38 results on '"Corinna Kloss"'
Search Results
2. Editorial: Observations and modelling of recent extreme wild fire events and their impact on the environment and climate
- Author
-
Corinna Kloss, Pasquale Sellitto, Christoph Rüdiger, and Solène Turquety
- Subjects
extreme wildfire ,climate impact ,environmental impact ,observations ,modelling ,Environmental sciences ,GE1-350 - Published
- 2023
- Full Text
- View/download PDF
3. Stratospheric Aerosol Characteristics from the 2017–2019 Volcanic Eruptions Using the SAGE III/ISS Observations
- Author
-
Bomidi Lakshmi Madhavan, Rei Kudo, Madineni Venkat Ratnam, Corinna Kloss, Gwenaël Berthet, and Pasquale Sellitto
- Subjects
volcanic eruption ,stratospheric aerosols ,aerosol microphysics ,aerosol properties ,Science - Abstract
In recent years (2017–2019), several moderate volcanic eruptions and wildfires have perturbed the stratospheric composition and concentration with distinct implications on radiative forcing and climate. The Stratospheric Aerosol and Gas Experiment III instruments onboard the International Space Station (SAGE III/ISS) have been providing aerosol extinction coefficient (EC) profiles at multiple wavelengths since June 2017. In this study, a method to invert the spectral stratospheric aerosol optical depth (sAOD) or EC values from SAGE III/ISS (to retrieve the number/volume size distributions and other microphysical properties) is presented, and the sensitivity of these retrievals is evaluated. It was found that the retrievals are strongly dependent on the choices of wavelengths, which in turn determine the shapes of the calculated curves. Further, we examine the changes in stratospheric aerosol spectral behavior, size distribution properties, time evolution (growth/decay) characteristics associated with subsequent moderate volcanic eruptions, namely, Ambae (15∘S, 167∘E; April and July 2018), Raikoke (48∘N, 153∘E; June 2019), and Ulawun (5∘S, 151∘E; June and August 2019), in different spatial regions. The observational period was classified with reference to Ambae eruptions into four phases (pre-Ambae, Ambae1, Ambae2, and post-Ambae). The pre-Ambae and post-Ambe periods comprise the 2017 Canadian fires and 2019 Raikoke/Ulawun eruptions, respectively. The spectral dependence of sAOD was comparable and lowest during the pre-Ambae and Ambae1 periods in all regions. The number concentration at the principal mode radius (between 0.07 and 0.2 μm) was observed to be higher during the Ambae2 period over the Northern Hemisphere (NH). The rate of change (growth/decay) in the sAOD on a global scale resembled the changes in the Southern Hemisphere (SH), unlike the time-lag-associated changes in the NH. These differences could be attributed to the prevailing horizontal and vertical dispersion mechanisms in the respective regions. Lastly, the radiative forcing estimates of Ambae and Raikoke/Ulawun eruptions, as reported in recent studies, was discussed by taking clues from other major and moderate eruptions to gain insight on their role in climate change.
- Published
- 2022
- Full Text
- View/download PDF
4. Australian Fires 2019–2020: Tropospheric and Stratospheric Pollution Throughout the Whole Fire Season
- Author
-
Corinna Kloss, Pasquale Sellitto, Marc von Hobe, Gwenaël Berthet, Dan Smale, Gisèle Krysztofiak, Chaoyang Xue, Chenxi Qiu, Fabrice Jégou, Inès Ouerghemmi, and Bernard Legras
- Subjects
australian wildfires ,biomass burning tracers ,upper troposphere/lower stratosphere ,fire plume ,long range transport ,Environmental sciences ,GE1-350 - Abstract
The historically large and severe wildfires in Australia from September 2019 to March 2020 are known to have injected a smoke plume into the stratosphere around New Year, due to pyro-cumulonimbus (pyro-Cb) activity, that was subsequently distributed throughout the Southern Hemisphere (SH). We show with satellite, ground based remote sensing, and in situ observations that the fires before New Year, had already a substantial impact on the SH atmosphere, starting as early as September 2019, with subsequent long-range transport of trace gas plumes in the upper-troposphere. Airborne in situ measurements above Southern Argentina in November 2019 show elevated CO mixing ratios at an altitude of 11 km and can be traced back using FLEXPART trajectories to the Australian fires in mid-November 2019. Ground based solar-FTS (Fourier Transform Spectroscopy) observations of biomass burning tracers CO, HCN and C2H6 at Lauder, South Island, New Zealand show enhanced tropospheric columns already starting in September 2019. In MLS observations averaged over 30°–60°S, enhanced CO mixing ratios compared to previous years become visible in late October 2019 only at and below the 147 hPa pressure level. Peak differences are found with satellite and ground-based observations for all altitude levels in the Southern Hemisphere in January. With still increased aerosol values following the Ulawun eruption in 2019, averaged satellite observations show no clear stratospheric and upper-tropospheric aerosol enhancements from the Australian fires, before the pyro-Cb events at the end of December 2019. However, with the clear enhancement of fire tracers, we suggest the period September to December 2019 (prior to the major pyro-Cb events) should be taken into account in terms of fire pollutant emissions when studying the impact of the Australian fires on the SH atmosphere.
- Published
- 2021
- Full Text
- View/download PDF
5. Variability of the Aerosol Content in the Tropical Lower Stratosphere from 2013 to 2019: Evidence of Volcanic Eruption Impacts
- Author
-
Mariam Tidiga, Gwenaël Berthet, Fabrice Jégou, Corinna Kloss, Nelson Bègue, Jean-Paul Vernier, Jean-Baptiste Renard, Adriana Bossolasco, Lieven Clarisse, Ghassan Taha, Thierry Portafaix, Terry Deshler, Frank G. Wienhold, Sophie Godin-Beekmann, Guillaume Payen, Jean-Marc Metzger, Valentin Duflot, and Nicolas Marquestaut
- Subjects
stratospheric aerosols ,volcanic eruptions ,satellite ,balloon-borne observations ,lidar ,modelling ,Meteorology. Climatology ,QC851-999 - Abstract
This paper quantifies the tropical stratospheric aerosol content as impacted by volcanic events over the 2013–2019 period. We use global model simulations by the Whole Atmosphere Community Climate Model (WACCM) which is part of the Community Earth System Model version 1.0 (CESM1). WACCM is associated with the Community Aerosol and Radiation Model for Atmospheres (CARMA) sectional aerosol microphysics model which includes full sulphur chemical and microphysical cycles with no a priori assumption on particle size. Five main volcanic events (Kelud, Calbuco, Ambae, Raikoke and Ulawun) have been reported and are shown to have significantly influenced the stratospheric aerosol layer in the tropics, either through direct injection in this region or through transport from extra-tropical latitudes. Space-borne data as well as ground-based lidar and balloon-borne in situ observations are used to evaluate the model calculations in terms of aerosol content, vertical distribution, optical and microphysical properties, transport and residence time of the various volcanic plumes. Overall, zonal mean model results reproduce the occurrence and vertical extents of the plumes derived from satellite observations but shows some discrepancies for absolute values of extinction and of stratospheric aerosol optical depth (SAOD). Features of meridional transport of the plumes emitted from extra-tropical latitudes are captured by the model but simulated absolute values of SAOD differ from 6 to 200% among the various eruptions. Simulations tend to agree well with observed in situ vertical profiles for the Kelud and Calbuco plumes but this is likely to depend on the period for which comparison is done. Some explanations for the model–measurement discrepancies are discussed such as the inaccurate knowledge of the injection parameters and the presence of ash not accounted in the simulations.
- Published
- 2022
- Full Text
- View/download PDF
6. Transport and Variability of Tropospheric Ozone over Oceania and Southern Pacific during the 2019–20 Australian Bushfires
- Author
-
Nelson Bègue, Hassan Bencherif, Fabrice Jégou, Hélène Vérèmes, Sergey Khaykin, Gisèle Krysztofiak, Thierry Portafaix, Valentin Duflot, Alexandre Baron, Gwenaël Berthet, Corinna Kloss, Guillaume Payen, Philippe Keckhut, Pierre-François Coheur, Cathy Clerbaux, Dan Smale, John Robinson, Richard Querel, and Penny Smale
- Subjects
tropospheric ozone ,Australian fires ,carbon monoxide ,plume transport ,Science - Abstract
The present study contributes to the scientific effort for a better understanding of the potential of the Australian biomass burning events to influence tropospheric trace gas abundances at the regional scale. In order to exclude the influence of the long-range transport of ozone precursors from biomass burning plumes originating from Southern America and Africa, the analysis of the Australian smoke plume has been driven over the period December 2019 to January 2020. This study uses satellite (IASI, MLS, MODIS, CALIOP) and ground-based (sun-photometer, FTIR, ozone radiosondes) observations. The highest values of aerosol optical depth (AOD) and carbon monoxide total columns are observed over Southern and Central Australia. Transport is responsible for the spatial and temporal distributions of aerosols and carbon monoxide over Australia, and also the transport of the smoke plume outside the continent. The dispersion of the tropospheric smoke plume over Oceania and Southern Pacific extends from tropical to extratropical latitudes. Ozone radiosonde measurements performed at Samoa (14.4°S, 170.6°W) and Lauder (45.0°S, 169.4°E) indicate an increase in mid-tropospheric ozone (6–9 km) (from 10% to 43%) linked to the Australian biomass burning plume. This increase in mid-tropospheric ozone induced by the transport of the smoke plume was found to be consistent with MLS observations over the tropical and extratropical latitudes. The smoke plume over the Southern Pacific was organized as a stretchable anticyclonic rolling which impacted the ozone variability in the tropical and subtropical upper-troposphere over Oceania. This is corroborated by the ozone profile measurements at Samoa which exhibit an enhanced ozone layer (29%) in the upper-troposphere. Our results suggest that the transport of Australian biomass burning plumes have significantly impacted the vertical distribution of ozone in the mid-troposphere southern tropical to extratropical latitudes during the 2019–20 extreme Australian bushfires.
- Published
- 2021
- Full Text
- View/download PDF
7. Atmospheric Abundances, Trends and Emissions of CFC-216ba, CFC-216ca and HCFC-225ca
- Author
-
Corinna Kloss, Mike J. Newland, David E. Oram, Paul J. Fraser, Carl A. M. Brenninkmeijer, Thomas Röckmann, and Johannes C. Laube
- Subjects
CFC-216ba ,CFC-216ca ,HCFC-225ca ,Montreal Protocol ,ozone depletion ,ODP ,lifetime ,fractional release ,emission ,Meteorology. Climatology ,QC851-999 - Abstract
The first observations of the feedstocks, CFC-216ba (1,2-dichlorohexafluoropropane) and CFC-216ca (1,3-dichlorohexafluoropropane), as well as the CFC substitute HCFC-225ca (3,3-dichloro-1,1,1,2,2-pentafluoropropane), are reported in air samples collected between 1978 and 2012 at Cape Grim, Tasmania. Present day (2012) mixing ratios are 37.8 ± 0.08 ppq (parts per quadrillion; 1015) and 20.2 ± 0.3 ppq for CFC-216ba and CFC-216ca, respectively. The abundance of CFC-216ba has been approximately constant for the past 20 years, whilst that of CFC-216ca is increasing, at a current rate of 0.2 ppq/year. Upper tropospheric air samples collected in 2013 suggest a further continuation of this trend. Inferred annual emissions peaked 421 at 0.18 Gg/year (CFC-216ba) and 0.05 Gg/year (CFC-216ca) in the mid-1980s and then decreased sharply as expected from the Montreal Protocol phase-out schedule for CFCs. The atmospheric trend of CFC-216ca and CFC-216ba translates into continuing emissions of around 0.01 Gg/year in 2011, indicating that significant banks still exist or that they are still being used. HCFC-225ca was not detected in air samples collected before 1992. The highest mixing ratio of 52 ± 1 ppq was observed in 2001. Increasing annual emissions were found in the 1990s (i.e., when HCFC-225ca was being introduced as a replacement for CFCs). Emissions peaked around 1999 at about 1.51 Gg/year. In accordance with the Montreal Protocol, restrictions on HCFC consumption and the short lifetime of HCFC-225ca, mixing ratios declined after 2001 to 23.3 ± 0.7 ppq by 2012.
- Published
- 2014
- Full Text
- View/download PDF
8. Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
- Author
-
Pasquale Sellitto, Redha Belhadji, Corinna Kloss, Bernard Legras, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Atmospheric Science ,[SDU]Sciences of the Universe [physics] - Abstract
As a consequence of extreme heat and drought, record-breaking wildfires developed and ravaged south-eastern Australia during the fire season 2019–2020. The fire strength reached its paroxysmal phase at the turn of the year 2019–2020. During this phase, pyrocumulonimbus clouds (pyroCb) developed and injected biomass burning aerosols and gases into the upper troposphere and lower stratosphere (UTLS). The UTLS aerosol layer was massively perturbed by these fires, with aerosol extinction increased by a factor of 3 in the visible spectral range in the Southern Hemisphere, with respect to a background atmosphere, and stratospheric aerosol optical depth reaching values as large as 0.015 in February 2020. Using the best available description of this event by observations, we estimate the radiative forcing (RF) of such perturbations of the Southern Hemispheric aerosol layer. We use offline radiative transfer modelling driven by observed information of the aerosol extinction perturbation and its spectral variability obtained from limb satellite measurements. Based on hypotheses on the absorptivity and the angular scattering properties of the aerosol layer, the regional (at three latitude bands in the Southern Hemisphere) clear-sky TOA (top-of-atmosphere) RF is found varying from small positive values to relatively large negative values (up to −2.0 W m−2), and the regional clear-sky surface RF is found to be consistently negative and reaching large values (up to −4.5 W m−2). We argue that clear-sky positive values are unlikely for this event, if the ageing/mixing of the biomass burning plume is mirrored by the evolution of its optical properties. Our best estimate for the area-weighted global-equivalent clear-sky RF is -0.35±0.21 (TOA RF) and -0.94±0.26 W m−2 (surface RF), thus the strongest documented for a fire event and of comparable magnitude with the strongest volcanic eruptions of the post-Pinatubo era. The surplus of RF at the surface, with respect to TOA, is due to absorption within the plume that has contributed to the generation of ascending smoke vortices in the stratosphere. Highly reflective underlying surfaces, like clouds, can nevertheless swap negative to positive TOA RF, with global average RF as high as +1.0 W m−2 assuming highly absorbing particles.
- Published
- 2022
- Full Text
- View/download PDF
9. The Hunga Tonga-Hunga Ha’apai stratospheric eruption of 15th January 2022: a global warming volcanic plume?
- Author
-
Pasquale Sellitto, Bernard Legras, Clair Duchamp, Redha Belhadji, Elisa Carboni, Richard Siddans, and Corinna Kloss
- Abstract
The underwater Hunga Tonga-Hunga Ha’apai volcano erupted in the early hours of 15th January 2022 and injected volcanic gases and aerosols to over 50 km altitude. In this talk, we synthesise satellite, ground-based, in situ and radiosonde observations of the eruption to investigate the emissions, the horizontal and vertical dispersion, and the strength of the stratospheric aerosol and water vapour perturbations in the initial six months after the eruption. The aerosol plume was initially formed of two clouds at 30 and 28 km, mostly composed of submicron-sized sulfate particles, without ash, which is washed out within the first day following the eruption. The large amount of injected water vapour led to a fast conversion of SO2 to sulphate aerosols. We find that the Hunga Tonga-Hunga Ha’apai eruption produced the largest global perturbation of stratospheric aerosols since the Pinatubo eruption in 1991 and the largest perturbation of stratospheric water vapour observed in the satellite era. Then, using offline radiative transfer calculations driven by aerosol and water vapour observations, we quantify the net radiative impact across the two species. Immediately after the eruption, water vapour radiative cooling dominated the local stratospheric heating/cooling rates, producing a spectacular radiatively-driven plume descent of several kilometres. At the top-of-the-atmosphere and surface, volcanic aerosol cooling dominated the radiative forcing during this first dispersion phase. However, after two weeks, due to dilution, water vapour heating started to dominate the top-of-the-atmosphere radiative forcing, leading to a net warming of the climate system. On a longer timescale, sulphate particles, undergoing hygroscopic growth and coagulation, sediment and gradually separate from the moisture anomaly entrained in the ascending branch Brewer–Dobson circulation. This is the first time a warming effect on the climate system has been linked to volcanic eruptions, which usually produce a transient cooling.
- Published
- 2023
- Full Text
- View/download PDF
10. Aerosol Characterization of the Stratospheric Plume From the Volcanic Eruption at Hunga Tonga 15 January 2022
- Author
-
Corinna Kloss, Pasquale Sellitto, Jean‐Baptiste Renard, Alexandre Baron, Nelson Bègue, Bernard Legras, Gwenaël Berthet, Emmanuel Briaud, Elisa Carboni, Clair Duchamp, Valentin Duflot, Patrick Jacquet, Nicolas Marquestaut, Jean‐Marc Metzger, Guillaume Payen, Marion Ranaivombola, Tjarda Roberts, Richard Siddans, Fabrice Jégou, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de physique de l'atmosphère (LPA), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Observatoire des Sciences de l'Univers de La Réunion (OSU-Réunion), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR), Laboratoire de physique et chimie de l'environnement (LPCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), OPAR is presently funded by CNRS (INSU), ANR-10-LABX-0100,VOLTAIRE,Geofluids and Volatil elements – Earth, Atmosphere, Interfaces – Resources and Environment(2010), and ANR-21-CE01-0007,ASTuS,Tourbillons de fumées s'élevant dans la stratosphère(2021)
- Subjects
in situ observations ,aerosol size distribution ,Geophysics ,aerosol plume ,[SDU]Sciences of the Universe [physics] ,stratosphere ,General Earth and Planetary Sciences ,Hunga Tonga ,aerosol typology - Abstract
International audience; Following the Hunga Tonga eruption (20.6°S, 175.4°W, mid-January 2022), we present a balloon-borne characterization of the stratospheric aerosol plume one week after its injection (on 23 and 26 January 2022, La Réunion island at 21.1°S, 55.3°E). Satellite observations show that flight (a) took place during the overpass of a denser plume of sulfate aerosols (SA) compared to a more diluted plume during flight. (b) Observations show that the sampled plumes (at around 22, 25 and 19 km altitude, respectively) consist exclusively of very small particles (with radius
- Published
- 2022
- Full Text
- View/download PDF
11. Tropospheric transport and unresolved convection: numerical experiments with CLaMS-2.0/MESSy
- Author
-
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
- Subjects
Earth sciences ,era-interim ,age ,air ,chemical lagrangian model ,ddc:550 ,reanalysis ,utls ,General Medicine ,updrafts ,chemistry - Abstract
Pure Lagrangian, i.e., trajectory-based transport models, take into account only the resolved advective part of transport. That means neither mixing processes between the air parcels (APs) nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS 1.0) extends this approach by including mixing between the Lagrangian APs parameterizing the small-scale isentropic mixing. To improve model representation of the upper troposphere and lower stratosphere (UTLS), this approach was extended by taking into account parameterization of tropospheric mixing and unresolved convection in the recently published CLaMS 2.0 version. All three transport modes, i.e., isentropic and tropospheric mixing and the unresolved convection can be adjusted and optimized within the model. Here, we investigate the sensitivity of the model representation of tracers in the UTLS with respect to these three modes. For this reason, the CLaMS 2.0 version implemented within the Modular Earth Submodel System (MESSy), CLaMS 2.0/MESSy, is applied with meteorology based on the ERA-Interim (EI) and ERA5 (E5) reanalyses with the same horizontal resolution (1.0×1.0∘) but with 60 and 137 model levels for EI and E5, respectively. Comparisons with in situ observations are used to rate the degree of agreement between different model configurations and observations. Starting from pure advective runs as a reference and in agreement with CLaMS 1.0, we show that among the three processes considered, isentropic mixing dominates transport in the UTLS. Both the observed CO, O3, N2O, and CO2 profiles and CO–O3 correlations are clearly better reproduced in the model with isentropic mixing. The second most important transport process considered is convection which is only partially resolved in the vertical velocity fields provided by the analysis. This additional pathway of transport from the planetary boundary layer (PBL) to the main convective outflow dominates the composition of air in the lower stratosphere relative to the contribution of the resolved transport. This transport happens mainly in the tropics and sub-tropics, and significantly rejuvenates the age of air in this region. By taking into account tropospheric mixing, weakest changes in tracer distributions without any clear improvements were found.
- Published
- 2022
- Full Text
- View/download PDF
12. 2022 Hunga-Tonga eruption: stratospheric aerosol evolution in a water-rich plume
- Author
-
Yunqian Zhu, Charles Bardeen, Simone Tilmes, Michael Mills, V. Harvey, Ghassan Taha, Douglas Kinnison, Pengfei Yu, Karen Rosenlof, Xinyue Wang, Melody Avery, Corinna Kloss, Can Li, Anne Glanville, Luis Millán, T Deshler, Robert Portmann, Nickolay Krotkov, and Owen Toon
- Abstract
The January 2022 Hunga Tonga-Hunga Ha'apai (HTHH) volcanic eruption injected a relatively small amount of SO2, but significantly more water into the stratosphere than previously seen in the modern satellite record. Here we show that the large amount of water resulted in large perturbations to stratospheric aerosol evolution. Our Community Earth System Model simulation reproduces the enhanced water vapor observed by the Microwave Limb Sounder at pressure levels between 10 and 50 hPa for three months. Compared with a simulation without a water injection, this additional source of water vapor increases OH, which halves the SO2 lifetime. Subsequent coagulation creates larger sulfate particles that double the stratospheric aerosol optical depth. A seasonal forecast of volcanic plume transport in the southern hemisphere indicates this eruption will greatly enhance the aerosol surface area and water vapor near the polar vortex until at least October 2022, suggesting that there will continue to be an impact of the HTHH eruption on the climate system.
- Published
- 2022
- Full Text
- View/download PDF
13. Aerosol characterization of the stratospheric plume from the volcanic eruption at Hunga Tonga January 15th 2022
- Author
-
Corinna Kloss, Pasquale Sellitto, jean-baptiste renard, Alexandre Baron, Nelson BEGUE, Bernard Legras, Gwenael Berthet, Emmanuel Briaud, Elisa Carboni, Clair Duchamp, Valentin Duflot, Patrick Jacquet, Nicolas Marquestaut, Jean-Marc Metzger, Guillaume Payen, Marion Ranaivombola, Tjarda Roberts, Richard Siddans, and Fabrice Jegou
- Published
- 2022
- Full Text
- View/download PDF
14. The unexpected radiative impact of the Hunga Tonga eruption of January 15th, 2022
- Author
-
Pasquale Sellitto, Aurelien Podglajen, Redha Belhadji, Marie Boichu, Elisa Carboni, Juan Cuesta, Clair Duchamp, Corinna Kloss, Richard Siddans, Nelson Begue, Luc Blarel, Fabrice Jegou, Sergey Khaykin, Jean-Baptiste Renard, and Bernard Legras
- Abstract
The underwater Hunga Tonga-Hunga Ha-apai (HT) volcano violently erupted on January 15th, 2022, injecting volcanic gases and aerosols at over 50 km altitude. Here we show the stratospheric aerosol and water vapour perturbations due to the HT eruption, the plume evolution during the first month dispersion and we estimate its short-term radiative impact. The HT eruption produced the largest perturbation of stratospheric aerosols and water vapour since the eruption of Pinatubo volcano in 1991. During the first three weeks following the eruption, water vapour radiative cooling dominates the plume’s heating/cooling rates, reaching values as large as -10 K/d and produces a fast plume descent of several km. At the top-of-the-atmosphere (TOA) and surface, volcanic aerosol cooling dominates the radiative forcing (RF) for the fresh plume. After two weeks, due to dispersion/dilution, water vapour heating starts to dominate the TOA RF, leading to a net warming of the climate system, which was never reported before for a volcanic plume. The surface RF, on the contrary, is dominated by the aerosol effect and reaches values of near -2 Wm-2, exceeding the hemispheric-averaged surface impact of stratospheric events of the last 30 years.
- Published
- 2022
- Full Text
- View/download PDF
15. Australian Fires 2019–2020: Tropospheric and Stratospheric Pollution Throughout the Whole Fire Season
- Author
-
Chenxi Qiu, Gisèle Krysztofiak, Dan Smale, Pasquale Sellitto, Inès Ouerghemmi, Bernard Legras, Gwenaël Berthet, Chaoyang Xue, Marc von Hobe, Corinna Kloss, Fabrice Jégou, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), ANR-10-LABX-0100,VOLTAIRE,Geofluids and Volatil elements – Earth, Atmosphere, Interfaces – Resources and Environment(2010), ANR-17-CE01-0015,TTL-Xing,La Couche de la Tropopause Tropicale pendant la mousson d'Asie: transport et composition(2017), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
- Subjects
Pollution ,biomass burning tracers ,010504 meteorology & atmospheric sciences ,media_common.quotation_subject ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,Troposphere ,Atmosphere ,Altitude ,fire plume ,GE1-350 ,Southern Hemisphere ,Stratosphere ,long range transport ,0105 earth and related environmental sciences ,General Environmental Science ,media_common ,Trace gas ,Aerosol ,Environmental sciences ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,upper troposphere/lower stratosphere ,Environmental science ,ddc:333.7 ,australian wildfires - Abstract
The historically large and severe wildfires in Australia from September 2019 to March 2020 are known to have injected a smoke plume into the stratosphere around New Year, due to pyro-cumulonimbus (pyro-Cb) activity, that was subsequently distributed throughout the Southern Hemisphere (SH). We show with satellite, ground based remote sensing, and in situ observations that the fires before New Year, had already a substantial impact on the SH atmosphere, starting as early as September 2019, with subsequent long-range transport of trace gas plumes in the upper-troposphere. Airborne in situ measurements above Southern Argentina in November 2019 show elevated CO mixing ratios at an altitude of 11 km and can be traced back using FLEXPART trajectories to the Australian fires in mid-November 2019. Ground based solar-FTS (Fourier Transform Spectroscopy) observations of biomass burning tracers CO, HCN and C2H6 at Lauder, South Island, New Zealand show enhanced tropospheric columns already starting in September 2019. In MLS observations averaged over 30°–60°S, enhanced CO mixing ratios compared to previous years become visible in late October 2019 only at and below the 147 hPa pressure level. Peak differences are found with satellite and ground-based observations for all altitude levels in the Southern Hemisphere in January. With still increased aerosol values following the Ulawun eruption in 2019, averaged satellite observations show no clear stratospheric and upper-tropospheric aerosol enhancements from the Australian fires, before the pyro-Cb events at the end of December 2019. However, with the clear enhancement of fire tracers, we suggest the period September to December 2019 (prior to the major pyro-Cb events) should be taken into account in terms of fire pollutant emissions when studying the impact of the Australian fires on the SH atmosphere.
- Published
- 2021
- Full Text
- View/download PDF
16. Variability of the aerosol content in the tropical lower stratosphere from 2013 to 2019 as influenced by moderate volcanic eruptions
- Author
-
Guillaume Payen, Ghassan Taha, Thierry Portafaix, Lieven Clarisse, Adriana Bossolasco, Mariam Tidiga, Fabrice Jégou, Gwenaël Berthet, Jean-Marc Metzger, Jean-Baptiste Renard, Nelson Bègue, Jean-Paul Vernier, and Corinna Kloss
- Subjects
geography ,geography.geographical_feature_category ,Volcano ,Environmental science ,Atmospheric sciences ,Stratosphere ,Aerosol - Abstract
The cumulative impacts of frequent moderate-magnitude eruptions on stratospheric aerosols were identified among the factors in recent decadal climate trends. Moderate volcanic eruptions are a recurrent source of sulfur dioxide (SO2) in the Upper Troposphere and Lower Stratosphere (UTLS) region and the resulting formation of sulfuric acid aerosol particles from the SO2 emitted provides sites for chemical reactions leading to enhancement of stratospheric optical depth (SAOD) and ozone depletion. Modelling properly the volcanic aerosol content and its evolution in this region is important for radiative impact issues. In this work, we explore the variability of the tropical UTLS aerosol content between 2013 and 2019, a period which was particularly impacted by moderate tropical and mid-latitude volcanic eruptions. For that purpose, space-borne observations from OMPS (version 2, datasets from GES DISC), and IASI, together with simulations by the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA), are used. Different model sensitive experiments, particularly for the injection altitude and timing, have been conducted to evaluate how the model captures the aerosol plume in terms of content, optical and microphysical properties, transport and residence time. We find that the decay of the Calbuco and Kelud plumes observed by OMPS version 2 is well reproduced by the model. Comparisons with unique datasets in the tropical southern hemisphere from the NDACC Maïdo observatory (Reunion Island, France, 20.5°S, 55.5°E) show good agreement between the lidar SAOD observations and WACCM-CARMA SAOD simulations although we observe a difference in the altitude of the maximum aerosol concentration between the model and the in situ profile after Calbuco eruption in April 2015. A particular focus is also made on recent eruptions like Raikoke, Ambae and Ulawun. The plume of the Ambae volcano (15°S, 167°E) which erupted in July 2018 is shown to propagate to the northern hemisphere with some influence until summer 2019 in the Asian monsoon region. For the year 2019, we investigate how the Ulawun (5°S, 151°E; ~0.14 Tg of SO2) tropical eruption and the Raikoke mid-latitude eruption (48°N, 153°E; ~1.5Tg of SO2), have influenced the aerosol burden in the tropics.
- Published
- 2021
- Full Text
- View/download PDF
17. Global modeling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer
- Author
-
Adriana Bossolasco, Gwenaël Berthet, Bernard Legras, Fabrice Jégou, Corinna Kloss, Pasquale Sellitto, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), ANR-10-LABX-0100,VOLTAIRE,Geofluids and Volatil elements – Earth, Atmosphere, Interfaces – Resources and Environment(2010), ANR-17-CE01-0015,TTL-Xing,La Couche de la Tropopause Tropicale pendant la mousson d'Asie: transport et composition(2017), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Atmospheric model ,Mineral dust ,010502 geochemistry & geophysics ,Atmospheric sciences ,01 natural sciences ,complex mixtures ,lcsh:Chemistry ,chemistry.chemical_compound ,East Asian Monsoon ,Sulfate ,0105 earth and related environmental sciences ,[PHYS]Physics [physics] ,respiratory system ,lcsh:QC1-999 ,Aerosol ,Boundary layer ,lcsh:QD1-999 ,chemistry ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Anticyclone ,Environmental science ,Tropopause ,lcsh:Physics - Abstract
The Asian summer monsoon (ASM) traps convectively lifted boundary layer pollutants inside its upper-tropospheric lower-stratospheric Asian monsoon anticyclone (AMA). It is associated with a seasonal and spatially confined enhanced aerosol layer, called the Asian Tropopause Aerosol Layer (ATAL). Due to the dynamical variability of the AMA, the dearth of in situ observations in this region, the complexity of the emission sources and of transport pathways, knowledge of the ATAL properties in terms of aerosol budget, chemical composition, as well as its variability and temporal trend is still largely uncertain. In this work, we use the Community Earth System Model (CESM 1.2 version) based on the coupling of the Community Atmosphere Model (CAM5) and the MAM7 (Modal Aerosol Model) aerosol module to simulate the composition of the ATAL and its decadal trends. Our simulations cover a long-term period of 16 years from 2000 to 2015. We identify a typical “double-peak” vertical profile of aerosols for the ATAL. We attribute the upper peak (around 100 hPa, predominant during early ATAL, e.g., in June) to dry aerosols, possibly from nucleation processes, and the lower peak (around 250 hPa, predominant for a well-developed and late ATAL, e.g., in July and August) to cloud-borne aerosols associated with convective clouds. We find that mineral dust (present in both peaks) is the dominant aerosol by mass in the ATAL, showing a large interannual variability but no long-term trend, due to its natural variability. The results between 120 and 80 hPa (dry aerosol peak) suggest that for aerosols other than dust the ATAL is composed of around 40 % of sulfate, 30 % of secondary and 15 % of primary organic aerosols, 14 % of ammonium aerosols and less than 3 % of black carbon. Nitrate aerosols are not considered in MAM7. The analysis of the anthropogenic and biomass burning aerosols shows a positive trend for all aerosols simulated by CESM-MAM7.
- Published
- 2021
- Full Text
- View/download PDF
18. Supplementary material to 'Airborne Mid-Infrared Cavity enhanced Absorption spectrometer (AMICA)'
- Author
-
Corinna Kloss, Vicheith Tan, J. Brian Leen, Garrett L. Madsen, Aaron Gardner, Xu Du, Thomas Kulessa, Johannes Schillings, Herbert Schneider, Stefanie Schrade, Chenxi Qiu, and Marc von Hobe
- Published
- 2021
- Full Text
- View/download PDF
19. Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
- Author
-
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, Jonathon S. Wright, Institute for Energy and Climate Research - Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Central Aerological Observatory (CAO), Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), CNR Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), National Center for Atmospheric Research [Boulder] (NCAR), European Project: 603557,EC:FP7:ENV,FP7-ENV-2013-two-stage,STRATOCLIM(2013), and National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)
- Subjects
010504 meteorology & atmospheric sciences ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,ddc:550 ,010501 environmental sciences ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
International audience; Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which contains large amounts of anthropogenic pollutants. Essential details of Asian monsoon transport, such as the exact timescales of vertical transport, the role of convection in cross-tropopause exchange, and the main location and level of export from the confined anticyclone to the stratosphere are still not fully resolved. Recent airborne observations from campaigns near the ASM anticyclone edge and centre in 2016 and 2017, respectively, show a steady decrease in carbon monoxide (CO) and increase in ozone (O3) with height starting from tropospheric values of around 100 ppb CO and 30 50 ppb O3 at about 365 K potential temperature. CO mixing ratios reach stratospheric background values below ∼ 25 ppb at about 420 K and do not show a significant vertical gradient at higher levels, while ozone continues to increase throughout the altitude range of the aircraft measurements. Nitrous oxide (N2O) remains at or only marginally below its 2017 tropospheric mixing ratio of 333 ppb up to about 400 K, which is above the local tropopause. A decline in N2O mixing ratios that indicates a significant contribution of stratospheric air is only visible above this level. Based on our observations, we draw the following picture of vertical transport and confinement in the ASM anticyclone: rapid convective uplift transports air to near 16 km in altitude, corresponding to potential temperatures up to about 370 K. Although this main convective outflow layer extends above the level of zero radiative heating (LZRH), our observations of CO concentration show little to no evidence of convection actually penetrating the tropopause. Rather, further ascent occurs more slowly, consistent with isentropic vertical velocities of 0.7 1.5 K d-1. For the key tracers (CO, O3, and N2O) in our study, none of which are subject to microphysical processes, neither the lapse rate tropopause (LRT) around 380 K nor the cold point tropopause (CPT) around 390 K marks a strong discontinuity in their profiles. Up to about 20 to 35 K above the LRT, isolation of air inside the ASM anticyclone prevents significant in-mixing of stratospheric air (throughout this text, the term in-mixing refers specifically to mixing processes that introduce stratospheric air into the predominantly tropospheric inner anticyclone). The observed changes in CO and O3 likely result from in situ chemical processing. Above about 420 K, mixing processes become more significant and the air inside the anticyclone is exported vertically and horizontally into the surrounding stratosphere.
- Published
- 2021
- Full Text
- View/download PDF
20. Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing
- Author
-
Felix Ploeger, Maxim Eremenko, Ghassan Taha, Jean-Baptiste Renard, Bernard Legras, Fabrice Jégou, Pasquale Sellitto, Gwenaël Berthet, Mariam Tidiga, Corinna Kloss, Adriana Bossolasco, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), ANR-17-CE01-0015,TTL-Xing,La Couche de la Tropopause Tropicale pendant la mousson d'Asie: transport et composition(2017), ANR-10-LABX-0100,VOLTAIRE,Geofluids and Volatil elements – Earth, Atmosphere, Interfaces – Resources and Environment(2010), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,0211 other engineering and technologies ,Northern Hemisphere ,02 engineering and technology ,Radiative forcing ,Atmospheric sciences ,01 natural sciences ,lcsh:QC1-999 ,Aerosol ,Plume ,Atmosphere ,lcsh:Chemistry ,lcsh:QD1-999 ,13. Climate action ,Radiative transfer ,ddc:550 ,Environmental science ,Southern Hemisphere ,Stratosphere ,lcsh:Physics ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences - Abstract
In June 2019 a stratospheric eruption occurred at Raikoke (48∘ N, 153∘ E). Satellite observations show the injection of ash and SO2 into the lower stratosphere and an early entrainment of the plume into a cyclone. Following the Raikoke eruption, stratospheric aerosol optical depth (sAOD) values increased in the whole Northern Hemisphere and tropics and remained enhanced for more than 1 year, with peak values at 0.040 (short-wavelength, high northern latitudes) to 0.025 (short-wavelength, Northern Hemisphere average). Discrepancies between observations and global model simulations indicate that ash may have influenced the extent and evolution of the sAOD. Top of the atmosphere radiative forcings are estimated at values between −0.3 and -0.4Wm-2 (clear-sky) and of −0.1 to -0.2Wm-2 (all-sky), comparable to what was estimated for the Sarychev eruption in 2009. Almost simultaneously two significantly smaller stratospheric eruptions occurred at Ulawun (5∘ S, 151∘ E) in June and August. Aerosol enhancements from the Ulawun eruptions mainly had an impact on the tropics and Southern Hemisphere. The Ulawun plume circled the Earth within 1 month in the tropics. Peak shorter-wavelength sAOD values at 0.01 are found in the tropics following the Ulawun eruptions and a radiative forcing not exceeding −0.15 (clear-sky) and −0.05 (all-sky). Compared to the Canadian fires (2017), Ambae eruption (2018), Ulawun (2019) and the Australian fires (2019/2020), the highest sAOD and radiative forcing values are found for the Raikoke eruption.
- Published
- 2021
- Full Text
- View/download PDF
21. Convective uplift of pollution from the Sichuan basin into the Asian monsoon anticyclone during the StratoClim aircraft campaign
- Author
-
Keun-Ok Lee, Brice Barret, Eric L. Flochmoën, Pierre Tulet, Silvia Bucci, Marc von Hobe, Corinna Kloss, Bernard Legras, Maud Leriche, Bastien Sauvage, Fabrizio Ravegnani, Alexey Ulanovsky, Laboratoire d'aérologie (LA), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire d'aérologie (LAERO), Laboratoire de l'Atmosphère et des Cyclones (LACy), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Météo France, ANR-17-CE01-0015,TTL-Xing,La Couche de la Tropopause Tropicale pendant la mousson d'Asie: transport et composition(2017), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institute for Energy and Climate Research – Stratosphere, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), European Project: 603557,EC:FP7:ENV,FP7-ENV-2013-two-stage,STRATOCLIM(2013), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,010504 meteorology & atmospheric sciences ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,[SDE]Environmental Sciences ,ddc:550 ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
The StratoClim airborne campaign took place in Nepal from 27 July to 10 August 2017 to document the physical and chemical properties of the South Asian Upper Troposphere Lower Stratosphere (UTLS) during the Asian Summer Monsoon (ASM). In the present paper, simulations with the Meso-NH cloud-chemistry model at a horizontal resolution of 15 km are performed over the Asian region to characterize the impact of monsoon deep convection on the composition of Asian Monsoon Anticyclone (AMA) and on the formation of the Asian Tropopause Aerosol Layer (ATAL) during the StratoClim campaign. StratoClim took place during a break phase of the monsoon with an intense convective activity over south China and Sichuan. Comparisons between Brightness Temperature (BT) at 10.8 microns observed by satellite sensors and simulated by Meso-NH highlight the ability of the model to correctly reproduce the life cycle of deep convective clouds. Comparison between CO and O3 concentrations from Meso-NH and airborne observations (StratoClim and IAGOS) demonstrates that the model captures most of the observed variabilities. Nevertheless, for both gases, the model tends to overestimate the concentrations and misses some thin CO plumes related to local convective events probably because of a too coarse resolution, but the convective uplift of pollution is very well captured by the model. We have therefore focused on the impact of Sichuan convection on the AMA composition. A dedicated sensitivity simulation showed that the 7 August convective event brought large amounts of CO deep into the AMA and even across the 380 K isentropic level located at 17.8 km. This Sichuan contribution enhanced the CO concentration by ~ 15 % to reach more than 180 ppbv over a large area around 15 km height. Noteworthy, Meso-NH captures the impact of the diluted Sichuan plume on the CO concentration during a StratoClim flight south of Kathmandu highlighting its ability to reproduce the transport pathway of Sichuan pollution. According to the model, primary organic aerosol and black carbon particles originating from Sichuan are transported following the same pathway as CO. The large particles are heavily scavenged within the precipitating part of the convective clouds but remain the most important contributor to the particle mass in the AMA. Over the whole AMA region, the 7 August convective event resulted in a 0.5 % increase of CO over the 10–20 km range that lasted about 2 days. The impact of pollution uplift from three regions (India, China and Sichuan) averaged over the first 10 days of August has also been evaluated with sensitivity simulations. Even during this monsoon break phase, the results confirm the predominant role of India relative to China with respective contributions of 11 and 7 % to CO in the 10–15 km layer. Moreover, during this period a large part (35 %) of the Chinese contribution comes from the Sichuan basin alone.; The StratoClim airborne campaign took place in Nepal from 27 July to 10 August 2017 to document the physical and chemical properties of the South Asian Upper Troposphere Lower Stratosphere (UTLS) during the Asian Summer Monsoon (ASM). In the present paper, simulations with the Meso-NH cloud-chemistry model at a horizontal resolution of 15 km are performed over the Asian region to characterize the impact of monsoon deep convection on the composition of 20 Asian Monsoon Anticyclone (AMA) and on the formation of the Asian Tropopause Aerosol Layer (ATAL) during the StratoClim campaign. StratoClim took place during a break phase of the monsoon with an intense convective activity over south China and Sichuan. Comparisons between Brightness Temperature (BT) at 10.8 microns observed by satellite sensors and simulated by Meso-NH highlight the ability of the model to correctly reproduce the life cycle of deep convective clouds. Comparison between CO and O 3 concentrations from Meso-NH and airborne observations (StratoClim and IAGOS) 25 demonstrates that the model captures most of the observed variabilities. Nevertheless, for both gases, the model tends to overestimate the concentrations and misses some thin CO plumes related to local convective events probably because of a too coarse resolution, but the convective uplift of pollution is very well captured by the model. We have therefore focused on the impact of Sichuan convection on the AMA composition. A dedicated sensitivity simulation showed that the 7 August convective event brought large amounts of CO deep into the AMA and even across the 380 K isentropic level located at 17.8 30 km. This Sichuan contribution enhanced the CO concentration by ~15 % to reach more than 180 ppbv over a large area around 15 km height. Noteworthy, Meso-NH captures the impact of the diluted Sichuan plume on the CO concentration during a StratoClim flight south of Kathmandu highlighting its ability to reproduce the transport pathway of Sichuan pollution. According to the model, primary organic aerosol and black carbon particles originating from Sichuan are 2 transported following the same pathway as CO. The large particles are heavily scavenged within the precipitating part of the 35 convective clouds but remain the most important contributor to the particle mass in the AMA. Over the whole AMA region, the 7 August convective event resulted in a 0.5% increase of CO over the 10−20 km range that lasted about 2 days. The impact of pollution uplift from three regions (India, China and Sichuan) averaged over the first 10 days of August has also been evaluated with sensitivity simulations. Even during this monsoon break phase, the results confirm the predominant role of India relative to China with respective contributions of 11 and 7 % to CO in the 10-15 km layer. Moreover, during this 40 period a large part (35 %) of the Chinese contribution comes from the Sichuan basin alone.
- Published
- 2020
- Full Text
- View/download PDF
22. Answer to Reviewer 2
- Author
-
Corinna Kloss
- Published
- 2020
- Full Text
- View/download PDF
23. Answers to Reviewer 1
- Author
-
Corinna Kloss
- Published
- 2020
- Full Text
- View/download PDF
24. Supplementary material to 'Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations'
- Author
-
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
- Published
- 2020
- Full Text
- View/download PDF
25. Supplementary material to 'Global modelling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer'
- Author
-
Adriana Bossolasco, Fabrice Jegou, Pasquale Sellitto, Gwenaël Berthet, Corinna Kloss, and Bernard Legras
- Published
- 2020
- Full Text
- View/download PDF
26. Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and climate impact
- Author
-
Bernard Legras, Fabrice Jégou, Ghassan Taha, Felix Ploeger, Jean-Baptiste Renard, Mariam Tidiga, Corinna Kloss, Gwenaël Berthet, Adriana Bossolasco, Pasquale Sellitto, and Maxim Eremenko
- Subjects
010504 meteorology & atmospheric sciences ,Northern Hemisphere ,Tropics ,Radiative forcing ,Atmospheric sciences ,01 natural sciences ,Latitude ,Aerosol ,Plume ,13. Climate action ,Environmental science ,Stratosphere ,Southern Hemisphere ,0105 earth and related environmental sciences - Abstract
In June 2019 a stratospheric moderate eruption occurred at Raikoke (48° N, 153° E). Satellite observations show the injection of ash and SO2 into the lower stratosphere and an early entrainment of the plume into a cyclone. Following the Raikoke eruption stratospheric Aerosol Optical Depth (sAOD) values increased in the whole northern hemisphere and tropics and remained enhanced for more than one year, with peak values at 0.040 (shorter-wavelength visible, higher northern latitudes) to 0.025 (shorter-wavelength visible, average northern hemisphere). Discrepancies between observations and models indicate that ash has played a role on evolution and sAOD values. Top of the atmosphere radiative forcings are estimated at values between −0.3 and −0.4 W/m2 (clear-sky), and of −0.1 to −0.2 W/m2 (all-sky), comparable to what was estimated for the Sarychev eruption in 2009. Almost simultaneously two significantly smaller stratospheric eruptions occurred at Ulawun (5° S, 151° E) in June and August. Aerosol enhancements from the Ulawun eruptions had mainly an impact on the tropics and southern hemisphere. The Ulawun plume circled the Earth within one month in the tropics. Peak shorter-wavelength sAOD values at 0.01 are found in the tropics following the Ulawun eruptions, and a radiative forcing not exceeding −0.15 (clear-sky) and −0.05 (all-sky). Compared to the Canadian Fires (2017), Ambae eruption (2018), Ulawun (2019) and the Australian fires (2019/2020) highest sAOD values and RF are found for the Raikoke eruption.
- Published
- 2020
- Full Text
- View/download PDF
27. Impact of the 2018 Ambae Eruption on the Global Stratospheric Aerosol Layer and Climate
- Author
-
Corinna Kloss, B. Suneel Kumar, Fabrice Jégou, Gwenaël Berthet, B. Lakshmi Madhavan, Bernard Legras, Jean-Paul Vernier, Pasquale Sellitto, M. Venkat Ratnam, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), ANR-17-CE01-0015,TTL-Xing,La Couche de la Tropopause Tropicale pendant la mousson d'Asie: transport et composition(2017), Laboratoire de physique et chimie de l'environnement et de l'Espace (LPC2E), UMR 7328 CNRS/Université d'Orléans, Université d'Orléans (UO), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Atmospheric Science ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Radiative forcing ,Atmospheric sciences ,01 natural sciences ,Aerosol ,Plume ,Atmosphere ,Geophysics ,Volcano ,13. Climate action ,Space and Planetary Science ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,[SDU]Sciences of the Universe [physics] ,Earth and Planetary Sciences (miscellaneous) ,Environmental science ,Satellite ,Southern Hemisphere ,Stratosphere ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
POPS measurements have to be re-425quested from the PI (gwenael.berthet@cnrs-orleans.fr); International audience; During an extended volcanic unrest starting in 2017, two main moderate stratospheric eruptions occurred at the Ambae volcano (15°S and 167°E), Vanuatu, in April and July 2018. Observations from a geostationary orbit show that the April and July eruptions injected a volcanic plume into the lower stratosphere. While aerosol enhancements from the April eruption have only had an impact on the Southern Hemisphere, the plume from the July eruption was distributed within the lower branch of the Brewer–Dobson circulation to both hemispheres. Satellite, ground‐based and in situ observations show that the background aerosol is enhanced throughout the year after the July eruption on a global scale. A volcanic‐induced perturbation of the global stratospheric aerosol optical depth up to 0.011 is found, in the ultraviolet/visible spectral range. This perturbation is comparable to that of recent moderate stratospheric eruptions like from Kasatochi, Sarychev, and Nabro. Top of the atmosphere radiative forcing values are estimated between −0.45 and −0.6 W/m2 for this event, showing that the Ambae eruption had the strongest climatic impact of the year 2018. Thus, the Ambae eruption in 2018 has to be taken into account when studying the decadal lower stratospheric aerosol budget and in climate studies.
- Published
- 2020
- Full Text
- View/download PDF
28. Impact of the Ambae, Raikoke and Ulawun eruptions in 2018-2019 on the global stratospheric aerosol layer and climate
- Author
-
Jean-Paul Vernier, Pasquale Sellitto, B. Suneel Kumar, Gwenaël Berthet, Maxim Eremenko, Fabrice Jégou, M. Venkat Ratnam, B. Lakshmi Madhavan, Corinna Kloss, Bernard Legras, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and ANR-10-LABX-0100,VOLTAIRE,Geofluids and Volatil elements – Earth, Atmosphere, Interfaces – Resources and Environment(2010)
- Subjects
[SDU]Sciences of the Universe [physics] ,Environmental science ,Atmospheric sciences ,Layer (electronics) ,Aerosol - Abstract
Using a combination of satellite, ground-based and in-situ observations, and radiative transfer modelling, we quantify the impact of the most recent moderate volcanic eruptions (Ambae, Vanuatu in July 2018; Raikoke, Russia and Ulawun, New Guinea in June 2019) on the global stratospheric aerosol layer and climate.For the Ambae volcano (15°S and 167°E), we use the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Ozone Mapping Profiler Suite (OMPS), the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Himawari geostationary satellite observations of the aerosol plume evolution following the Ambae eruption of July 2018. It is shown that the aerosol plume of the main eruption at Ambae in July 2018 was distributed throughout the global stratosphere within the global large-scale circulation (Brewer-Dobson circulation, BDC), to both hemispheres. Ground-based LiDAR observations in Gadanki, India, as well as in-situ Printed Optical Particle Spectrometer (POPS) measurements acquired during the BATAL campaign confirm a widespread perturbation of the stratospheric aerosol layer due to this eruption. Using the UVSPEC radiative transfer model, we also estimate the radiative forcing of this global stratospheric aerosol perturbation. The climate impact is shown to be comparable to that of the well-known and studied recent moderate stratospheric eruptions from Kasatochi (USA, 2008), Sarychev (Russia, 2009) and Nabro (Eritrea, 2011). Top of the atmosphere radiative forcing values between -0.45 and -0.60 W/m2, for the Ambae eruption of July 2018, are found.In a similar manner the dispersion of the aerosol plume of the Raikoke (48°N and 153°E) and Ulawun (5°S and 151°E) eruptions of June 2019 is analyzed. As both of those eruptions had a stratospheric impact and happened almost simultaneously, it is challenging to completely distinguish both events. Even though the eruptions occurred very recently, first results show that the aerosol plume of the Raikoke eruption resulted in an increase in aerosol extinction values, double as high as compared to that of the Ambae eruption. However, as the eruption occurred on higher latitudes, the main bulk of Raikoke aerosols was transported towards the northern higher latitude’s in the stratosphere within the BDC, as revealed by OMPS, SAGE III and a new detection algorithm for SO2 and sulfate aerosol using IASI (Infrared Atmospheric Sounder Interferometer). Even though the Raikoke eruption had a larger impact on the stratospheric aerosol layer, both events (the eruptions at Raikoke and Ambae) have to be considered in stratospheric aerosol budget and climate studies.
- Published
- 2020
- Full Text
- View/download PDF
29. Reply to Reviewer 2
- Author
-
Corinna Kloss
- Published
- 2019
- Full Text
- View/download PDF
30. Reply to Michael Fromm
- Author
-
Corinna Kloss
- Published
- 2019
- Full Text
- View/download PDF
31. Reply to Reviewer 1
- Author
-
Corinna Kloss
- Published
- 2019
- Full Text
- View/download PDF
32. Transport of the 2017 Canadian wildfire plume to the tropics and global stratosphere via the Asian monsoon circulation
- Author
-
Sergey Khaykin, Larry W. Thomason, Felix Ploeger, Brice Barret, Corinna Kloss, Pasquale Sellitto, Nelson Bègue, Adriana Bossolasco, Eric Le Flochmoën, Fabrice Jégou, Marc von Hobe, Bernard Legras, G. Berhet, Silvia Bucci, Ghassan Taha, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut für Energie- und Klimaforschung - Stratosphäre (IEK-7), Forschungszentrum Jülich GmbH, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universities Space Research Association (USRA), NASA Langley Research Center [Hampton] (LaRC), Laboratoire d'aérologie (LA), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de l'Atmosphère et des Cyclones (LACy), Météo France-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), ANR: 10-LABX-0100,VOLTAIRE,Geofluids and Volatil elements – Earth, Atmosphere, Interfaces – Resources and Environment(2010), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Sorbonne Université (SU), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,010504 meteorology & atmospheric sciences ,Tropics ,Radiative forcing ,01 natural sciences ,Plume ,Troposphere ,13. Climate action ,Anticyclone ,Climatology ,ddc:550 ,Environmental science ,East Asian Monsoon ,Tropopause ,Stratosphere ,0105 earth and related environmental sciences - Abstract
We show that a fire plume originating at high northern latitudes during the Canadian wildfire event in July/August 2017 reached the tropics, and subsequently the tropical stratosphere via the ascending branch of the Brewer-Dobson Circulation (BDC). The transport from high to low latitudes in the upper troposphere and lowermost stratosphere was mediated by the anticyclonic flow of the Asian monsoon circulation. The fire plume reached the Asian monsoon area in late August/early September, when the Asian Monsoon Anticyclone (AMA) was still in place. While there is no evidence of mixing into the center of the AMA, we show that a substantial part of the fire plume is entrained into the anticyclonic flow at the AMA edge, and is transported into the tropical Upper-Troposphere–Lower-Stratosphere (UTLS), and possibly the Southern Hemisphere particularly following the north-south flow on the eastern side. In the tropics the fire plume is lifted by ~1.5 km per month. Inside the AMA we find evidence of the Asian Tropopause Aerosol Layer (ATAL) in August, doubling background aerosol conditions with a calculated top of the atmosphere shortwave radiative forcing (RF) of −0.05 W/m2. The regional climate impact of the fire signal in the wider Asian monsoon area in September exceeds the impact of the ATAL by a factor of 2–4 and compares to that of a plume coming from an advected moderate volcanic eruption. The stratospheric, trans-continental transport of this plume to the tropics and the related regional climate impact point at the importance of long-range dynamical interconnections of pollution sources.
- Published
- 2019
- Full Text
- View/download PDF
33. Sampling bias adjustment for sparsely sampled satellite measurements applied to ACE-FTS carbonyl sulfide observations
- Author
-
Greg Bodeker, Martin Riese, Jörn Ungermann, Michael Höpfner, Corinna Kloss, Stefanie Kremser, Kaley A. Walker, Marc von Hobe, Birgit Hassler, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut für Energie- und Klimaforschung - Stratosphäre (IEK-7), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology (KIT), Department of Physics [Toronto], University of Toronto, DLR Institut für Physik der Atmosphäre (IPA), Deutsches Zentrum für Luft- und Raumfahrt [Oberpfaffenhofen-Wessling] (DLR), Bodeker Scientific, and ANR-17-CE01-0015,TTL-Xing,La Couche de la Tropopause Tropicale pendant la mousson d'Asie: transport et composition(2017)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,010502 geochemistry & geophysics ,01 natural sciences ,Occultation ,Latitude ,Range (statistics) ,ddc:550 ,Erdsystemmodell -Evaluation und -Analyse ,lcsh:TA170-171 ,Astrophysics::Galaxy Astrophysics ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,Remote sensing ,Sampling bias ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Atmospheric sounding ,Atmospheric models ,lcsh:TA715-787 ,lcsh:Earthwork. Foundations ,Sampling (statistics) ,sampling bias ,satellite measurements ,lcsh:Environmental engineering ,Earth sciences ,13. Climate action ,Physics::Space Physics ,Satellite ,Astrophysics::Earth and Planetary Astrophysics ,carbonyl sulfide - Abstract
When computing climatological averages of atmospheric trace-gas mixing ratios obtained from satellite-based measurements, sampling biases arise if data coverage is not uniform in space and time. Homogeneous spatiotemporal coverage is essentially impossible to achieve. Solar occultation measurements, by virtue of satellite orbit and the requirement of direct observation of the sun through the atmosphere, result in particularly sparse spatial coverage. In this proof-of-concept study, a method is presented to adjust for such sampling biases when calculating climatological means. The method is demonstrated using carbonyl sulfide (OCS) measurements at 16 km altitude from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer). At this altitude, OCS mixing ratios show a steep gradient between the poles and Equator. ACE-FTS measurements, which are provided as vertically resolved profiles, and integrated stratospheric OCS columns are used in this study. The bias adjustment procedure requires no additional information other than the satellite data product itself. In particular, the method does not rely on atmospheric models with potentially unreliable transport or chemistry parameterizations, and the results can be used uncompromised to test and validate such models. It is expected to be generally applicable when constructing climatologies of long-lived tracers from sparsely and heterogeneously sampled satellite measurements. In the first step of the adjustment procedure, a regression model is used to fit a 2-D surface to all available ACE-FTS OCS measurements as a function of day-of-year and latitude. The regression model fit is used to calculate an adjustment factor that is then used to adjust each measurement individually. The mean of the adjusted measurement points of a chosen latitude range and season is then used as the bias-free climatological value. When applying the adjustment factor to seasonal averages in 30∘ zones, the maximum spatiotemporal sampling bias adjustment was 11 % for OCS mixing ratios at 16 km and 5 % for the stratospheric OCS column. The adjustments were validated against the much denser and more homogeneous OCS data product from the limb-sounding MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument, and both the direction and magnitude of the adjustments were in agreement with the adjustment of the ACE-FTS data.
- Published
- 2019
- Full Text
- View/download PDF
34. Response to RC 2
- Author
-
Corinna Kloss
- Published
- 2018
- Full Text
- View/download PDF
35. Response to RC 1
- Author
-
Corinna Kloss
- Published
- 2018
- Full Text
- View/download PDF
36. On sampling bias adjustment for sparsely observing satellite instruments for the example of carbonyl sulfide (OCS)
- Author
-
Stefanie Kremser, Birgit Hassler, Corinna Kloss, Martin Riese, Marc von Hobe, Jörn Ungermann, Michael Höpfner, Kaley A. Walker, and Greg Bodeker
- Subjects
Atmospheric sounding ,Equator ,Environmental science ,Sampling (statistics) ,Satellite ,Occultation ,Sampling bias ,Trace gas ,Remote sensing ,Latitude - Abstract
When computing climatological averages of atmospheric trace gas mixing ratios obtained from satellite-based measurements, sampling biases arise if data coverage is not uniform in space and time. Complete homogeneous spatio-temporal coverage is essentially impossible to achieve. Solar occultation measurements, by virtue of satellite orbits and the requirement of direct observation of the sun through the atmosphere, result in particularly sparse spatial coverage. In this study, a method is presented to adjust for such sampling biases when calculating climatological means. The method is demonstrated using carbonyl sulfide (OCS) measurements at 16 km altitude from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform 15 Spectrometer). At this altitude, OCS mixing ratios show a steep gradient between the poles and equator. ACE-FTS measurements, which are provided as vertically resolved profiles, and integrated stratospheric OCS columns are used in this study. The bias adjustment procedure requires no additional observations other than the satellite data product itself and is expected to be generally applicable when constructing climatologies of long-lived tracers from sparsely and heterogeneously sampled satellite data. In a first step of the adjustment procedure, a regression model is used to fit a 2-D surface to all available ACE-FTS OCS measurements as a function of day-of-year and latitude. The regression model fit is used to calculate an adjustment factor, 20 which is then used to adjust each measurement individually. The mean of the adjusted measurement points of a chosen spatio-temporal frame is then used as the bias-free climatological value. When applying the adjustment factor to seasonal averages in 30° zones, the maximum spatio-temporal sampling bias adjustment was 11 % for OCS mixing ratios at 16 km and 5 % for the stratospheric OCS column. The adjustments were validated against the much denser and more homogeneous OCS data product from the limb-sounding MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument, and both the direction and sign of the adjustments were in agreement with the adjustment of the ACE-FTS data.
- Published
- 2018
37. Oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide
- Author
-
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Pau Cortes, Birgit Quack, Rafel Simo, Dennis Booge, Andrea Pozzer, Tobias Steinhoff, Damian L. Arevalo-Martinez, Corinna Kloss, Astrid Bracher, Rüdiger Röttgers, Elliott Atlas, and Kirstin Krüger
- Abstract
The climate active trace-gas carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere. A missing source in its atmospheric budget is currently suggested, resulting from an upward revision of the vegetation sink in top-down approaches. Oceanic emissions have been proposed to close the resulting gap in the atmospheric budget. We present a bottom-up approach including new observations of OCS in surface waters of the tropical Atlantic, Pacific and Indian oceans to show that direct OCS emissions are insufficient to account for the missing source. Extrapolation of our observations using a biogeochemical box model suggests oceanic net uptake instead of emission for the entire tropical ocean area and, further, a global ocean source strength well below that suggested by top-down estimates. This bottom-up estimate of oceanic emissions has implications for using OCS as a proxy for terrestrial CO2 uptake, which is currently hampered by the inadequate quantification of atmospheric OCS sources and sinks.
- Published
- 2016
- Full Text
- View/download PDF
38. Supplementary material to 'Oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide'
- Author
-
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Pau Cortes, Birgit Quack, Rafel Simo, Dennis Booge, Andrea Pozzer, Tobias Steinhoff, Damian L. Arevalo-Martinez, Corinna Kloss, Astrid Bracher, Rüdiger Röttgers, Elliott Atlas, and Kirstin Krüger
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.