-based photometry for trace arsenic determination.
- Author
-
Chunta S, Phongthai S, and Jarujamrus P
- Subjects
- Humans, Colorimetry methods, Indicators and Reagents, Hydrogels, Pectins, Spectrophotometry, Arsenic analysis, Drinking Water analysis, Water Pollutants, Chemical analysis
- Abstract
Humans mainly ingest arsenic through contaminated drinking water, causing serious health effects. The World Health Organization (WHO) has set the permissible limit of arsenic in drinking water at 0.01 mg/L and concentrations should be regularly determined to ensure a safe supply. In this study, a leucomalachite green (LMG) pectin-based hydrogel reagent was prepared that selectively reacted with arsenic over other metals including manganese, copper, lead, iron, and cadmium. Pectin, optimized at 0.2% (w/v), was used to form the hydrogel matrix. Arsenic reacts with potassium iodate in sodium acetate buffer medium to liberate iodine that then oxidizes LMG entrapped in pectin hydrogel to form a blue product. Camera-based photometry/ImageJ software was used to monitor the color intensity, eliminating the need for a spectrophotometer. The intensity of gray in the red channel was chosen as optimal for the red, green, and blue (RGB) analysis. The colorimetric assay revealed a dynamic detection range toward arsenic solution standards of 0.003-1 mg/L, covering the WHO recommendation of below 0.01 mg/L arsenic in drinking water. The assay gave recovery rates between 97 and 109% at a 95% confidence interval, with precision of 4-9%. Concentrations of arsenic in the spiked drinking water, tap water, and pond water samples monitored by the developed method agreed well with conventional inductively coupled plasma optical emission spectrometry. This assay showed promise for on-site quantitative analysis of arsenic in water samples., (© 2023. Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
9. A simple aptamer/gold nanoparticle aggregation-based colorimetric assay for oxidized low-density lipoprotein determination.
- Author
-
Khongwichit S, Swangphon P, Nanakorn N, Nualla-Ong A, Choowongkomon K, Lieberzeit PA, and Chunta S
- Subjects
- Gold, Colorimetry methods, Lipoproteins, LDL, Sodium Chloride, Metal Nanoparticles, Aptamers, Nucleotide, Biosensing Techniques methods
- Abstract
Oxidized low-density lipoprotein (oxLDL) is the leading cause of atherosclerosis and cardiovascular diseases. Here, we created a simple colorimetric assay for sensitive and specific determination of oxLDL using a selective aptamer coupled with salt-induced gold nanoparticle (AuNP) aggregation. The aptamer was chosen by Systematic Evolution of Ligands by Exponential Enrichment to obtain a novel selective sequence towards oxLDL (as 5'-CCATCACGGGGCAGGCGGACAAGGGGTAAGGGCCACATCA-3'). Mixing a 5 μM aptamer solution with an aliquot of a sample containing oxLDL followed by adding AuNP solution (OD = 1) and 80 mmol L
-1 NaCl achieved rapid results within 19 min: linear response to oxLDL from 0.002 to 0.5 μmol L-1 with high selectivity, a recovery accuracy of 100-111% at the 95% confidence interval, and within-run and between-run precision of 1-6% and 1-5% coefficient variations, respectively. Artificial serum diluted at least 1:8 with distilled water, analyzed by the aptamer-based colorimetric assay, showed excellent correlation with conventional thiobarbituric acid reactive substances (TBARS) (R2 = 0.9792) as a rapid colorimetric method without the need for sample preparation other than dilution., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
10. Enhanced oral bioavailability from food protein nanoparticles: A mini review.
- Author
-
Zhang T, Li L, Chunta S, Wu W, Chen Z, and Lu Y
- Subjects
- Biological Availability, Pharmaceutical Preparations, Administration, Oral, Nanoparticle Drug Delivery System, Solubility, Drug Carriers chemistry, Drug Delivery Systems methods, Nanoparticles
- Abstract
The oral route is the most desirable drug administration path. The oral bioavailability is always compromised from the poor physicochemical and/or biopharmaceutical properties of the active pharmaceutical ingredients. Food protein nanoparticles show promise for oral drug delivery, with improved biosafety and cost-effectiveness compared to polymeric nanoparticles. More importantly, diverse food proteins provide "choice and variety" to meet the challenges faced by different drugs in oral delivery resulting from low solubility, poor permeability, and gastrointestinal stability. The abundance of hydroxyl, amino, and carboxyl groups in food proteins allows easy surface modification of the nanoparticles to impart unique functions. Albeit being in its infancy, food protein nanoparticles exhibit high capability to enhance oral bioavailability of a wide range of drugs from small molecules to biomacromolecules. Considering the rapid growth of the field, the achievements and mechanisms of food protein nanoparticles in enhancing oral bioavailability are reviewed. Factors affecting the performance of food protein nanoparticles are discussed with the purpose to inspire the development of food protein nanoparticle-based oral drug delivery systems., Competing Interests: Declaration of Competing Interest The authors declare no competing interests., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
11. Facile and Compact Electrochemical Paper-Based Analytical Device for Point-of-Care Diagnostic of Dual Carcinogen Oxidative Stress Biomarkers through a Molecularly Imprinted Polymer Coated on Graphene Quantum-Dot Capped Gold.
- Author
-
Amatatongchai M, Nontawong N, Ngaosri P, Chunta S, Wanram S, Jarujamrus P, Nacapricha D, and Lieberzeit PA
- Subjects
- Gold, Molecularly Imprinted Polymers, Electrochemical Techniques methods, Carcinogens, Limit of Detection, Electrodes, Biomarkers, Oxidative Stress, Point-of-Care Testing, Graphite, Molecular Imprinting methods, Metal Nanoparticles
- Abstract
Nanoscale imprinting significantly increases the specific surface area and recognition capabilities of a molecularly imprinted polymer by improving accessibility to analytes, binding kinetics, and template removal. Herein, we present a novel synthetic route for a dual molecularly imprinted polymer (dual-MIP) of the carcinogen oxidative stress biomarkers 3-nitrotyrosine (3-NT) and 4-nitroquinolin-N-oxide (4-NQO) as coatings on graphene quantum-dot capped gold nanoparticles (GQDs-AuNPs). The dual-MIP was successfully coated on the GQDs-AuNPs core via a (3-mercaptopropyl) trimethoxysilane (MPTMS) linkage and copolymerization with the 3-aminopropyltriethoxysilane (APTMS) functional monomer. In addition, we fabricated a facile and compact three-dimensional electrochemical paper-based analytical device (3D-ePAD) for the simultaneous determination of the dual biomarkers using a GQDs-AuNPs@dual-MIP-modified graphene electrode (GQDs-AuNPs@dual-MIP/SPGE). The developed dual-MIP device provides greatly enhanced electrochemical signal amplification due to the improved electrode-specific surface area, electrocatalytic activity, and the inclusion of large numbers of dual-imprinted sites for 3-NT and 4-NQO detection. Quantitative analysis used square wave voltammetry, with an oxidation current appearing at -0.10 V for 4-NQO and +0.78 V for 3-NT. The dual-MIP sensor revealed excellent linear dynamic ranges of 0.01 to 500 μM for 3-NT and 0.005 to 250 μM for 4-NQO, with detection limits in nanomolar levels for both biomarkers. Furthermore, the dual-MIP sensor for the simultaneous determination of 3-NT and 4-NQO provides high accuracy and precision, with no evidence of interference from urine, serum, or whole blood samples.
- Published
- 2022
- Full Text
- View/download PDF
12. Smart sensor for assessment of oxidative/nitrative stress biomarkers using a dual-imprinted electrochemical paper-based analytical device.
- Author
-
Nontawong N, Ngaosri P, Chunta S, Jarujamrus P, Nacapricha D, Lieberzeit PA, and Amatatongchai M
- Subjects
- Biomarkers, Electrochemical Techniques, Electrodes, Limit of Detection, Oxidative Stress, Reproducibility of Results, Silicon Dioxide, Silver, Metal Nanoparticles, Molecular Imprinting
- Abstract
We present a novel dual-imprinted electrochemical paper-based analytical device (Di-ePAD) to simultaneously determine 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 3-nitrotyrosine (3-NT) and assess oxidative and nitrative biomarkers in urine and plasma samples. The Di-ePAD was designed with hydrophobic barrier layers formed on filter paper to provide three-dimensional circular reservoirs and assembled electrodes. The molecularly imprinted polymer (MIP) was synthesized using a silica nanosphere decorated with silver nanoparticles (SiO
2 @AgNPs) as a core covered with dual-analyte imprinted sites on the polymer to recognize selectively and bind the target biomarkers. This strategy drives monodispersity and enhances the conductivity of the resulting MIP core-shell products. 3-NT-MIP and 8-OHdG-MIP were synthesized by successively coating the surface of SiO2 @AgNPs with l-Cysteine via the thiol group, then terminating with MIP shells. The dual imprinted core-shell composites possess attractive properties for the target biomarkers' sensing, including catalytic activity, selectivity, and good conductivity. The Di-ePAD revealed excellent linear dynamic ranges of 0.01-500 μM for 3-NT and 0.05-500 μM for 8-OHdG, with detection limits of 0.0027 μM for 3-NT and 0.0138 μM for 8-OHdG. This newly developed method based on the synergistic effects of SiO2 @AgNPs combined with promising properties of MIP offers outstanding selectivity, sensitivity, reproducibility, simplicity, and low cost for quantitative analysis of 3-NT and 8-OHdG. The proposed Di-ePAD showed good accuracy and precision when applied to actual samples, including urine and serum samples validated by a conventional HPLC method., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
13. Nitrogen-doped carbon dots/Ni-MnFe-layered double hydroxides (N-CDs/Ni-MnFe-LDHs) hybrid nanomaterials as immunoassay label for low-density lipoprotein detection.
- Author
-
Prakobkij A, Jarujamrus P, Chunta S, Chawengkirttikul R, Keawin T, Malahom N, Tamuang S, Amatathongchai M, and Citterio D
- Subjects
- Carbon, Immunoassay methods, Ferric Compounds chemistry, Lipoproteins, LDL chemistry, Manganese Compounds chemistry, Nanostructures chemistry, Nickel chemistry, Nitrogen chemistry, Quantum Dots chemistry
- Abstract
Nitrogen-doped carbon dots/Ni-MnFe-layered double hydroxides (N-CDs/Ni-MnFe-LDHs) are demonstrated as superior peroxidase mimic antibody labels alternative to horseradish peroxidase (HRP) in an immunoassay, potentially overcoming some of the inherent disadvantages of HRP and other enzyme mimicking nanomaterials. They revealed efficient peroxidase-like activity and catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to form the intense blue product (at 620 nm) in the presence of hydrogen peroxide (H
2 O2 ). Using low-density lipoprotein (LDL) as a model target, an ultra-low limit of detection (0.0051 mg/dL) and a linear range of 0.0625-0.750 mg/dL were achieved, exhibiting higher sensitivity than the HRP-based immunoassay. Thus, the proposed N-CDs/Ni-MnFe-LDHs can be used as HRP mimicking analogs for developing highly sensitive colorimetric immunosensors for detection of biomarkers, as well as trace chemical analysis., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)- Published
- 2022
- Full Text
- View/download PDF
14. Enhancing sensitivity of QCM for dengue type 1 virus detection using graphene-based polymer composites.
- Author
-
Navakul K, Sangma C, Yenchitsomanus PT, Chunta S, and Lieberzeit PA
- Subjects
- Dengue Virus ultrastructure, Limit of Detection, Microscopy, Electron, Scanning, Surface Properties, Dengue Virus isolation & purification, Graphite chemistry, Polymers chemistry, Quartz Crystal Microbalance Techniques
- Abstract
Graphene oxide-molecularly imprinted polymer composites (GO-MIP) have attracted significant attention as recognition materials in sensing due to their outstanding properties in terms of electrical and thermal conductivity, high mechanical modulus, and the comparably straightforward way to functionalize them. The aim of this study was to design a MIP-based sensor recognition material and enhance its sensitivity by blending it with GO for sensing a harmful dengue hemorrhagic fever pathogen, namely the dengue type 1 virus (DENV-1). Polymer composites comprising GO incorporated to an acrylamide (AAM)/methacrylic acid (MAA)/methyl methacrylate (MMA)/N-vinylpyrrolidone (VP) copolymer were synthesized and compared to the "pure" MIP, i.e., the copolymer without GO. The pure polymer revealed a zeta potential of + 9.9 ± 0.5 mV, whereas GO sheets prepared have a zeta potential of - 60.3 ± 2.7 mV. This results in an overall zeta potential of - 11.2 ± 0.2 mV of the composite. Such polymer composites seem appropriate to bind the positively charged DENV-1 particle (+ 42.2 ± 2.8 mV). GO-MIP coated onto 10-MHz quartz crystal microbalance (QCM) sensors indeed revealed two times sensitivity compared to sensors based on the pure MIP. Furthermore, GO-polymer composites revealed imprinting factors of up to 21, compared to 3 of the pure MIP. When plotting the sensor characteristic in a semilogarithmic way, the composite sensor shows the linear response to DENV-1 in the concentration range from 10
0 to 103 pfu mL-1 . The corresponding limits of detection (S/N = 3) and quantification (S/N = 10) are 0.58 and 1.94 pfu mL-1 , respectively. Furthermore, imprinted polymer composites selectively bind DENV-1 without significant interference: DENV-2, DENV-3, DENV-4, respectively, yield 13-16% of DENV-1 signal. The sensor requires only about 15-20 min to obtain a result., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
15. Thin Film Plastic Antibody-Based Microplate Assay for Human Serum Albumin Determination.
- Author
-
Boonsriwong W, Chunta S, Thepsimanon N, Singsanan S, and Lieberzeit PA
- Abstract
Herein we demonstrate molecularly imprinted polymers (MIP) as plastic antibodies for a microplate-based assay. As the most abundant plasma protein, human serum albumin (HSA) was selected as the target analyte model. Thin film MIP was synthesized by the surface molecular imprinting approach using HSA as the template. The optimized polymer consisted of acrylic acid (AA) and N -vinylpyrrolidone (VP) in a 2:3 ( w / w ) ratio, crosslinked with N,N' -(1,2-dihydroxyethylene) bisacrylamide (DHEBA) and then coated on the microplate well. The binding of MIP toward the bound HSA was achieved via the Bradford reaction. The assay revealed a dynamic detection range toward HSA standards in the clinically relevant 1-10 g/dL range, with a 0.01 g/dL detection limit. HSA-MIP showed minimal interference from other serum protein components: γ-globulin had 11% of the HSA response, α-globulin of high-density lipoprotein had 9%, and β-globulin of low-density lipoprotein had 7%. The analytical accuracy of the assay was 89-106% at the 95% confidence interval, with precision at 4-9%. The MIP-coated microplate was stored for 2 months at room temperature without losing its binding ability. The results suggest that the thin film plastic antibody system can be successfully applied to analytical/pseudoimmunological HSA determinations in clinical applications.
- Published
- 2021
- Full Text
- View/download PDF
16. Mimicking Peroxidase-Like Activity of Nitrogen-Doped Carbon Dots (N-CDs) Coupled with a Laminated Three-Dimensional Microfluidic Paper-Based Analytical Device (Laminated 3D-μPAD) for Smart Sensing of Total Cholesterol from Whole Blood.
- Author
-
Kitchawengkul N, Prakobkij A, Anutrasakda W, Yodsin N, Jungsuttiwong S, Chunta S, Amatatongchai M, and Jarujamrus P
- Subjects
- Humans, Hydrogen Peroxide, Microfluidics, Nitrogen, Peroxidases, Carbon, Quantum Dots
- Abstract
This work presents a simple hydrothermal synthesis of nitrogen-doped carbon dots (N-CDs), fabrication of microfluidic paper-based analytical device (μPAD), and their joint application for colorimetric determination of total cholesterol (TC) in human blood. The N-CDs were characterized by various techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD), and the optical and electronic properties of computational models were studied using the time-dependent density functional theory (TD-DFT). The characterization results confirmed the successful doping of nitrogen on the surface of carbon dots. The N-CDs exhibited high affinity toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-diammonium salt (ABTS) with the Michaelis-Menten constant ( K
M ) of 0.018 mM in a test for their peroxidase-like activity. Particularly, since hydrogen peroxide (H2 O2 ) is the oxidative product of cholesterol in the presence of cholesterol oxidase, a sensitive and selective method of cholesterol detection was developed. Overall, the obtained results from TD-DFT confirm the strong adsorption of H2 O2 on the graphitic N positions of the N-CDs. The laminated three-dimensional (3D)-μPAD featuring a 6 mm circular detection zone was fabricated using a simple wax screen printing technique. Classification of TC according to the clinically relevant criteria (healthy, <5.2 mM; borderline, 5.2-6.2 mM; and high risk, >6.2 mM) could be determined by the naked eye within 10 min by simple comparison using a color chart. Overall, the proposed colorimetric device serves as a low-cost, rapid, simple, sensitive, and selective alternative for TC detection in whole blood samples that is friendly to unskilled end users.- Published
- 2021
- Full Text
- View/download PDF
17. Direct assessment of very-low-density lipoprotein by mass sensitive sensor with molecularly imprinted polymers.
- Author
-
Chunta S, Boonsriwong W, Wattanasin P, Naklua W, and Lieberzeit PA
- Subjects
- Lipoproteins, VLDL, Molecularly Imprinted Polymers, Quartz Crystal Microbalance Techniques, Reproducibility of Results, Molecular Imprinting
- Abstract
Very-low-density lipoprotein (VLDL) contributes to the buildup of atherosclerotic plaque in the arteries and can lead to coronary heart disease. In clinical laboratory testing, the cholesterol content of VLDL (VLDL-C) cannot be assessed directly by the enzymatic colorimetric assay as it can for other lipoproteins, due to lack of a specific sample pretreatment technique. VLDL concentration relies on analyzing the endogenous triglycerides (TGs) bound in its particles and then converting to the VLDL-C estimate TGs/5. This estimation is valid for at least 12 h-fasted serum when exogenous TGs attached to chylomicrons (CMs) have been cleared from the circulation. A quartz crystal microbalance (QCM)-based sensor was generated using biomimetic sensing elements as a molecularly imprinted polymer (MIP) to directly measure actual VLDL. A novel VLDL-MIP was synthesized using methacrylic acid (MAA) and N-vinylpyrrolidone (VP) in the ratio 1:1 (v/v) as functional monomers in the presence of N, N'-(1,2-dihydroxyethylene) bis(acrylamide) (DHEBA) as a crosslinking agent. The VLDL-MIP sensor showed high sensitivity with a linear response from 2.5 mg dL
-1 to 100 mg dL-1 of VLDL-C with a limit of detection at 1.5 mg dL-1 . Recoveries of 96-103% were achieved when the VLDL-MIP sensor was used for VLDL assessment at 38-71 mg dL-1 concentrations. Repeatability and reproducibility of the sensor were very good with coefficients of variation at 1.63-4.74% and 4.25-9.04%, respectively. The sensor demonstrated low cross-reactivity with other lipoproteins; 6-7% of low-density lipoprotein (LDL) signals, 2-4% high-density lipoprotein (HDL), and 1% CMs compared to the signal of VLDL. Sensor results for 12 h-fasted serum and non-fasted serum correlated well with VLDL estimates TGs/5, with coefficients of determination (R2 ) at 0.9967 and 0.9932, respectively. This new sensor offers a new strategy for direct VLDL assessment from non-fasted serum without other sample pretreatment steps than dilution., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
18. Biomimetic sensors targeting oxidized-low-density lipoprotein with molecularly imprinted polymers.
- Author
-
Chunta S, Suedee R, Boonsriwong W, and Lieberzeit PA
- Subjects
- Biomimetics methods, Humans, Lipoproteins, LDL chemistry, Molecular Imprinting, Polymethacrylic Acids chemistry, Povidone analogs & derivatives, Quartz Crystal Microbalance Techniques methods, Lipoproteins, LDL blood, Molecularly Imprinted Polymers chemistry
- Abstract
Oxidized-low-density lipoprotein (oxLDL) is well-recognized as an actual patho-atherogenic lipoprotein: elevated serum concentration of oxLDL increases the risk for developing atherosclerosis, leading to coronary artery disease (CAD). Herein, we report an approach for sensing oxLDL directly in serum with molecularly imprinted polymer (MIP) thin films on quartz crystal microbalance (QCM). The resulting MIP sensors show low cross-reaction toward low-density lipoprotein (LDL) and high-density lipoprotein (HDL): signals are around one magnitude smaller. Very-low-density lipoprotein (VLDL) and human serum albumin (HSA) do not lead to any significant sensor response. The sensor allowed for accurately assessing oxLDL over the detection range of 86-5600 μg dL
-1 , which covers the clinically relevant concentrations. The sensor determines oxLDL with recovery accuracy of 92-107% and a precision of 1-8% coefficient variation. Compared with commercially available oxLDL ELISA test kit our sensor reveals similar characteristics obtaining a correlation coefficient of 0.98. However, the sensors have rapid response times of 10 min compared to 210 min of ELISA, which demonstrates their efficiency in assessing this sensitive atherogenic biomarker for CAD diagnostics., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
19. High-density lipoprotein sensor based on molecularly imprinted polymer.
- Author
-
Chunta S, Suedee R, and Lieberzeit PA
- Subjects
- Biosensing Techniques methods, Humans, Limit of Detection, Lipoproteins, LDL blood, Reproducibility of Results, Lipoproteins, HDL blood, Methacrylates chemistry, Molecular Imprinting methods, Pyrrolidinones chemistry, Quartz Crystal Microbalance Techniques methods
- Abstract
Decreased blood level of high-density lipoprotein (HDL) is one of the essential criteria in diagnosing metabolic syndrome associated with the development of atherosclerosis and coronary heart disease. Herein, we report the synthesis of a molecularly imprinted polymer (MIP) that selectively binds HDL, namely, HDL-MIP, and thus serves as an artificial, biomimetic sensor layer. The optimized polymer contains methacrylic acid and N-vinylpyrrolidone in the ratio of 2:3, cross-linked with ethylene glycol dimethacrylate. On 10 MHz dual electrode quartz crystal microbalances (QCM), such HDL-MIP revealed dynamic detection range toward HDL standards in the clinically relevant ranges of 2-250 mg/dL HDL cholesterol (HDL-C) in 10 mM phosphate-buffered saline (PBS, pH = 7.4) without significant interference: low-density lipoprotein (LDL) yields 5% of the HDL signal, and both very-low-density lipoprotein (VLDL) and human serum albumin (HSA) yield 0%. The sensor reveals recovery rates between 94 and 104% at 95% confidence interval with precision of 2.3-7.7% and shows appreciable correlation (R
2 = 0.97) with enzymatic colorimetric assay, the standard in clinical tests. In contrast to the latter, it achieves rapid results (10 min) during one-step analysis without the need for sample preparation. Graphical Abstract ᅟ.- Published
- 2018
- Full Text
- View/download PDF
20. Low-Density Lipoprotein Sensor Based on Molecularly Imprinted Polymer.
- Author
-
Chunta S, Suedee R, and Lieberzeit PA
- Subjects
- Electrodes, Humans, Lipoproteins, LDL chemical synthesis, Lipoproteins, LDL chemistry, Serum Albumin chemistry, Dimethylpolysiloxanes chemistry, Lipoproteins, LDL blood, Molecular Imprinting
- Abstract
Increased level of low-density lipoprotein (LDL) strongly correlates with incidence of coronary heart disease. We synthesized novel molecularly imprinted polymers (MIP) as biomimetic specific receptors to establish rapid analysis of LDL levels. For that purpose the ratios of monomers acrylic acid (AA), methacrylic acid (MAA), and N-vinylpyrrolidone (VP), respectively, were screened on 10 MHz dual-electrode quartz crystal microbalances (QCM). Mixing MAA and VP in the ratio 3:2 (m/m) revealed linear sensor characteristic to LDL cholesterol (LDL-C) from 4 to 400 mg/dL or 0.10-10.34 mmol/L in 100 mM phosphate-buffered saline (PBS) without significant interference: high-density lipoprotein (HDL) yields 4-6% of the LDL signal, very-low-density-lipoprotein (VLDL) yields 1-3%, and human serum albumin (HSA) yields 0-2%. The LDL-MIP sensor reveals analytical accuracy of 95-96% at the 95% confidence interval with precision at 6-15%, respectively. Human serum diluted 1:2 with PBS buffer was analyzed by LDL-MIP sensors to demonstrate applicability to real-life samples. The sensor responses are excellently correlated to the results of the standard technique, namely, a homogeneous enzymatic assay (R(2) = 0.97). This demonstrates that the system can be successfully applied to human serum samples for determining LDL concentrations.
- Published
- 2016
- Full Text
- View/download PDF
21. A piezoelectric-based immunosensor for high density lipoprotein particle measurement.
- Author
-
Chunta S, Suk-Anake J, Chansiri K, and Promptmas C
- Subjects
- 3-Mercaptopropionic Acid chemistry, Apolipoprotein A-I analysis, Apolipoprotein A-I blood, Biosensing Techniques instrumentation, Crystallization, Equipment Design, Humans, Limit of Detection, Lipoproteins, HDL analysis, Quartz chemistry, Antibodies, Immobilized chemistry, Electrochemical Techniques instrumentation, Immunoassay instrumentation, Lipoproteins, HDL blood
- Abstract
A piezoelectric-based immunosensor was developed for high density lipoprotein particle (HDL-P) measurement. Monoclonal anti-human apolipoprotein A1 antibody was used as a specific binding molecule for the major apolipoprotein of HDL-P. This sensing element was fabricated by immobilizing the anti-human apolipoprotein A1 on a 12 MHz AT-cut quartz crystal via a 3-mercaptopropionic acid (MPA) self-assembled monolayer. The frequency shift from the mass change of the antigen-antibody binding refers to the amount of HDL-P. The optimal antibody immobilization was performed to achieve the maximum potential of the antibody. The appropriate quantity and immobilization time of the antibody were 0.1 mg ml(-1) and 90 minutes, respectively. The immobilized antibody in the HDL-P immunosensor accomplished perfect binding with HDL-P within 60 minutes. The dose-response curve for HDL-P showed a linear response from 0.21 to 2.50 mg protein per ml equivalent to 0.40 × 10(10) to 3.65 × 10(10) particles per μl without significant interference from other lipoproteins. The intra- and inter-assay imprecision (CV) were 7.8 and 18.5%, respectively. The analytical accuracy of this measurement was 96.29-96.31%. The HDL-P concentration obtained from the sensor revealed a 2.05 mg protein per ml with 0.26 mg protein per ml of expanded uncertainty at the 95% confidence level. This immunosensor gave an assay result which correlated with the homogeneous enzymatic colorimetric assay (R(2) = 0.902).
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.