1. Michael-Simon type inequalities in hyperbolic space Hn+1 ${\mathbb{H}}^{n+1}$ via Brendle-Guan-Li’s flows
- Author
-
Cui Jingshi and Zhao Peibiao
- Subjects
locally constrained curvature flow ,michael-simon type inequality ,kth mean curvatures ,primary 53e99 ,secondary 52a20 ,35k96 ,Mathematics ,QA1-939 - Abstract
In the present paper, we first establish and verify a new sharp hyperbolic version of the Michael-Simon inequality for mean curvatures in hyperbolic space Hn+1 ${\mathbb{H}}^{n+1}$ based on the locally constrained inverse curvature flow introduced by Brendle, Guan and Li (“An inverse curvature type hypersurface flow in Hn+1 ${\mathbb{H}}^{n+1}$ ,” (Preprint)) as follows(0.1)∫Mλ′f2E12+|∇Mf|2−∫M∇̄fλ′,ν+∫∂Mf≥ωn1n∫Mfnn−1n−1n $$\underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{1}^{2}+\vert {\nabla }^{M}f{\vert }^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle +\underset{\partial M}{\int }f\ge {\omega }_{n}^{\frac{1}{n}}{\left(\underset{M}{\int }{f}^{\frac{n}{n-1}}\right)}^{\frac{n-1}{n}}$$ provided that M is h-convex and f is a positive smooth function, where λ′(r) = coshr. In particular, when f is of constant, (0.1) coincides with the Minkowski type inequality stated by Brendle, Hung, and Wang in (“A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold,” Commun. Pure Appl. Math., vol. 69, no. 1, pp. 124–144, 2016). Further, we also establish and confirm a new sharp Michael-Simon inequality for the kth mean curvatures in Hn+1 ${\mathbb{H}}^{n+1}$ by virtue of the Brendle-Guan-Li’s flow (“An inverse curvature type hypersurface flow in Hn+1 ${\mathbb{H}}^{n+1}$ ,” (Preprint)) as below(0.2)∫Mλ′f2Ek2+|∇Mf|2Ek−12−∫M∇̄fλ′,ν⋅Ek−1+∫∂Mf⋅Ek−1≥pk◦q1−1(W1(Ω))1n−k+1∫Mfn−k+1n−k⋅Ek−1n−kn−k+1 \begin{align}\hfill & \underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{k}^{2}+\vert {\nabla }^{M}f{\vert }^{2}{E}_{k-1}^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle \cdot {E}_{k-1}+\underset{\partial M}{\int }f\cdot {E}_{k-1}\hfill \\ \hfill & \quad \ge {\left({p}_{k}{\circ}{q}_{1}^{-1}\left({W}_{1}\left({\Omega}\right)\right)\right)}^{\frac{1}{n-k+1}}{\left(\underset{M}{\int }{f}^{\frac{n-k+1}{n-k}}\cdot {E}_{k-1}\right)}^{\frac{n-k}{n-k+1}}\hfill \end{align} provided that M is h-convex and Ω is the domain enclosed by M, p k(r) = ω n(λ′)k−1, W1(Ω)=1n|M| ${W}_{1}\left({\Omega}\right)=\frac{1}{n}\vert M\vert $ , λ′(r) = coshr, q1(r)=W1Srn+1 ${q}_{1}\left(r\right)={W}_{1}\left({S}_{r}^{n+1}\right)$ , the area for a geodesic sphere of radius r, and q1−1 ${q}_{1}^{-1}$ is the inverse function of q 1. In particular, when f is of constant and k is odd, (0.2) is exactly the weighted Alexandrov–Fenchel inequalities proven by Hu, Li, and Wei in (“Locally constrained curvature flows and geometric inequalities in hyperbolic space,” Math. Ann., vol. 382, nos. 3–4, pp. 1425–1474, 2022).
- Published
- 2024
- Full Text
- View/download PDF