339 results on '"Don Pollacco"'
Search Results
2. YOUNG Star detrending for Transiting Exoplanet Recovery (YOUNGSTER) – II. Using self-organizing maps to explore young star variability in sectors 1–13 of TESS data
- Author
-
Matthew P Battley, David J Armstrong, and Don Pollacco
- Published
- 2022
- Full Text
- View/download PDF
3. A pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 characterized with CHEOPS
- Author
-
Thomas G Wilson, Elisa Goffo, Yann Alibert, Davide Gandolfi, Andrea Bonfanti, Carina M Persson, Andrew Collier Cameron, Malcolm Fridlund, Luca Fossati, Judith Korth, Willy Benz, Adrien Deline, Hans-Gustav Florén, Pascal Guterman, Vardan Adibekyan, Matthew J Hooton, Sergio Hoyer, Adrien Leleu, Alexander James Mustill, Sébastien Salmon, Sérgio G Sousa, Olga Suarez, Lyu Abe, Abdelkrim Agabi, Roi Alonso, Guillem Anglada, Joel Asquier, Tamas Bárczy, David Barrado Navascues, Susana C C Barros, Wolfgang Baumjohann, Mathias Beck, Thomas Beck, Nicolas Billot, Xavier Bonfils, Alexis Brandeker, Christopher Broeg, Edward M Bryant, Matthew R Burleigh, Marco Buttu, Juan Cabrera, Sébastien Charnoz, David R Ciardi, Ryan Cloutier, William D Cochran, Karen A Collins, Knicole D Colón, Nicolas Crouzet, Szilard Csizmadia, Melvyn B Davies, Magali Deleuil, Laetitia Delrez, Olivier Demangeon, Brice-Olivier Demory, Diana Dragomir, Georgina Dransfield, David Ehrenreich, Anders Erikson, Andrea Fortier, Tianjun Gan, Samuel Gill, Michaël Gillon, Crystal L Gnilka, Nolan Grieves, Sascha Grziwa, Manuel Güdel, Tristan Guillot, Jonas Haldemann, Kevin Heng, Keith Horne, Steve B Howell, Kate G Isaak, Jon M Jenkins, Eric L N Jensen, Laszlo Kiss, Gaia Lacedelli, Kristine Lam, Jacques Laskar, David W Latham, Alain Lecavelier des Etangs, Monika Lendl, Kathryn V Lester, Alan M Levine, John Livingston, Christophe Lovis, Rafael Luque, Demetrio Magrin, Wenceslas Marie-Sainte, Pierre F L Maxted, Andrew W Mayo, Brian McLean, Marko Mecina, Djamel Mékarnia, Valerio Nascimbeni, Louise D Nielsen, Göran Olofsson, Hugh P Osborn, Hannah L M Osborne, Roland Ottensamer, Isabella Pagano, Enric Pallé, Gisbert Peter, Giampaolo Piotto, Don Pollacco, Didier Queloz, Roberto Ragazzoni, Nicola Rando, Heike Rauer, Seth Redfield, Ignasi Ribas, George R Ricker, Martin Rieder, Nuno C Santos, Gaetano Scandariato, François-Xavier Schmider, Richard P Schwarz, Nicholas J Scott, Sara Seager, Damien Ségransan, Luisa Maria Serrano, Attila E Simon, Alexis M S Smith, Manfred Steller, Chris Stockdale, Gyula Szabó, Nicolas Thomas, Eric B Ting, Amaury H M J Triaud, Stéphane Udry, Vincent Van Eylen, Valérie Van Grootel, Roland K Vanderspek, Valentina Viotto, Nicholas Walton, and Joshua N Winn
- Published
- 2022
- Full Text
- View/download PDF
4. TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet
- Author
-
Ares Osborn, David J Armstrong, Bryson Cale, Rafael Brahm, Robert A Wittenmyer, Fei Dai, Ian J M Crossfield, Edward M Bryant, Vardan Adibekyan, Ryan Cloutier, Karen A Collins, E Delgado Mena, Malcolm Fridlund, Coel Hellier, Steve B Howell, George W King, Jorge Lillo-Box, Jon Otegi, S Sousa, Keivan G Stassun, Elisabeth C Matthews, Carl Ziegler, George Ricker, Roland Vanderspek, David W Latham, S Seager, Joshua N Winn, Jon M Jenkins, Jack S Acton, Brett C Addison, David R Anderson, Sarah Ballard, David Barrado, Susana C C Barros, Natalie Batalha, Daniel Bayliss, Thomas Barclay, Björn Benneke, John Berberian, Francois Bouchy, Brendan P Bowler, César Briceño, Christopher J Burke, Matthew R Burleigh, Sarah L Casewell, David Ciardi, Kevin I Collins, Benjamin F Cooke, Olivier D S Demangeon, Rodrigo F Díaz, C Dorn, Diana Dragomir, Courtney Dressing, Xavier Dumusque, Néstor Espinoza, P Figueira, Benjamin Fulton, E Furlan, E Gaidos, C Geneser, Samuel Gill, Michael R Goad, Erica J Gonzales, Varoujan Gorjian, Maximilian N Günther, Ravit Helled, Beth A Henderson, Thomas Henning, Aleisha Hogan, Saeed Hojjatpanah, Jonathan Horner, Andrew W Howard, Sergio Hoyer, Dan Huber, Howard Isaacson, James S Jenkins, Eric L N Jensen, Andrés Jordán, Stephen R Kane, Richard C Kidwell, John Kielkopf, Nicholas Law, Monika Lendl, M Lund, Rachel A Matson, Andrew W Mann, James McCormac, Matthew W Mengel, Farisa Y Morales, Louise D Nielsen, Jack Okumura, Hugh P Osborn, Erik A Petigura, Peter Plavchan, Don Pollacco, Elisa V Quintana, Liam Raynard, Paul Robertson, Mark E Rose, Arpita Roy, Michael Reefe, Alexandre Santerne, Nuno C Santos, Paula Sarkis, J Schlieder, Richard P Schwarz, Nicholas J Scott, Avi Shporer, A M S Smith, C Stibbard, Chris Stockdale, Paul A Strøm, Joseph D Twicken, Thiam-Guan Tan, A Tanner, J Teske, Rosanna H Tilbrook, C G Tinney, Stephane Udry, Jesus Noel Villaseñor, Jose I Vines, Sharon X Wang, Lauren M Weiss, Richard G West, Peter J Wheatley, Duncan J Wright, Hui Zhang, and F Zohrabi
- Published
- 2021
- Full Text
- View/download PDF
5. Revisiting theKeplerfield withTESS: Improved ephemerides usingTESS2 min data
- Author
-
Matthew P Battley, Michelle Kunimoto, David J Armstrong, and Don Pollacco
- Published
- 2021
- Full Text
- View/download PDF
6. The EBLM project – VII. Spin–orbit alignment for the circumbinary planet host EBLM J0608-59 A/TOI-1338 A
- Author
-
Vedad Kunovac Hodžić, Amaury H M J Triaud, David V Martin, Daniel C Fabrycky, Heather M Cegla, Andrew Collier Cameron, Samuel Gill, Coel Hellier, Veselin B Kostov, Pierre F L Maxted, Jerome A Orosz, Francesco Pepe, Don Pollacco, Didier Queloz, Damien Ségransan, Stéphane Udry, and William F Welsh
- Published
- 2020
- Full Text
- View/download PDF
7. A search for young exoplanets in Sectors 1–5 of the TESS full-frame images
- Author
-
Matthew P Battley, Don Pollacco, and David J Armstrong
- Published
- 2020
- Full Text
- View/download PDF
8. HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V = 7.9) star unveiled by TESS
- Author
-
Néstor Espinoza, Rafael Brahm, Thomas Henning, Andrés Jordán, Caroline Dorn, Felipe Rojas, Paula Sarkis, Diana Kossakowski, Martin Schlecker, Matías R Díaz, James S Jenkins, Claudia Aguilera-Gomez, Jon M Jenkins, Joseph D Twicken, Karen A Collins, Jack Lissauer, David J Armstrong, Vardan Adibekyan, David Barrado, Susana C C Barros, Matthew Battley, Daniel Bayliss, François Bouchy, Edward M Bryant, Benjamin F Cooke, Olivier D S Demangeon, Xavier Dumusque, Pedro Figueira, Helen Giles, Jorge Lillo-Box, Christophe Lovis, Louise D Nielsen, Francesco Pepe, Don Pollacco, Nuno C Santos, Sergio G Sousa, Stéphane Udry, Peter J Wheatley, Oliver Turner, Maxime Marmier, Damien Ségransan, George Ricker, David Latham, Sara Seager, Joshua N Winn, John F Kielkopf, Rhodes Hart, Geof Wingham, Eric L N Jensen, Krzysztof G Hełminiak, A Tokovinin, C Briceño, Carl Ziegler, Nicholas M Law, Andrew W Mann, Tansu Daylan, John P Doty, Natalia Guerrero, Patricia Boyd, Ian Crossfield, Robert L Morris, Christopher E Henze, and Aaron Dean Chacon
- Published
- 2019
- Full Text
- View/download PDF
9. NGTS-7Ab: an ultrashort-period brown dwarf transiting a tidally locked and active M dwarf
- Author
-
James A G Jackman, Peter J Wheatley, Dan Bayliss, Samuel Gill, Simon T Hodgkin, Matthew R Burleigh, Ian P Braker, Maximilian N Günther, Tom Louden, Oliver Turner, David R Anderson, Claudia Belardi, François Bouchy, Joshua T Briegal, Edward M Bryant, Juan Cabrera, Sarah L Casewell, Alexander Chaushev, Jean C Costes, Szilard Csizmadia, Philipp Eigmüller, Anders Erikson, Boris T Gänsicke, Edward Gillen, Michael R Goad, James S Jenkins, James McCormac, Maximiliano Moyano, Louise D Nielsen, Don Pollacco, Katja Poppenhaeger, Didier Queloz, Heike Rauer, Liam Raynard, Alexis M S Smith, Stéphane Udry, Jose I Vines, Christopher A Watson, and Richard G West
- Published
- 2019
- Full Text
- View/download PDF
10. NGTS-6b: an ultrashort period hot-Jupiter orbiting an old K dwarf
- Author
-
Jose I Vines, James S Jenkins, Jack S Acton, Joshua Briegal, Daniel Bayliss, François Bouchy, Claudia Belardi, Edward M Bryant, Matthew R Burleigh, Juan Cabrera, Sarah L Casewell, Alexander Chaushev, Benjamin F Cooke, Szilárd Csizmadia, Philipp Eigmüller, Anders Erikson, Emma Foxell, Samuel Gill, Edward Gillen, Michael R Goad, James A G Jackman, George W King, Tom Louden, James McCormac, Maximiliano Moyano, Louise D Nielsen, Don Pollacco, Didier Queloz, Heike Rauer, Liam Raynard, Alexis M S Smith, Maritza G Soto, Rosanna H Tilbrook, Ruth Titz-Weider, Oliver Turner, Stéphane Udry, Simon R Walker, Christopher A Watson, Richard G West, and Peter J Wheatley
- Published
- 2019
- Full Text
- View/download PDF
11. Detection of a giant white-light flare on an L2.5 dwarf with the Next Generation Transit Survey
- Author
-
James A G Jackman, Peter J Wheatley, Daniel Bayliss, Matthew R Burleigh, Sarah L Casewell, Philipp Eigmüller, Mike R Goad, Don Pollacco, Liam Raynard, Christopher A Watson, and Richard G West
- Published
- 2019
- Full Text
- View/download PDF
12. A remnant planetary core in the hot-Neptune desert
- Author
-
David J. Armstrong, Théo A. Lopez, Vardan Adibekyan, Richard A. Booth, Edward M. Bryant, Karen A. Collins, Magali Deleuil, Alexandre Emsenhuber, Chelsea X. Huang, George W. King, Jorge Lillo-Box, Jack J. Lissauer, Elisabeth Matthews, Olivier Mousis, Louise D. Nielsen, Hugh Osborn, Jon Otegi, Nuno C. Santos, Sérgio G. Sousa, Keivan G. Stassun, Dimitri Veras, Carl Ziegler, Jack S. Acton, Jose M. Almenara, David R. Anderson, David Barrado, Susana C. C. Barros, Daniel Bayliss, Claudia Belardi, Francois Bouchy, César Briceño, Matteo Brogi, David J. A. Brown, Matthew R. Burleigh, Sarah L. Casewell, Alexander Chaushev, Kevin I. Collins, Knicole D. Colón, Benjamin F. Cooke, Ian J. M. Crossfield, Rodrigo F. Díaz, Elisa Delgado Mena, Olivier D. S. Demangeon, Caroline Dorn, Xavier Dumusque, Philipp Eigmüller, Michael Fausnaugh, Pedro Figueira, Tianjun Gan, Siddharth Gandhi, Samuel Gill, Erica J. Gonzales, Michael R. Goad, Ravit Helled, Saeed Hojjatpanah, Steve B. Howell, James Jackman, James S. Jenkins, Jon M. Jenkins, Eric L. N. Jensen, Grant M. Kennedy, David W. Latham, Nicholas Law, Monika Lendl, Michael Lozovsky, Andrew W. Mann, Maximiliano Moyano, James McCormac, Farzana Meru, Christoph Mordasini, Ares Osborn, Don Pollacco, Didier Queloz, Liam Raynard, George R. Ricker, Pamela Rowden, Alexandre Santerne, Joshua E. Schlieder, Sara Seager, Lizhou Sha, Thiam-Guan Tan, Rosanna H. Tilbrook, Eric Ting, Stéphane Udry, Roland Vanderspek, Christopher A. Watson, Richard G. West, Paul A. Wilson, Joshua N. Winn, Peter Wheatley, Jesus Noel Villasenor, Jose I. Vines, and Zhuchang Zhan
- Subjects
Exobiology ,Lunar And Planetary Science And Exploration - Abstract
The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune ‘desert’ (a region in mass–radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b, which is thought to have an unusually massive core, and recent discoveries such as LTT9779b and NGTS-4b, on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune’s but an anomalously large mass of 39.1(+2.7−2.6) Earth masses and a density of 5.2(+0.7−0.8) grams per cubic centimetre, similar to Earth’s. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than 3.9(+0.8−0.9) per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation. Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet.
- Published
- 2020
- Full Text
- View/download PDF
13. TOI-1338: TESS’ First Transiting Circumbinary Planet
- Author
-
Veselin B. Kostov, Jerome A. Orosz, Adina D. Feinstein, William F. Welsh, Wolf Cukier, Nader Haghighipour, Billy Quarles, David V. Martin, Benjamin T. Montet, Guillermo Torres, Amaury H. M. J. Triaud, Thomas Barclay, Patricia Boyd, Cesar Briceno, Andrew Collier Cameron, Alexandre C. M. Correia, Emily A Gilbert, Samuel Gill, Michaël Gillon, Jacob Haqq-Misra, Coel Hellier, Courtney Dressing, Daniel C. Fabrycky, Gabor Furesz, Jon M Jenkins, Stephen R. Kane, Ravi Kopparapu, Vedad Kunovac Hodzic, David W. Latham, Nicholas Law, Alan M. Levine, Gongjie Li, Chris Lintott, Jack J. Lissauer, Andrew W. Mann, Tsevi Mazeh, Rosemary Mardling, Pierre F. L. Maxted, Nora Eisner, Francesco Pepe, Joshua Pepper, Don Pollacco, Samuel N. Quinn, Elisa V Quintana, Jason F. Rowe, George Ricker, Mark E Rose, S. Seager, Alexandre Santerne, Damien Ségransan, Donald R. Short, Jeffrey C. Smith, Matthew R. Standing, Andrei Tokovinin, Trifon Trifonov, Oliver Turner, Joseph D. Twicken, Stéphane Udry, Roland Vanderspek, Joshua N. Winn, Eric T. Wolf, Carl Ziegler, Peter Ansorge, Frank Barnet, Joel Bergeron, Marc Huten, Giuseppe Pappa, and Timo van der Straeten
- Subjects
Astronomy - Abstract
We report the detection of the first circumbinary planet (CBP) found by Transiting Exoplanet Survey Satellite (TESS). The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30 minute cadence and in sectors 4 through 12 at 2 minute cadence. It consists of two stars with masses of 1.1M(ʘ) and 0.3M(ʘ) on a slightly eccentric (0.16), 14.6 day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ∼6.9R(⊕) and was observed to make three transits across the primary star of roughly equal depths (∼0.2%) but different durations—a common signature of transiting CBPs. Its orbit is nearly circular (e≈0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ∼1°. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radialvelocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for CBPs and provides further understanding of the formation and evolution of planets orbiting close binary stars.
- Published
- 2020
- Full Text
- View/download PDF
14. NGTS-2b: an inflated hot-Jupiter transiting a bright F-dwarf
- Author
-
Liam Raynard, Michael R Goad, Edward Gillen, Louise D Nielsen, Christopher A Watson, Andrew P G Thompson, James McCormac, Daniel Bayliss, Maritza Soto, Szilard Csizmadia, Alexander Chaushev, Matthew R Burleigh, Richard Alexander, David J Armstrong, François Bouchy, Joshua T Briegal, Juan Cabrera, Sarah L Casewell, Bruno Chazelas, Benjamin F Cooke, Philipp Eigmüller, Anders Erikson, Boris T Gänsicke, Andrew Grange, Maximilian N Günther, Simon T Hodgkin, Matthew J Hooton, James S Jenkins, Gregory Lambert, Tom Louden, Lionel Metrailler, Maximiliano Moyano, Don Pollacco, Katja Poppenhaeger, Didier Queloz, Roberto Raddi, Heike Rauer, Andrew M Read, Barry Smalley, Alexis M S Smith, Oliver Turner, Stéphane Udry, Simon R Walker, Richard G West, and Peter J Wheatley
- Published
- 2018
- Full Text
- View/download PDF
15. The PLATO Mission
- Author
-
Heike Rauer, Conny Aerts, Magali Deleuil, Laurent Gizon, MarieJo Goupil, Ana Heras, Miguel Mas-Hesse, Isabella Pagano, Giampaolo Piotto, Don Pollacco, Roberto Ragazzoni, Gavin Ramsay, and Stephane Udry
- Subjects
M3 mission ,Exoplanets ,PLATO - Abstract
PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission and designed to detect and characterize extrasolar planets by high-precision, long-term photometric and asteroseismic monitoring of a large number of stars. PLATO will detect small planets around bright stars, including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observation from ground, planets will be characterized for their radius, mass, and age with high accuracy. PLATO will provide us the first large-scale catalogue of well-characterized small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our solar system planets in a broader context. PLATO will study host stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. PLATO is scheduled for a launch date end 2026. Following the successful Critical Milestone Review, ESA has given green light for the implementation of the spacecraft and the payload, which includes the serial production of its 26 cameras. This presentation will give an overview of the PLATO science goals, of its instrument and mission profile status.
- Published
- 2022
16. Transit detection of the long-period volatile-rich super-Earth ν2 Lupi d with CHEOPS
- Author
-
Sergio Hoyer, Vardan Adibekyan, J.-B. Delisle, Nuno C. Santos, David Barrado, Enric Palle, Damien Ségransan, Isabella Pagano, Malcolm Fridlund, Antonio García Muñoz, M. Steller, A. Deline, Guillem Anglada-Escudé, A. Bekkelien, Nicolas Billot, Ignasi Ribas, Don Pollacco, Roberto Ragazzoni, Yann Alibert, T. Bárczy, Gaetano Scandariato, H. P. Osborn, L. Borsato, Alain Lecavelier des Etangs, Heike Rauer, Thomas G. Wilson, M. Beck, Mahmoudreza Oshagh, L. Delrez, Nicholas A. Walton, Roi Alonso, S. G. Sousa, Stéphane Udry, M. J. Hooton, Kevin Heng, S. Sulis, Manuel Guedel, Göran Olofsson, Vincent Bourrier, Michaël Gillon, Anders Erikson, Monika Lendl, Didier Queloz, Davide Gandolfi, Olivier Demangeon, Luca Fossati, Nicolas Thomas, Wolfgang Baumjohann, Pierre F. L. Maxted, Brice-Olivier Demory, S. C. C. Barros, Alexis M. S. Smith, Willy Benz, Andrea Bonfanti, Sébastien Charnoz, Melvyn B. Davies, Juan Cabrera, Magali Deleuil, Alexis Brandeker, J. Haldemann, László L. Kiss, Giampaolo Piotto, Valerio Nascimbeni, Christopher Broeg, Andrea Fortier, Jacques Laskar, Christophe Lovis, D. Futyan, Valérie Van Grootel, Pascal Guterman, Gyula M. Szabó, A. E. Simon, Francisco J. Pozuelos, Andrew Collier Cameron, David Ehrenreich, S. Salmon, Xavier Bonfils, Nathan Hara, Fundação para a Ciência e a Tecnologia (Portugal), European Commission, Swiss National Science Foundation, Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, Belgian Science Policy Office, Université de Liège, Austrian Research Promotion Agency, Hungarian Scientific Research Fund, Agenzia Spaziale Italiana, Istituto Nazionale di Astrofisica, Cavendish Laboratory, University of Cambridge [UK] (CAM), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève = University of Geneva (UNIGE), Laboratoire d'astrophysique de l'observatoire de Besançon (UMR 6091) (LAOB), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université de Technologie de Belfort-Montbeliard (UTBM), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-IDEX-0001,Université de Paris,Université de Paris(2018), Université de Genève (UNIGE), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)
- Subjects
010504 meteorology & atmospheric sciences ,530 Physics ,FOS: Physical sciences ,Astrophysics - Earth and planetary astrophysics ,Q1 ,01 natural sciences ,Planet ,QB460 ,0103 physical sciences ,Transit (astronomy) ,010303 astronomy & astrophysics ,QB600 ,QB ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Super-Earth ,520 Astronomy ,Astronomy ,Astronomy and Astrophysics ,Radius ,620 Engineering ,Exoplanet ,Orbit ,Stars ,13. Climate action ,Satellite ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,QB799 - Abstract
Delrez, L., et al., Exoplanets transiting bright nearby stars are key objects for advancing our knowledge of planetary formation and evolution. The wealth of photons from the host star gives detailed access to the atmospheric, interior and orbital properties of the planetary companions. ν Lupi (HD 136352) is a naked-eye (V = 5.78) Sun-like star that was discovered to host three low-mass planets with orbital periods of 11.6, 27.6 and 107.6 d via radial-velocity monitoring. The two inner planets (b and c) were recently found to transit, prompting a photometric follow-up by the brand new Characterising Exoplanets Satellite (CHEOPS). Here, we report that the outer planet d is also transiting, and measure its radius and mass to be 2.56 ± 0.09 R and 8.82 ± 0.94 M, respectively. With its bright Sun-like star, long period and mild irradiation (~5.7 times the irradiation of Earth), ν Lupi d unlocks a completely new region in the parameter space of exoplanets amenable to detailed characterization. We refine the properties of all three planets: planet b probably has a rocky mostly dry composition, while planets c and d seem to have retained small hydrogen–helium envelopes and a possibly large water fraction. This diversity of planetary compositions makes the ν Lupi system an excellent laboratory for testing formation and evolution models of low-mass planets., The MOC activities have been supported by ESA contract 4000124370. S.C. acknowledges financial support by LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001). This work was supported by FCT (Fundação para a Ciência e a Tecnologia) through national funds and by FEDER (Fundo Europeu de Desenvolvimento Regional) through COMPETE2020—Programa Operacional Competitividade e Internacionalização with these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 and POCI-01-0145-FEDER-032113; PTDC/FIS-AST/28953/2017 and POCI-01-0145-FEDER-028953; PTDC/FIS-AST/28987/2017 and POCI-01-0145-FEDER-028987. S.C.C.B., S.G.S. and V.A. acknowledge support from FCT through contracts IF/01312/2014/CP1215/CT0004, CEECIND/00826/2018, POPH/FSE (EC) and IF/00650/2015/CP1273/CT0001. O.D.S.D. is supported in the form of a work contract (DL 57/2016/CP1364/CT0004) with national funds through FCT. M.J.H. acknowledges the support of the Swiss National Fund under grant 200020_172746. A.D. and D.E. acknowledge support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (project Four Aces; grant agreement 724427). S.H. acknowledges CNES funding through grant 837319. The Spanish scientific participation in CHEOPS has been supported by the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, ESP2017-87676-C5-1-R, PGC2018-098153-B-C31, PGC2018-098153-B-C33 and MDM-2017-0737 Unidad de Excelencia María de Maeztu–Centro de Astrobiología (INTA-CSIC), as well as by the Generalitat de Catalunya/CERCA programme. The Belgian participation in CHEOPS has been supported by the Belgian Federal Science Policy Office in the framework of the PRODEX Programme of the ESA under contract PEA 4000131343, and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia–Brussels Federation. L.D. is an FRS-FNRS Postdoctoral Researcher. M. Gillon is an FRS–FNRS Senior Research Associate. V.V.G. is an FRS–FNRS Research Associate. M.L. acknowledges support from the Austrian Research Promotion Agency (FFG) under project 859724 ‘GRAPPA’. B.-O.D. acknowledges support from the Swiss National Science Foundation (PP00P2-190080). S. Salmon has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement 833925, project STAREX). G.M.S. acknowledges funding from the Hungarian National Research, Development and Innovation Office (NKFIH) grant GINOP-2.3.2-15-2016-00003 and K-119517. For Italy, CHEOPS activities have been supported by the Italian Space Agency, under the programmes ASI-INAF 2013-016-R.0 and ASI-INAF 2019-29-HH.0. L.B., G.P., I.P., G.S. and V.N. acknowledge funding support from the Italian Space Agency (ASI) regulated by ‘Accordo ASI-INAF 2013-016-R.0 del 9 luglio 2013 e integrazione del 9 luglio 2015’. A.C.C. and T.G.W. acknowledge support from STFC consolidated grant ST/M001296/1. D.G., X.B., S.C., M.F. and J.L. acknowledge their roles as ESA-appointed CHEOPS science team members. We thank S. R. Kane for sharing some RV data before their publication and L. D. Nielsen for helping to plan the CHEOPS observations on the basis of her analysis of the TESS data. We also thank M. Cretignier for his independent analysis of the HARPS RV data.
- Published
- 2021
17. NGTS-11 b (TOI-1847 b): A Transiting Warm Saturn Recovered from a TESS Single-transit Event
- Author
-
Samuel Gill, Peter J. Wheatley, Benjamin F. Cooke, Andrés Jordán, Louise D. Nielsen, Daniel Bayliss, David R. Anderson, Jose I. Vines, Monika Lendl, Jack S. Acton, David J. Armstrong, François Bouchy, Rafael Brahm, Edward M. Bryant, Matthew R. Burleigh, Sarah L. Casewell, Philipp Eigmüller, Néstor Espinoza, Edward Gillen, Michael R. Goad, Nolan Grieves, Maximilian N. Günther, Thomas Henning, Melissa J. Hobson, Aleisha Hogan, James S. Jenkins, James McCormac, Maximiliano Moyano, Hugh P. Osborn, Don Pollacco, Didier Queloz, Heike Rauer, Liam Raynard, Felipe Rojas, Paula Sarkis, Alexis M. S. Smith, Marcelo Tala Pinto, Rosanna H. Tilbrook, Stéphane Udry, Christopher A. Watson, and Richard G. West
- Published
- 2020
- Full Text
- View/download PDF
18. Transient-optimized real-bogus classification with Bayesian convolutional neural networks - sifting the GOTO candidate stream
- Author
-
P. T. O'Brien, David Mkrtichian, Kendall Ackley, U. Burhanudin, T. Heikkilä, R. Cutter, Andrew J. Levan, Paul Chote, Benjamin P. Gompertz, Justyn R. Maund, Supachai Awiphan, Y. L. Mong, Klaas Wiersema, E. J. Daw, James McCormac, G. Ramsay, Krzysztof Ulaczyk, S. Tooke, Enric Palle, D. Mata Sánchez, R. Eyles-Ferris, Christopher J. Duffy, T. Killestein, Saran Poshyachinda, Eric Thrane, Seppo Mattila, James Mullaney, S. Williams, E. Rol, Puji Irawati, S. Aukkaravittayapun, L. K. Nuttall, Don Pollacco, Rubina Kotak, Danny Steeghs, Rene P. Breton, Utane Sawangwit, R. L. C. Starling, A. Chrimes, J. D. Lyman, L. Makrygianni, Elizabeth R. Stanway, Mark Kennedy, S. P. Littlefair, P. A. Strøm, Duncan K. Galloway, Martin J. Dyer, and V. S. Dhillon
- Subjects
Goto ,Test data generation ,Active learning (machine learning) ,Astronomy ,Bayesian probability ,FOS: Physical sciences ,Machine learning ,computer.software_genre ,01 natural sciences ,Convolutional neural network ,photometric [techniques] ,surveys ,0103 physical sciences ,Classifier (linguistics) ,ST/T007184/1 ,data analysis [methods] ,Transient (computer programming) ,010306 general physics ,QA ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,STFC ,QC ,Physics ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,business.industry ,RCUK ,Astronomy and Astrophysics ,ST/T003103/1 ,Space and Planetary Science ,Scalability ,Artificial intelligence ,ST/P000495/1 ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,computer ,astro-ph.IM - Abstract
Large-scale sky surveys have played a transformative role in our understanding of astrophysical transients, only made possible by increasingly powerful machine learning-based filtering to accurately sift through the vast quantities of incoming data generated. In this paper, we present a new real-bogus classifier based on a Bayesian convolutional neural network that provides nuanced, uncertainty-aware classification of transient candidates in difference imaging, and demonstrate its application to the datastream from the GOTO wide-field optical survey. Not only are candidates assigned a well-calibrated probability of being real, but also an associated confidence that can be used to prioritise human vetting efforts and inform future model optimisation via active learning. To fully realise the potential of this architecture, we present a fully-automated training set generation method which requires no human labelling, incorporating a novel data-driven augmentation method to significantly improve the recovery of faint and nuclear transient sources. We achieve competitive classification accuracy (FPR and FNR both below 1%) compared against classifiers trained with fully human-labelled datasets, whilst being significantly quicker and less labour-intensive to build. This data-driven approach is uniquely scalable to the upcoming challenges and data needs of next-generation transient surveys. We make our data generation and model training codes available to the community., 17 pages, 12 figures, resubmitted to MNRAS following reviewer comments
- Published
- 2021
19. Resolving period aliases for TESS monotransits recovered during the extended mission
- Author
-
Benjamin F. Cooke, Samuel Gill, Monika Lendl, Stéphane Udry, Don Pollacco, Peter J. Wheatley, David R. Anderson, François Bouchy, Nolan Grieves, Daniel Bayliss, and Louise D. Nielsen
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,education.field_of_study ,Alias ,010308 nuclear & particles physics ,Population ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Planetary system ,Q1 ,01 natural sciences ,Exoplanet ,Photometry (astronomy) ,Upgrade ,Space and Planetary Science ,Planet ,QB460 ,0103 physical sciences ,Transit (astronomy) ,education ,010303 astronomy & astrophysics ,QC ,Astrophysics - Earth and Planetary Astrophysics ,QB - Abstract
We set out to explore how best to mitigate the number of period aliases for a transiting TESS system with two identified transits separated by a large time period on the order of years. We simulate a realistic population of doubly transiting planets based on the observing strategy of the TESS primary and extended missions. We next simulate additional observations using photometry (NGTS) and spectroscopy (HARPS and CORALIE) and assess its impact on the period aliases of systems with two TESS transits. We find that TESS will detect around 400 exoplanets that exhibit one transit in each of the primary and extended missions. Based on the temporal coverage, each of these systems will have an average of 38 period aliases. We find that, assuming a combination of NGTS and CORALIE over observing campaigns spanning 50 days, we can find the true alias, and thus solve the period, for up to 207 of these systems with even more being solved if the observing campaigns are extended or we upgrade to HARPS over CORALIE., 11 pages, 8 figures. Accepted for publication in MNRAS
- Published
- 2020
20. The EBLM project – VII. Spin–orbit alignment for the circumbinary planet host EBLM J0608-59 A/TOI-1338 A
- Author
-
Damien Ségransan, Samuel Gill, William F. Welsh, Don Pollacco, Pierre F. L. Maxted, Andrew Collier Cameron, Stéphane Udry, Jerome A. Orosz, Veselin B. Kostov, Daniel C. Fabrycky, David V. Martin, H. M. Cegla, Amaury H. M. J. Triaud, Didier Queloz, Vedad Kunovac Hodžić, Coel Hellier, Francesco Pepe, Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, University of St Andrews. St Andrews Centre for Exoplanet Science, Queloz, Didier [0000-0002-3012-0316], and Apollo - University of Cambridge Repository
- Subjects
NDAS ,FOS: Physical sciences ,Library science ,01 natural sciences ,Categorical grant ,stars: low-mass ,stars: rotation ,low-mass [Stars] ,0103 physical sciences ,planets and satellites: formation ,QB Astronomy ,Astrophysics::Solar and Stellar Astrophysics ,media_common.cataloged_instance ,TOI-1338) ,European union ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,QB600 ,QC ,Astrophysics::Galaxy Astrophysics ,QB ,media_common ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,010308 nuclear & particles physics ,eclipsing [Binaries] ,European research ,binaries: eclipsing ,Astronomy and Astrophysics ,rotation [Stars] ,Scholarship ,QC Physics ,individual (EBLM J0608-59 [Stars] ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,stars: individual: (EBLM J0608-59, TOI-1338) ,formation [Planets and satellites] ,QB799 ,Astrophysics - Earth and Planetary Astrophysics - Abstract
A dozen short-period detached binaries are known to host transiting circumbinary planets. In all circumbinary systems so far, the planetary and binary orbits are aligned within a couple of degrees. However, the obliquity of the primary star, which is an important tracer of their formation, evolution, and tidal history, has only been measured in one circumbinary system until now. EBLM J0608-59/TOI-1338 is a low-mass eclipsing binary system with a recently discovered circumbinary planet identified by TESS. Here, we perform high-resolution spectroscopy during primary eclipse to measure the projected stellar obliquity of the primary component. The obliquity is low, and thus the primary star is aligned with the binary and planetary orbits with a projected spin-orbit angle $\beta = 2.8 \pm 17.1$ deg. The rotation period of $18.1 \pm 1.6$ days implied by our measurement of $v\sin{i_\star}$ suggests that the primary has not yet pseudo-synchronized with the binary orbit, but is consistent with gyrochronology and weak tidal interaction with the binary companion. Our result, combined with the known coplanarity of the binary and planet orbits, is suggestive of formation from a single disc. Finally, we considered whether the spectrum of the faint secondary star could affect our measurements. We show through simulations that the effect is negligible for our system, but can lead to strong biases in $v\sin{i_\star}$ and $\beta$ for higher flux ratios. We encourage future studies in eclipse spectroscopy test the assumption of a dark secondary for flux ratios $\gtrsim 1$ ppt., Comment: 7 pages, 3 figures. Accepted in MNRAS. Fixed a few typos
- Published
- 2020
21. specphot: a comparison of spectroscopic and photometric exoplanet follow-up methods
- Author
-
Don Pollacco and Benjamin F. Cooke
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Rank (linear algebra) ,010308 nuclear & particles physics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Radius ,Astrophysics ,Planetary system ,Parameter space ,01 natural sciences ,Exoplanet ,Photometry (optics) ,symbols.namesake ,Space and Planetary Science ,Planet ,0103 physical sciences ,symbols ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Doppler effect ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We set out a simulation to explore the follow-up of exoplanet candidates. We look at comparing photometric (transit method) and spectroscopic (Doppler shift method) techniques using three instruments: NGTS, HARPS and CORALIE. We take into account precision of follow-up and required observing time in attempt to rank each method for a given set of planetary system parameters. The methods are assessed on two criteria, SNR of the detection and follow-up time before characterisation. We find that different follow-up techniques are preferred for different regions of parameter space. For SNR we find that the ratio of spectroscopic to photometric SNR for a given system goes like $R_p/P^{\frac{1}{3}}$. For follow-up time we find that photometry is favoured for the shortest period systems ($, 10 pages, 7 figures. Accepted for publication in MNRAS
- Published
- 2020
22. Shallow transit follow‐up from N <scp>ext‐Generation Transit Survey</scp> : Simultaneous observations of <scp>HD 106315</scp> with 11 identical telescopes
- Author
-
Anders Erikson, Szilard Csizmadia, Don Pollacco, Richard G. West, Philipp Eigmüller, Liam Raynard, Daniel Bayliss, Matthew R. Burleigh, James S. Jenkins, Peter J. Wheatley, Stéphane Udry, Sarah L. Casewell, Heike Rauer, Juan Cabrera, Michael R. Goad, Alexis M. S. Smith, Andrew Grange, and Ramanathan Gurumoorthy
- Subjects
Extrasolare Planeten und Atmosphären ,Leitungsbereich PF ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Planetary system ,techniques: photometric ,Space and Planetary Science ,planets and satellites: HD 106315 c ,500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie ,Astrophysics::Earth and Planetary Astrophysics ,Transit (astronomy) ,Astrophysics - Instrumentation and Methods for Astrophysics ,planetary systems ,Geology ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The Next Generation Transit Survey (NGTS) is a photometric survey for transiting exoplanets, consisting of 12 identical 0.2‐m telescopes. We report a measurement of the transit of HD 106315 c using a novel observing mode in which multiple NGTS telescopes observed the same target, with the aim of increasing the signal‐to‐noise ratio. Combining the data allows the robust detection of the transit, which has a depth less than 0.1%, rivaling the performance of much larger telescopes. We demonstrate the capability of NGTS to contribute to the follow‐up of K2 and Transiting Exoplanet Survey Satellite discoveries using this observing mode. In particular, NGTS is well‐suited to the measurement of shallow transits of bright targets. This is particularly important to improve orbital ephemerides of relatively long‐period planets, where only a small number of transits are observed from space.
- Published
- 2020
23. The EBLM project X. Benchmark masses, radii and temperatures for two fully convective M-dwarfs using K2
- Author
-
Alison Duck, David V Martin, Sam Gill, Tayt Armitage, Romy Rodríguez Martínez, Pierre F L Maxted, Daniel Sebastian, Ritika Sethi, Matthew I Swayne, Andrew Collier Cameron, Georgina Dransfield, B Scott Gaudi, Michael Gillon, Coel Hellier, Vedad Kunovac, Christophe Lovis, James McCormac, Francesco A Pepe, Don Pollacco, Lalitha Sairam, Alexandre Santerne, Damien Ségransan, Matthew R Standing, John Southworth, Amaury H M J Triaud, Stephane Udry, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. St Andrews Centre for Exoplanet Science
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,binaries-eclipsing [Stars] ,photometric [Techniques] ,FOS: Physical sciences ,Astronomy and Astrophysics ,Low-mass ,3rd-DAS ,Spectroscopic ,QC Physics ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Fundamental parameters ,MCP ,QB Astronomy ,QC ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics ,QB - Abstract
M-dwarfs are the most abundant stars in the galaxy and popular targets for exoplanet searches. However, their intrinsic faintness and complex spectra inhibit precise characterisation. We only know of dozens of M-dwarfs with fundamental parameters of mass, radius and effective temperature characterised to better than a few per cent. Eclipsing binaries remain the most robust means of stellar characterisation. Here we present two targets from the Eclipsing Binary Low Mass (EBLM) survey that were observed with K2: EBLM J0055-00 and EBLM J2217-04. Combined with HARPS and CORALIE spectroscopy, we measure M-dwarf masses with precisions better than 5%, radii better than 3% and effective temperatures on order 1%. However, our fits require invoking a model to derive parameters for the primary star. By investigating three popular models, we determine that the model uncertainty is of similar magnitude to the statistical uncertainty in the model fits. Therefore, whilst these can be considered benchmark M-dwarfs, we caution the community to consider model uncertainty when pushing the limits of precise stellar characterisation., Comment: 13 Pages, MNRAS Submission, Comments welcome
- Published
- 2022
- Full Text
- View/download PDF
24. Searching for Fermi GRB optical counterparts with the prototype Gravitational-wave Optical Transient Observer (GOTO)
- Author
-
Rene P. Breton, B. P. Gompertz, Seppo Mattila, S. P. Littlefair, James Mullaney, J. D. Lyman, K. Noysena, Y. L. Mong, Eric Thrane, Danny Steeghs, Justyn R. Maund, T. R. Marsh, Klaas Wiersema, Michael J. I. Brown, E. Rol, Christopher J. Duffy, G. Ramsay, David Mkrtichian, Duncan K. Galloway, L. K. Nuttall, Martin J. Dyer, Puji Irawati, P. A. Strøm, P. T. O'Brien, T. Heikkilä, K. Ackley, Mark Kennedy, D. Mata-Sanchez, A. Chrimes, Utane Sawangwit, Don Pollacco, Elizabeth R. Stanway, V. S. Dhillon, R. L. C. Starling, E. J. Daw, Supachai Awiphan, Krzysztof Ulaczyk, S. Tooke, T. Killestein, Rubina Kotak, R. Cutter, Paul Chote, R. Eyles-Ferris, James McCormac, Andrew J. Levan, L. Makrygianni, U. Burhanudin, and Enric Palle
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Large field of view ,Goto ,010308 nuclear & particles physics ,Gravitational wave ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Observer (physics) ,01 natural sciences ,Square (algebra) ,Space and Planetary Science ,0103 physical sciences ,Transient (oscillation) ,Astrophysics - High Energy Astrophysical Phenomena ,Gamma-ray burst ,010303 astronomy & astrophysics ,QC ,Fermi Gamma-ray Space Telescope ,QB - Abstract
The typical detection rate of $\sim1$ gamma-ray burst (GRB) per day by the \emph{Fermi} Gamma-ray Burst Monitor (GBM) provides a valuable opportunity to further our understanding of GRB physics. However, the large uncertainty of the \emph{Fermi} localization typically prevents rapid identification of multi-wavelength counterparts. We report the follow-up of 93 \emph{Fermi} GRBs with the Gravitational-wave Optical Transient Observer (GOTO) prototype on La Palma. We selected 53 events (based on favourable observing conditions) for detailed analysis, and to demonstrate our strategy of searching for optical counterparts. We apply a filtering process consisting of both automated and manual steps to 60\,085 candidates initially, rejecting all but 29, arising from 15 events. With $\approx3$ GRB afterglows expected to be detectable with GOTO from our sample, most of the candidates are unlikely to be related to the GRBs. Since we did not have multiple observations for those candidates, we cannot confidently confirm the association between the transients and the GRBs. Our results show that GOTO can effectively search for GRB optical counterparts thanks to its large field of view of $\approx40$ square degrees and its depth of $\approx20$ mag. We also detail several methods to improve our overall performance for future follow-up programs of \emph{Fermi} GRBs.
- Published
- 2021
25. TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet
- Author
-
Andrés Jordán, Sara Seager, Brett C. Addison, Maximilian N. Günther, Monika Lendl, Jack Okumura, Jorge Lillo-Box, Jon M. Jenkins, Roland Vanderspek, C. G. Tinney, Benjamin J. Fulton, Peter J. Wheatley, Erik A. Petigura, Beth A. Henderson, C. Stibbard, P. Figueira, Rafael Brahm, Eric L. N. Jensen, Michael Reefe, Cesar Briceno, Chris Stockdale, S. Hojjatpanah, Farisa Y. Morales, Alexis M. S. Smith, Caroline Dorn, Thomas Henning, Vardan Adibekyan, George W. King, Lauren M. Weiss, David R. Ciardi, Howard Isaacson, Richard P. Schwarz, Thomas Barclay, Stephen R. Kane, Keivan G. Stassun, David W. Latham, Malcolm Fridlund, Jack S. Acton, Ravit Helled, Sharon X. Wang, John Berberian, Joseph D. Twicken, J. F. Otegi, David R. Anderson, Sarah L. Casewell, Elise Furlan, Elisabeth Matthews, Johanna Teske, Rodrigo F. Díaz, Samuel Gill, Daniel Bayliss, Ian Crossfield, Peter Plavchan, Matthew W. Mengel, Joshua E. Schlieder, John F. Kielkopf, Stéphane Udry, E. Delgado Mena, H. P. Osborn, Avi Shporer, R. Cloutier, J. Villasenor, Duncan J. Wright, E. Gaidos, A. Osborn, K. I. Collins, Angelle Tanner, Nicholas M. Law, Björn Benneke, Joshua N. Winn, Fei Dai, Nicholas J. Scott, Erica J. Gonzales, Courtney D. Dressing, Sarah Ballard, Don Pollacco, Coel Hellier, Michael R. Goad, David J. Armstrong, Varoujan Gorjian, Paula Sarkis, Richard C. Kidwell, F. Zohrabi, Nuno C. Santos, David Barrado, Matthew R. Burleigh, Sergio Hoyer, Claire Geneser, Christopher J. Burke, Richard G. West, James McCormac, P. A. Strøm, Daniel Huber, Aleisha Hogan, Paul Robertson, Natalie M. Batalha, Edward M. Bryant, Liam Raynard, Karen A. Collins, Robert A. Wittenmyer, Mark E. Rose, Rachel A. Matson, Steve B. Howell, James S. Jenkins, Jose I. Vines, S. C. C. Barros, Néstor Espinoza, B. Cale, Andrew W. Howard, Diana Dragomir, Alexandre Santerne, M. Lund, Olivier Demangeon, Brendan P. Bowler, Benjamin F. Cooke, Xavier Dumusque, Andrew W. Mann, Hui Zhang, Carl Ziegler, Arpita Roy, Rosanna H. Tilbrook, Sérgio F. Sousa, George R. Ricker, Jonathan Horner, Elisa V. Quintana, Thiam-Guan Tan, Louise D. Nielsen, François Bouchy, University of New South Wales [Sydney] (UNSW), McDonald Observatory, University of Texas at Austin [Austin], Leiden Observatory [Leiden], Universiteit Leiden, Chalmers University of Technology [Gothenburg, Sweden], NASA Ames Research Center Cooperative for Research in Earth Science in Technology (ARC-CREST), NASA Ames Research Center (ARC), European Southern Observatory [Santiago] (ESO), European Southern Observatory (ESO), Instituto de Astrofísica e Ciências do Espaço (IASTRO), Center for Space Research [Cambridge] (CSR), Massachusetts Institute of Technology (MIT), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, European Space Astronomy Centre (ESAC), Agence Spatiale Européenne = European Space Agency (ESA), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Département de Physique [Montréal], Université de Montréal (UdeM), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [Leicester], University of Leicester, Infrared Processing and Analysis Center (IPAC), California Institute of Technology (CALTECH), Optimisation - Système - Energie (GEPEA-OSE), Laboratoire de génie des procédés - environnement - agroalimentaire (GEPEA), Institut Universitaire de Technologie - Nantes (IUT Nantes), Université de Nantes (UN)-Université de Nantes (UN)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut Universitaire de Technologie Saint-Nazaire (IUT Saint-Nazaire), Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Universitaire de Technologie - La Roche-sur-Yon (IUT La Roche-sur-Yon), Université de Nantes (UN)-Institut Universitaire de Technologie - Nantes (IUT Nantes), Université de Nantes (UN), Institut für Virologie, Philipps University, MIT Kavli Institute for Astrophysics and Space Research, Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Department of Geology and Geophysics [Mānoa], University of Hawai‘i [Mānoa] (UHM), Universität Zürich [Zürich] = University of Zurich (UZH), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Universidad de Chile = University of Chile [Santiago] (UCHILE), Pontificia Universidad Católica de Chile (UC), University of Louisville, Austrian Academy of Sciences (OeAW), Lund University [Lund], University of Warwick [Coventry], Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève = University of Geneva (UNIGE), Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE), German Aerospace Center (DLR), Swiss Bee Research Centre, Centre for Medical Image Computing (CMIC), and University College of London [London] (UCL)
- Subjects
(TOI-431 ,planets and satellites: detection ,Fundamental Parameters ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,(TOI-431, TIC 31374837) ,FOS: Physical sciences ,Individual ,Astrophysics ,Q1 ,01 natural sciences ,Neptune ,Planet ,QB460 ,0103 physical sciences ,planets and satellites: fundamental parameters ,010303 astronomy & astrophysics ,QB600 ,QC ,0105 earth and related environmental sciences ,QB ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Super-Earth ,Astronomy and Astrophysics ,Planets and Satellites ,Radius ,Light curve ,Exoplanet ,Radial velocity ,Photometry (astronomy) ,Detection ,13. Climate action ,Space and Planetary Science ,planets and satellites: individual: (TOI-431 ,TIC 31374837) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present the bright (V$_{mag} = 9.12$), multi-planet system TOI-431, characterised with photometry and radial velocities. We estimate the stellar rotation period to be $30.5 \pm 0.7$ days using archival photometry and radial velocities. TOI-431b is a super-Earth with a period of 0.49 days, a radius of 1.28 $\pm$ 0.04 R$_{\oplus}$, a mass of $3.07 \pm 0.35$ M$_{\oplus}$, and a density of $8.0 \pm 1.0$ g cm$^{-3}$; TOI-431d is a sub-Neptune with a period of 12.46 days, a radius of $3.29 \pm 0.09$ R$_{\oplus}$, a mass of $9.90^{+1.53}_{-1.49}$ M$_{\oplus}$, and a density of $1.36 \pm 0.25$ g cm$^{-3}$. We find a third planet, TOI-431c, in the HARPS radial velocity data, but it is not seen to transit in the TESS light curves. It has an $M \sin i$ of $2.83^{+0.41}_{-0.34}$ M$_{\oplus}$, and a period of 4.85 days. TOI-431d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterisation, while the super-Earth TOI-431b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431b is a prime TESS discovery for the study of rocky planet phase curves., Comment: 21 pages, 11 figures, 3 appendices, accepted for publication in MNRAS
- Published
- 2021
26. Exploiting timing capabilities of the CHEOPS mission with warm-Jupiter planets
- Author
-
M. Steller, Magali Deleuil, Roberto Ragazzoni, G. Scandariato, Nascimbeni, J. Asquier, László L. Kiss, Yann Alibert, C. Broeg, Nuno C. Santos, David Barrado, Enric Palle, Damien Ségransan, Andrea Fortier, Don Pollacco, Monika Lendl, B.-O. Demory, T. G. Wilson, Demetrio Magrin, Giampaolo Piotto, Nicola Rando, T. Bandy, M. Fridlund, J. Hasiba, Michaël Gillon, Van Grootel, J. Cabrera, David Ehrenreich, Anders Erikson, Alexis Brandeker, Willy Benz, K. G. Isaak, N. A. Walton, I. Pagano, Jacques Laskar, E. Kopp, G. Escude, G. Olofsson, Z. Garai, Olivier Demangeon, C. Lovis, Pierre F. L. Maxted, Wolfgang Baumjohann, S. C. C. Barros, Nicolas Billot, Kevin Heng, Manuel Guedel, Sébastien Charnoz, Thomas Beck, T. Bárczy, Xavier Bonfils, Gyula M. Szabó, Szilard Csizmadia, A L des Etangs, Alexis M. S. Smith, Matteo Munari, L. Delrez, A. E. Simon, G. Lacedelli, L. Borsato, Sérgio F. Sousa, Didier Queloz, F. Marzari, Davide Gandolfi, L M Serrano, N. Thomas, Andrew Collier Cameron, Roi Alonso, Ignasi Ribas, Stéphane Udry, M. Beck, Sergio Hoyer, A. Bonfanti, Melvyn B. Davies, Heike Rauer, Luca Fossati, Gisbert Peter, Roland Ottensamer, Department of Brain and Behavioural Sciences, University of Pavia, Dipartimento di Fisica e Astronomia 'Galileo Galilei', Universita degli Studi di Padova, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Keele University [Keele], Instituto de Astrofísica e Ciências do Espaço (IASTRO), Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, University of St Andrews. St Andrews Centre for Exoplanet Science, Agenzia Spaziale Italiana, Hungarian Scientific Research Fund, Fundação para a Ciência e a Tecnologia (Portugal), and European Commission
- Subjects
WASP-106 b ,WASP-38b ,Q1 ,01 natural sciences ,Jupiter ,Planets and satellites: individual: HAT-P-17 b, KELT-6 b, WASP-8 b, WASP-38 b, WASP-106 b, WASP-130 b, K2-287 b ,Techniques: photometric ,techniques: photometric ,HAT-P-17 b ,Planet ,QB460 ,QB Astronomy ,Transit (astronomy) ,010303 astronomy & astrophysics ,QC ,QB ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,520 Astronomy ,Sampling (statistics) ,Planets and Satellites ,3rd-DAS ,Exoplanet ,Astrophysics::Earth and Planetary Astrophysics ,FOS: Physical sciences ,Individual ,individual: HAT-P-17 b, KELT-6 b, WASP-8 b, WASP-38 b, WASP-106 b, WASP-130 b, K2-287 b [Planets and satellites] ,planets and satellites: individual: HAT-P-17 b ,KELT-6 b ,Photometric ,0103 physical sciences ,WASP-8 b ,QB600 ,010308 nuclear & particles physics ,photometric [Techniques] ,Astronomy ,Astronomy and Astrophysics ,WASP-130 b ,Planetary system ,620 Engineering ,Light curve ,Techniques ,QC Physics ,K2-287 b ,Space and Planetary Science ,individual: HAT-P-17 b [Planets and satellites] ,WASP-38 b ,Satellite ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics ,QB799 - Abstract
We present 17 transit light curves of seven known warm-Jupiters observed with the CHaracterising ExOPlanet Satellite (CHEOPS). The light curves have been collected as part of the CHEOPS Guaranteed Time Observation (GTO) program that searches for transit-timing variation (TTV) of warm-Jupiters induced by a possible external perturber to shed light on the evolution path of such planetary systems. We describe the CHEOPS observation process, from the planning to the data analysis. In this work, we focused on the timing performance of CHEOPS, the impact of the sampling of the transit phases, and the improvement we can obtain by combining multiple transits together. We reached the highest precision on the transit time of about 13-16 s for the brightest target (WASP-38, G = 9.2) in our sample. From the combined analysis of multiple transits of fainter targets with G ≥ 11, we obtained a timing precision of ∼2 min. Additional observations with CHEOPS, covering a longer temporal baseline, will further improve the precision on the transit times and will allow us to detect possible TTV signals induced by an external perturber., The early support for CHEOPS by Daniel Neuenschwander is gratefully acknowledged. GPi, VN, GSs, IPa, LBo, GLa, and RRa acknowledge the funding support from Italian Space Agency (ASI) regulated by ‘Accordo ASI-INAF n. 2013-016-R.0 del 9 luglio 2013 e integrazione del 9 luglio 2015 CHEOPS Fasi A/B/C’. GLa acknowledges support by CARIPARO Foundation, according to the agreement CARIPARO-Università degli Studi di Padova (Pratica n. 2018/0098), and scholarship support by the ‘Soroptimist International d’Italia’ association (Cortina d’Ampezzo Club). VVG is an FRS-FNRS Research Associate. VVG, LD, and MG thank the Belgian Federal Science Policy Office (BELSPO) for the provision of financial support in the framework of the PRODEX Programme of the European Space Agency (ESA) under contract number PEA 4000131343. DG, MF, SC, XB, and JL acknowledge their roles as ESA-appointed CHEOPS science team members. ZG was supported by the Hungarian NKFI grant No. K-119517 and the GINOP grant No. 2.3.2-15-2016-00003 of the Hungarian National Research Development and Innovation Office, by the City of Szombathely under agreement No. 67.177-21/2016, and by the VEGA grant of the Slovak Academy of Sciences No. 2/0031/18. This work was supported by FCT - Fundação para a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 - Programa Operacional Competitividade e Internacionalização by these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 and POCI-01-0145-FEDER-032113; PTDC/FIS-AST/28953/2017 and POCI-01-0145-FEDER-028953; PTDC/FIS-AST/28987/2017 and POCI-01-0145-FEDER-028987. ACC and TGW acknowledge support from STFC consolidated grant No. ST/M001296/1. SH acknowledges CNES funding through the grant 837319. ODSD is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through Fundação para a Ciência e Tecnologia (FCT). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project FOUR ACES; grant agreement No. 724427).
- Published
- 2021
27. The EBLM project - VIII. First results for M-dwarf mass, radius, and effective temperature measurements using CHEOPS light curves
- Author
-
David V. Martin, N. A. Walton, Isabelle Boisse, Giampaolo Piotto, Matthew P. Battley, Roberto Ragazzoni, A. Deline, Demetrio Magrin, J. Asquier, Roi Alonso, H. G. Floren, N. Miller, M. Steller, Pierre F. L. Maxted, Didier Queloz, Ignasi Ribas, Stéphane Udry, S. C. C. Barros, S. G. Sousa, C. Lovis, Kevin Heng, Manuel Guedel, G. Anglada Escudé, Sébastien Charnoz, Melissa J. Hobson, Monika Lendl, B.-O. Demory, M. I. Swayne, M. Beck, László L. Kiss, Nuno C. Santos, David Barrado, J. Cabrera, Willy Benz, Sz. Csizmadia, Thomas Beck, P. Guterman, Enric Palle, Damien Ségransan, Yann Alibert, Sergio Hoyer, G. Olofsson, Georgina Dransfield, Matthew R. Standing, Davide Gandolfi, S. Lalitha, N. Thomas, Alexis Brandeker, A. E. Simon, Wolfgang Baumjohann, Don Pollacco, C. Broeg, Guillaume Hébrard, Nascimbeni, Kunovac Hodžić, Alexis M. S. Smith, T. G. Wilson, Emma Willett, Nicola Rando, A. Bekkelien, M.-D. Busch, Ingo Walter, Van Grootel, A. Santerne, M. Fridlund, Gy. M. Szabó, David Ehrenreich, Nicolas Billot, James McCormac, K. G. Isaak, I. Pagano, Magali Deleuil, Andrea Fortier, S. Salmon, Xavier Bonfils, A. Lecavelier des Etangs, Heike Rauer, Laetitia Delrez, N. Heidari, Luca Fossati, Amaury H. M. J. Triaud, A. Collier Cameron, Melvyn B. Davies, G. Scandariato, Gisbert Peter, M. Steinberger, Luca Marafatto, D. Futyan, Roland Ottensamer, Jacques Laskar, Michaël Gillon, Anders Erikson, T. Bárczy, Olivier Demangeon, Coel Hellier, A. Bonfanti, Keele University [Keele], Instituto de Astrofísica e Ciências do Espaço (IASTRO), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, University of St Andrews. St Andrews Centre for Exoplanet Science, and Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)
- Subjects
Fundamental Parameters ,Spectroscopic ,01 natural sciences ,Categorical grant ,spectroscopic [Techniques] ,techniques: photometric ,stars: low-mass ,QB460 ,QB Astronomy ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,QC ,media_common ,QB ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Horizon (archaeology) ,eclipsing [Binaries] ,520 Astronomy ,European research ,500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften ,binaries: eclipsing ,3rd-DAS ,Radius ,3. Good health ,Astrophysics - Solar and Stellar Astrophysics ,stars: fundamental parameters ,Astrophysics::Earth and Planetary Astrophysics ,Meteorology ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Photometric ,fundamental parameters [Stars] ,low-mass [Stars] ,0103 physical sciences ,media_common.cataloged_instance ,Low-Mass ,European union ,Eclipsing ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,QB600 ,010308 nuclear & particles physics ,photometric [Techniques] ,Binaries ,Astronomy and Astrophysics ,Effective temperature ,620 Engineering ,Light curve ,Stars ,Techniques ,QC Physics ,Space and Planetary Science ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,techniques: spectroscopic ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The accuracy of theoretical mass, radius and effective temperature values for M-dwarf stars is an active topic of debate. Differences between observed and theoretical values have raised the possibility that current theoretical stellar structure and evolution models are inaccurate towards the low-mass end of the main sequence. To explore this issue we use the CHEOPS satellite to obtain high-precision light curves of eclipsing binaries with low mass stellar companions. We use these light curves combined with the spectroscopic orbit for the solar-type companion to measure the mass, radius and effective temperature of the M-dwarf star. Here we present the analysis of three eclipsing binaries. We use the pycheops data analysis software to fit the observed transit and eclipse events of each system. Two of our systems were also observed by the TESS satellite -- we similarly analyse these light curves for comparison. We find consistent results between CHEOPS and TESS, presenting three stellar radii and two stellar effective temperature values of low-mass stellar objects. These initial results from our on-going observing programme with CHEOPS show that we can expect to have ~24 new mass, radius and effective temperature measurements for very low mass stars within the next few years., Comment: 12 pages, 8 figures, accepted for publication in MNRAS
- Published
- 2021
28. The all-sky PLATO input catalogue
- Author
-
V. Granata, Valerio Nascimbeni, Giampaolo Piotto, Ana M. Heras, Martin Pertenais, Magali Deleuil, Serena Benatti, Riccardo Claudi, Anko Börner, Don Pollacco, M. Fabrizio, Demetrio Magrin, E. Alei, M. Montalto, L. Prisinzano, Carsten Paproth, Roberto Ragazzoni, Silvano Desidera, Isabella Pagano, Marie-Jo Goupil, J. M. Mas-Hesse, Stéphane Udry, G. Altavilla, Laurent Gizon, Conny Aerts, P. M. Marrese, Sergio Ortolani, S. Marinoni, Juan Cabrera, Luca Malavolta, Heike Rauer, and G. Ramsay
- Subjects
010504 meteorology & atmospheric sciences ,Stellar mass ,Astronomy ,ISM: structure ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Astrometry ,Catalogs ,Planets and satellites: terrestrial planets ,Stars: fundamental parameters ,Techniques: photometric ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Subgiant ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Interstellar medium ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Terrestrial planet ,Astrophysics::Earth and Planetary Astrophysics ,Circumstellar habitable zone ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. The ESA PLAnetary Transits and Oscillations of stars (PLATO) mission will search for terrestrial planets in the habitable zone of solar-type stars. Because of telemetry limitations, PLATO targets need to be pre-selected. Aims. In this paper, we present an all sky catalogue that will be fundamental to selecting the best PLATO fields and the most promising target stars, deriving their basic parameters, analysing the instrumental performances, and then planing and optimising follow-up observations. This catalogue also represents a valuable resource for the general definition of stellar samples optimised for the search of transiting planets. Methods. We used Gaia Data Release 2 (DR2) astrometry and photometry and 3D maps of the local interstellar medium to isolate FGK (V$\leq$13) and M (V$\leq$16) dwarfs and subgiant stars. Results. We present the first public release of the all-sky PLATO Input Catalogue (asPIC1.1) containing a total of 2 675 539 stars including 2 378 177 FGK dwarfs and subgiants and 297 362 M dwarfs. The median distance in our sample is 428 pc for FGK stars and 146 pc for M dwarfs, respectively. We derived the reddening of our targets and developed an algorithm to estimate stellar fundamental parameters (Teff, radius, mass) from astrometric and photometric measurements. Conclusions. We show that the overall (internal+external) uncertainties on the stellar parameter determined in the present study are $\sim$230 K (4%) for the effective temperatures, $\sim$0.1 R$_{\odot}$ (9%) for the stellar radii, and $\sim$0.1 M$_{\odot}$ (11%) for the stellar mass. We release a special target list containing all known planet hosts cross-matched with our catalogue., Accepted for publication in Astronomy & Astrophysics
- Published
- 2021
29. Light curve classification with recurrent neural networks for GOTO:dealing with imbalanced data
- Author
-
Y. L. Mong, Duncan K. Galloway, V. S. Dhillon, James McCormac, U. Burhanudin, R. Eyles-Ferris, P. T. O'Brien, Danny Steeghs, Martin J. Dyer, S. P. Littlefair, Kendall Ackley, K. Noysena, Utane Sawangwit, L. K. Nuttall, Don Pollacco, R. L. C. Starling, T. Heikkilä, Mark Kennedy, Andrew J. Levan, J. D. Lyman, David Mkrtichian, Enric Palle, P. A. Strøm, Seppo Mattila, A. Chrimes, Klaas Wiersema, Elizabeth R. Stanway, James Mullaney, D. Mata-Sanchez, Puji Irawati, B. P. Gompertz, Christopher J. Duffy, Eric Thrane, Supachai Awiphan, Rene P. Breton, Krzysztof Ulaczyk, S. Tooke, T. Killestein, E. J. Daw, Rubina Kotak, Justyn R. Maund, G. Ramsay, Paul Chote, R. Cutter, and L. Makrygianni
- Subjects
Data stream ,Goto ,FOS: Physical sciences ,Scale-invariant feature transform ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,photometric [techniques] ,0103 physical sciences ,Classifier (linguistics) ,data analysis [methods] ,survey ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,STFC ,Physics ,010308 nuclear & particles physics ,business.industry ,Deep learning ,RCUK ,Astronomy and Astrophysics ,Pattern recognition ,Object (computer science) ,Class (biology) ,Recurrent neural network ,ST/R000964/1 ,Space and Planetary Science ,Artificial intelligence ,Astrophysics - Instrumentation and Methods for Astrophysics ,business - Abstract
The advent of wide-field sky surveys has led to the growth of transient and variable source discoveries. The data deluge produced by these surveys has necessitated the use of machine learning (ML) and deep learning (DL) algorithms to sift through the vast incoming data stream. A problem that arises in real-world applications of learning algorithms for classification is imbalanced data, where a class of objects within the data is underrepresented, leading to a bias for over-represented classes in the ML and DL classifiers. We present a recurrent neural network (RNN) classifier that takes in photometric time-series data and additional contextual information (such as distance to nearby galaxies and on-sky position) to produce real-time classification of objects observed by the Gravitational-wave Optical Transient Observer (GOTO), and use an algorithm-level approach for handling imbalance with a focal loss function. The classifier is able to achieve an Area Under the Curve (AUC) score of 0.972 when using all available photometric observations to classify variable stars, supernovae, and active galactic nuclei. The RNN architecture allows us to classify incomplete light curves, and measure how performance improves as more observations are included. We also investigate the role that contextual information plays in producing reliable object classification., Comment: 16 pages, 12 figures, to be published in Monthly Notices of the Royal Astronomical Society
- Published
- 2021
30. The PLATO mission: Overview and status
- Author
-
Heike Rauer, Isabella Pagano, Miguel Mas-Hesse, Conny Aerts, Magali Deleuil, Laurent Gizon, Marie-Jo Goupil, Ana María Heras, Giampaolo Piotto, Don Pollacco, Roberto Ragazzoni, Gavin Ramsay, and Stéphane Udry
- Subjects
The PLATO Mission - Abstract
PLATO is an ESA mission dedicated to the study of exoplanets and stars, with a planned launch date in 2026. By performing photometric monitoring of about 250 000 bright stars (mV < 13), PLATO will be able to discover and characterise hundreds of exoplanets, including small planets orbiting up to the habitable zone of solar-like stars. PLATO’s precision will also allow for a precise characterisation of the host stars through asteroseismology. These objectives require both a wide field of view and high sensitivity, which are achieved with a payload comprising 24 cameras with partially overlapping fields of view. They are complemented by 2 more cameras optimised for brighter stars that will also be used as fine guidance sensor. The PLATO development phase started after the mission adoption in July 2017. The Mission Preliminary Design Review (PDR) was declared successful in October 2020. The implementation and delivery to ESA of the flight model CCDs for all cameras (4 CCDs per camera) has been completed. Currently the Structural Thermal Model (STM) of the payload optical bench is being manufactured, while the STM of a single camera has already been successfully tested. In parallel, a first engineering model of a complete, fully functional camera is being integrated, to verify its performance under operational conditions, and the qualification models of the different payload units are being built. We will present the status of the PLATO payload implementation in the context of the satellite development. In particular, we will describe the payload manufacturing, integration, and tests that will be reviewed at the Critical Milestone in the second half of 2021. We will also summarise the progress made in the science preparation activities, as well as on the ground segment.
- Published
- 2021
31. Discovery and characterization of the exoplanets WASP-148b and c
- Author
-
Jose-Manuel Almenara, K. Lam, Coel Hellier, Jorge Prieto-Arranz, Barry Smalley, Olivier Demangeon, Pierre F. L. Maxted, M. Martin-Lagarde, Flavien Kiefer, S. C. C. Barros, G. Boué, Carole A. Haswell, T. Lopez, Richard G. West, P. A. Wilson, D. Verilhac, Don Pollacco, D. J. A. Brown, Alexandre Santerne, P. Boumis, Jacques Laskar, Oliver Turner, Enric Palle, H. P. Osborn, James McCormac, Alexandre C. M. Correia, Aldo S. Bonomo, Peter J. Wheatley, Guillaume Hébrard, Didier Queloz, M. Deleuil, Ulrich Kolb, Louise D. Nielsen, Isabelle Boisse, Rodrigo F. Díaz, Stéphane Udry, A. Collier Cameron, A. Lecavelier des Etangs, François Bouchy, David R. Anderson, Amanda P. Doyle, S. Dalal, Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Departamento de Fisica [Aveiro], Universidade de Aveiro, University of St Andrews [Scotland], Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Inflammatory Bowel Disease Center,, Cedars-Sinai Medical Center, Université Paris-Sud - Paris 11 (UP11), Laboratoire de Génie de la Conception (LGeco), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institute of Physical Chemistry, Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), University of Toronto, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Warwick [Coventry], Department of Geosciences and Natural Resource Management [Copenhagen] (IGN), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève = University of Geneva (UNIGE), Centro de Astrofísica da Universidade do Porto (CAUP), Universidade do Porto = University of Porto, The University of Sydney, Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, University of St Andrews. St Andrews Centre for Exoplanet Science, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Johannes Gutenberg - Universität Mainz (JGU), University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Université de Genève (UNIGE), Universidade do Porto, Queloz, Didier [0000-0002-3012-0316], and Apollo - University of Cambridge Repository
- Subjects
Orbital plane ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,spectroscopic [Techniques] ,techniques: photometric ,Planet ,QB460 ,0103 physical sciences ,Hot Jupiter ,techniques: radial velocities ,QB Astronomy ,Astrophysics::Solar and Stellar Astrophysics ,QA ,010303 astronomy & astrophysics ,planetary systems ,QB600 ,QC ,QB ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,radial velocities [Techniques] ,010308 nuclear & particles physics ,photometric [Techniques] ,Astronomy and Astrophysics ,DAS ,Planetary system ,Light curve ,Orbital period ,Exoplanet ,Radial velocity ,Planetary systems ,QC Physics ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,techniques: spectroscopic ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present the discovery and characterization of WASP-148, a new extrasolar system that includes at least two giant planets. The host star is a slowly rotating inactive late-G dwarf with a V=12 magnitude. The planet WASP-148b is a hot Jupiter of 0.72 R_Jup and 0.29 M_Jup that transits its host with an orbital period of 8.80 days. We found the planetary candidate with the SuperWASP photometric survey, then characterized it with the SOPHIE spectrograph. Our radial velocity measurements subsequently revealed a second planet in the system, WASP-148c, with an orbital period of 34.5 days and a minimum mass of 0.40 M_Jup. No transits of this outer planet were detected. The orbits of both planets are eccentric and fall near the 4:1 mean-motion resonances. This configuration is stable on long timescales, but induces dynamical interactions so that the orbits differ slightly from purely Keplerian orbits. In particular, WASP-148b shows transit-timing variations of typically 15 minutes, making it the first interacting system with transit-timing variations that is detected on ground-based light curves. We establish that the mutual inclination of the orbital plane of the two planets cannot be higher than 35 degrees, and the true mass of WASP-148c is below 0.60 M_Jup. We present photometric and spectroscopic observations of this system that cover a time span of ten years. We also provide their Keplerian and Newtonian analyses; these analyses should be significantly improved through future TESS~observations., 16 pages, 10 figures, 7 tables, A&A in press
- Published
- 2021
- Full Text
- View/download PDF
32. A new photometric and dynamical study of the eclipsing binary star HW Virginis
- Author
-
G Piazza, Mattia Libralato, Richard G. West, F Scaggiante, Mario Damasso, Luca Borsato, Domenico Nardiello, Granata, S B Brown-Sevilla, Giampaolo Piotto, Nascimbeni, A. Cunial, Leonardo Tartaglia, Don Pollacco, L. S. Colombo, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
planets and satellites: dynamical evolution and stability ,Binary number ,FOS: Physical sciences ,Astrophysics ,Star (graph theory) ,01 natural sciences ,Stability (probability) ,techniques: photometric ,0103 physical sciences ,Binary star ,stars: individual: HW Vir ,010303 astronomy & astrophysics ,planetary systems ,Solar and Stellar Astrophysics (astro-ph.SR) ,Eclipse ,QB ,Physics ,010308 nuclear & particles physics ,binaries: eclipsing ,Astronomy and Astrophysics ,Light curve ,Orbital period ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Binaries: eclipsing ,Planetary systems ,Planets and satellites: dynamical evolution and stability ,Stars: individual: HW Vir ,Techniques: photometric ,Circumbinary planet - Abstract
A growing number of eclipsing binary systems of the "HW Vir" kind (i. e., composed by a subdwarf-B/O primary star and an M dwarf secondary) show variations in their orbital period, also called Eclipse Time Variations (ETVs). Their physical origin is not yet known with certainty: while some ETVs have been claimed to arise from dynamical perturbations due to the presence of circumbinary planetary companions, other authors suggest that the Applegate effect or other unknown stellar mechanisms could be responsible for them. In this work, we present twenty-eight unpublished high-precision light curves of one of the most controversial of these systems, the prototype HW Virginis. We homogeneously analysed the new eclipse timings together with historical data obtained between 1983 and 2012, demonstrating that the planetary models previously claimed do not fit the new photometric data, besides being dynamically unstable. In an effort to find a new model able to fit all the available data, we developed a new approach based on a global-search genetic algorithm and eventually found two new distinct families of solutions that fit the observed timings very well, yet dynamically unstable at the 10^5-year time scale. This serves as a cautionary tale on the existence of formal solutions that apparently explain ETVs but are not physically meaningful, and on the need of carefully testing their stability. On the other hand, our data confirm the presence of an ETV on HW Vir that known stellar mechanisms are unable to explain, pushing towards further observing and modelling efforts., 14 pages, 7 figures, 7 tables in the main text and 1 table in the appendix. Accepted for publication in MNRAS
- Published
- 2021
33. WASP-South hot Jupiters: WASP-178b, WASP-184b, WASP-185b, and WASP-192b
- Author
-
Michaël Gillon, David R. Anderson, Khalid Barkaoui, Francesco Pepe, Francisco J. Pozuelos, Laetitia Delrez, Stéphane Udry, Zouhair Benkhaldoun, Louise D. Nielsen, Amaury H. M. J. Triaud, Pierre F. L. Maxted, A. Collier Cameron, Don Pollacco, Didier Queloz, Artem Burdanov, Damien Ségransan, Oliver Turner, Richard G. West, Coel Hellier, Barry Smalley, François Bouchy, Emmanuel Jehin, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. St Andrews Centre for Exoplanet Science
- Subjects
FOS: Physical sciences ,Orbital eccentricity ,Astrophysics ,individual: WASP-192 [Stars] ,01 natural sciences ,Planet ,0103 physical sciences ,Hot Jupiter ,QB Astronomy ,Transit (astronomy) ,individual: WASP-178 [Stars] ,010303 astronomy & astrophysics ,QC ,QB ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,010308 nuclear & particles physics ,individual: WASP-184 [Stars] ,Astronomy and Astrophysics ,3rd-DAS ,Radius ,Planetary system ,Orbital period ,Planetary systems ,Stars ,QC Physics ,individual: WASP-185 [Stars] ,Space and Planetary Science ,QB799 ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report on four new transiting hot Jupiters discovered by the WASP-South survey. WASP-178b transits a V = 9.9, A1V star with Teff = 9350 +/- 150 K, the second-hottest transit host known. It has a highly bloated radius of 1.81 +/- 0.09 Rjup, in line with the known correlation between high irradiation and large size. With an estimated temperature of 2470 +/- 60 K, the planet is one of the best targets for studying ultra-hot Jupiters that is visible from the Southern hemisphere. The three host stars WASP-184, WASP-185 and WASP-192 are all post-main-sequence G0 stars of ages 4-8 Gyr. The larger stellar radii (1.3-1.7 Msun) mean that the transits are relatively shallow (0.7-0.9%) even though the planets have moderately inflated radii of 1.2-1.3 Rjup. WASP-185b has an eccentric orbit (e = 0.24) and a relatively long orbital period of 9.4 d. A star that is 4.6 arcsec from WASP-185 and 4.4 mag fainter might be physically associated., Version as Accepted for MNRAS (RV table added)
- Published
- 2019
34. WASP-180Ab: Doppler tomography of a hot Jupiter orbiting the primary star in a visual binary
- Author
-
Don Pollacco, Stéphane Udry, Oliver Turner, Richard G. West, James McCormac, Damien Ségransan, L. Y. Temple, B. Zouhair, L. Delrez, François Bouchy, Amaury H. M. J. Triaud, Emmanuel Jehin, Daniel F. Evans, Pierre F. L. Maxted, Monika Lendl, A. Collier Cameron, Susan E. Thompson, Francesco Pepe, David R. Anderson, Michaël Gillon, Khalid Barkaoui, Barry Smalley, D. J. A. Brown, D. Queloz, Louise D. Nielsen, Coel Hellier, C. Murray, Elsa Ducrot, Artem Burdanov, Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. St Andrews Centre for Exoplanet Science
- Subjects
FOS: Physical sciences ,Star (graph theory) ,01 natural sciences ,spectroscopic [Techniques] ,Primary (astronomy) ,QB460 ,0103 physical sciences ,Hot Jupiter ,QB Astronomy ,010303 astronomy & astrophysics ,QC ,QB ,Visual binary ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,010308 nuclear & particles physics ,European research ,photometric [Techniques] ,Astronomy ,DAS ,Astronomy and Astrophysics ,Doppler tomography ,Planetary system ,rotation [Stars] ,Planetary systems ,QC Physics ,Space and Planetary Science ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report the discovery and characterisation of WASP-180Ab, a hot Jupiter confirmed by the detection of its Doppler shadow and by measuring its mass using radial velocities. We find the 0.9 $\pm$ 0.1 $M_{\rm Jup}$, 1.24 $\pm$ 0.04 $R_{\rm Jup}$ planet to be in a misaligned, retrograde orbit around an F7 star with $T_{\rm eff}$ = 6500K and a moderate rotation speed of vsini = 19.9 km s$^{-1}$. The host star is the primary of a $V$ = 10.7 binary, where a secondary separated by 5$''$ ($\sim$1200 AU) contributes $\sim$30% of the light. WASP-180Ab therefore adds to a small sample of transiting hot Jupiters known in binary systems. A 4.6-day modulation seen in the WASP data is likely to be the rotational modulation of the companion star, WASP-180B., Comment: 9 pages, 6 figures, accepted by MNRAS
- Published
- 2019
35. SuperWASP dispositions and false positive catalogue
- Author
-
Magali Deleuil, Howard M. Relles, J. Bochinski, Jose-Manuel Almenara, Guillaume Hébrard, Don Pollacco, François Bouchy, David R. Anderson, R. Busuttil, D. Queloz, Ulrich Kolb, K. L. Hay, Emmanuel Jehin, Laetitia Delrez, Aldo S. Bonomo, Amaury H. M. J. Triaud, Francisco J. Pozuelos, Leslie Hebb, Barry Smalley, Grant Miller, A. Collier Cameron, Pierre F. L. Maxted, Peter J. Wheatley, S. C. C. Barros, Stéphane Udry, David J. Armstrong, Michaël Gillon, D. J. A. Brown, N. Schanche, Artem Burdanov, Francesca Faedi, Khalid Al-Subai, Richard G. West, Khalid Barkaoui, Louise D. Nielsen, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Science & Technology Facilities Council, University of St Andrews. St Andrews Centre for Exoplanet Science, and University of St Andrews. School of Physics and Astronomy
- Subjects
planets and satellites: detection ,media_common.quotation_subject ,law.invention ,Telescope ,Observatory ,Planet ,law ,QB460 ,QB Astronomy ,observational [Methods] ,QC ,catalogues ,QB ,media_common ,Physics ,Northern Hemisphere ,Astronomy ,DAS ,Astronomy and Astrophysics ,Catalogues ,Methods observational ,detection [Planets and satellites] ,QC Physics ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Sky ,methods: observational - Abstract
NS acknowledges the support of the National Priorities Research Program (NPRP) grant #X-019-1-006 from the Qatar National Research Fund (a member of Qatar Foundation). ACC acknowledges support from the Science & Technology Facilities Council (STFC) consolidated grant number ST/R000824/1. SuperWASP, the Northern hemisphere WASP observatory, has been observing the skies from La Palma since 2004. In that time, more than 50 planets have been discovered with data contributions from SuperWASP. In the process of validating planets, many false-positive candidates have also been identified. The TESS telescope is set to begin observations of the northern sky in 2019. Similar to the WASP survey, the TESS pixel size is relatively large (13arcsec for WASP and 21arcsec for TESS), making it susceptible to many blended signals and false detections caused principally by grazing and blended stellar eclipsing binary systems. In order to reduce duplication of effort on targets, we present a catalogue of 1041 Northern hemisphere SuperWASP targets that have been rejected as planetary transits through follow-up observation. Publisher PDF
- Published
- 2019
36. Detection of a giant white-light flare on an L2.5 dwarf with the Next Generation Transit Survey
- Author
-
Christopher A. Watson, Philipp Eigmüller, Matthew R. Burleigh, M. R. Goad, Richard G. West, Liam Raynard, James A. G. Jackman, Daniel Bayliss, Don Pollacco, Peter J. Wheatley, and Sarah L. Casewell
- Subjects
Extrasolare Planeten und Atmosphären ,Physics ,Data products ,010308 nuclear & particles physics ,FOS: Physical sciences ,Library science ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Infrared Processing and Analysis Center ,Astrophysics - Solar and Stellar Astrophysics ,stars: low-mass ,Space and Planetary Science ,Observatory ,0103 physical sciences ,White light ,stars: flare ,stars: individual: ULAS J224940.13-011236.9 ,010303 astronomy & astrophysics ,Transit (satellite) ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
We present the detection of a $\Delta V\sim$ -10 flare from the ultracool L2.5 dwarf ULAS J224940.13-011236.9 with the Next Generation Transit Survey (NGTS). The flare was detected in a targeted search of late-type stars in NGTS full-frame images and represents one of the largest flares ever observed from an ultracool dwarf. This flare also extends the detection of white-light flares to stars with temperatures below 2000 K. We calculate the energy of the flare to be $3.4^{+0.9}_{-0.7}\times10^{33}$erg, making it an order of magnitude more energetic than the Carrington event on the Sun. Our data show how the high-cadence NGTS full-frame images can be used to probe white-light flaring behaviour in the latest spectral types., Comment: 5 pages, 2 figures, Accepted for Publication in the Monthly Notices of the Royal Astronomical Society
- Published
- 2019
37. Three hot-Jupiters on the upper edge of the mass–radius distribution: WASP-177, WASP-181, and WASP-183
- Author
-
Barry Smalley, Francisco J. Pozuelos, Louise D. Nielsen, Oliver Turner, Richard G. West, Emmanuel Jehin, Khalid Barkaoui, Zouhair Benkhaldoun, Stéphane Udry, Damien Ségransan, Coel Hellier, Francesco Pepe, F. Bouchy, Didier Queloz, Amaury H. M. J. Triaud, Artem Burdanov, A. Collier Cameron, Michaël Gillon, D. J. A. Brown, Elsa Ducrot, Monika Lendl, Don Pollacco, David R. Anderson, Pierre F. L. Maxted, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. St Andrews Centre for Exoplanet Science
- Subjects
individual: WASP-177b [Planets and satellites] ,FOS: Physical sciences ,Astrophysics ,Star (graph theory) ,01 natural sciences ,Upper and lower bounds ,Planet ,individual: WASP-181b [Planets and satellites] ,0103 physical sciences ,Hot Jupiter ,QB Astronomy ,010303 astronomy & astrophysics ,QC ,QB600 ,QB ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,010308 nuclear & particles physics ,DAS ,Astronomy and Astrophysics ,Radius ,detection [Planets and satellites] ,QC Physics ,Distribution (mathematics) ,Space and Planetary Science ,Orbit (control theory) ,individual: WASP-183b [Planets and satellites] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present the discovery of 3 transiting planets from the WASP survey, two hot-Jupiters: WASP-177b (~0.5 M_Jup, ~1.6 R_Jup) in a 3.07-d orbit of a V = 12.6 K2 star, WASP-183b (~0.5 M_Jup, ~1.5 R_Jup) in a 4.11-d orbit of a V = 12.8 G9/K0 star; and one hot-Saturn planet WASP-181b (~0.3 M_Jup, ~1.2 R_Jup) in a 4.52-d orbit of a V = 12.9 G2 star. Each planet is close to the upper bound of mass-radius space and has a scaled semi-major axis, a/R_star, between 9.6 and 12.1. These lie in the transition between systems that tend to be in orbits that are well aligned with their host-star's spin and those that show a higher dispersion., 11 pages, 9 figures, 5 tables
- Published
- 2019
38. The CARMENES search for exoplanets around M dwarfs: Spectroscopic orbits of nine M-dwarf multiple systems, including two triples, two brown dwarf candidates, and one close M-dwarf-white dwarf binary
- Author
-
Enric Palle, E. Rodríguez, Sabine Reffert, A. Kaminski, Don Pollacco, M. Lafarga, D. Baroch, P. Schöfer, Mathias Zechmeister, J. A. Caballero, J. Colomé, D. Montes, D. Galadí-Enríquez, Martin Kürster, P. J. Amado, Lev Tal-Or, C. Cardona Guillén, Ansgar Reiners, Guillem Anglada-Escudé, A. Rosich, Th. Henning, Andreas Quirrenbach, Ignasi Ribas, Y. Shan, M. Cortés-Contreras, Artie P. Hatzes, Juan Carlos Morales, S. V. Jeffers, Andreas Schweitzer, M. J. López-González, Stefan Dreizler, Cristina Rodríguez-López, Víctor J. S. Béjar, Nicolas Lodieu, Enrique Herrero, M. Perger, European Commission, Ministerio de Economía y Competitividad (España), and Ministerio de Ciencia, Innovación y Universidades (España)
- Subjects
Astrofísica ,Brown dwarf ,FOS: Physical sciences ,Binaries: spectroscopic ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,spectroscopic [Binaries] ,Planet ,low-mass [Stars] ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Stars: low-mass ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Orbital elements ,Brown dwarfs ,010308 nuclear & particles physics ,White dwarf ,White dwarfs ,Astronomy and Astrophysics ,Astrometry ,Exoplanet ,Astronomía ,Radial velocity ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Circumstellar habitable zone ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. M dwarfs are ideal targets for the search of Earth-size planets in the habitable zone using the radial velocity method, and are attracting the attention of many ongoing surveys. One of the expected results of these surveys is that new multiple-star systems have also been found. This is the case also for the CARMENES survey, thanks to which nine new double-line spectroscopic binary systems have already been announced. Aims. Throughout the five years of the survey the accumulation of new observations has resulted in the detection of several new multiple-stellar systems with long periods and low radial-velocity amplitudes. Here we newly characterise the spectroscopic orbits and constrain the masses of eight systems and update the properties of a system that we had reported earlier. Methods. We derived the radial velocities of the stars using two-dimensional cross-correlation techniques and template matching. The measurements were modelled to determine the orbital parameters of the systems. We combined CARMENES spectroscopic observations with archival high-resolution spectra from other instruments to increase the time span of the observations and improve our analysis. When available, we also added archival photometric, astrometric, and adaptive optics imaging data to constrain the rotation periods and absolute masses of the components. Results. We determined the spectroscopic orbits of nine multiple systems, eight of which are presented for the first time. The sample is composed of five single-line binaries, two double-line binaries, and two triple-line spectroscopic triple systems. The companions of two of the single-line binaries, GJ 3626 and GJ 912, have minimum masses below the stellar boundary, and thus could be brown dwarfs. We found a new white dwarf in a close binary orbit around the M star GJ 207.1, located at a distance of 15.79 pc. From a global fit to radial velocities and astrometric measurements, we were able to determine the absolute masses of the components of GJ 282 C, which is one of the youngest systems with measured dynamical masses. © ESO 2021., Based on observations collected at the Centro Astronomico Hispano Aleman (CAHA) at Calar Alto, operated jointly by the Junta de Andalucia and the Instituto de Astrofisica de Andalucia (CSIC). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de Astrofisica de Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Insitut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astroisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation through the Major Research Instrumentation Programme and DFG Research Unit FOR2544 `Blue Planets around Red Stars', the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, and by the Junta de Andalucia. Based on data from the CARMENES data archive at CAB (INTA-CSIC). Based on observations made with the 0.9-m telescope at the Sierra Nevada Observatory (Granada, Spain), operated by the Instituto de Astrofisica de Andalucia, the 0.8-m Joan Oro telescope (TJO) of the Montsec Astronomical Observatory (Lleida, Spain), owned by the Generalitat de Catalunya and operated by the Institut d'Estudis Espacials de Catalunya (IEEC), on observations collected at the European Southern Observatory under ESO programs 098.C-0739(A) and 192.C-0224(C) (P.I. A. M. Lagrange), 180.C-0886(A) and 183.C-0437(A) (P.I. X. Bonfils), 074.D0016(A) (P.I. D. Montes), 078.A-9048(A) (P.I. J. Setiawan), 085.A-9027(A) (P.I. R. Gredel), 090.A-9003(A) and 091.A-9004(A) (P.I. R. Mundt), 173.C-0606(C) (P.I. M. Kurster), 096.D-0818(A) (P.I. K. Ward-Duong), 094.C-0625(A) and 097.C-0972(A) (P.I. J. H. Girard), and 081.A-9005(A), 081.A-9024(A), 083.A-9002(A), 083.A-9012(A,B), 085.A-9009(A), and 086.A-9016(A) (P.I. M. Zechmeister). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. IRAF was distributed by the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. We acknowledge financial support from the Spanish Agencia Estatal de Investigacion of the Ministerio de Ciencia e Innovacion (AEI-MCINN) and the European FEDER/ERF funds through projects PGC2018-098153-B-C33, PID2019-109522GB-C51/52/53/54, PID2019-107061GB-C64, ESP2017-87143-R, and the Centre of Excellence "Severo Ochoa" and "Maria de Maeztu" awards to the Instituto de Astrofisica de Canarias (SEV-2015-0548), Instituto de Astrofisica de Andalucia (SEV2017-0709), and Centro de Astrobiologia (MDM-2017-0737), the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya and the Agencia de Gestio d'Ajuts Universitaris i de Recerca of the Generalitat de Catalunya, with additional funding from the European FEDER/ERF funds, L'FSE inverteix en el teu futur, and from the Generalitat de Catalunya/CERCA programme.
- Published
- 2021
39. Revisiting the Kepler field with TESS : improved ephemerides using TESS 2 min data
- Author
-
David J. Armstrong, Matthew P. Battley, Don Pollacco, and M. Kunimoto
- Subjects
Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,010308 nuclear & particles physics ,Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Ephemeris ,01 natural sciences ,Kepler ,Field (computer science) ,Exoplanet ,Radial velocity ,Space and Planetary Science ,Planet ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics - Earth and Planetary Astrophysics ,QB - Abstract
Up to date planet ephemerides are becoming increasingly important as exoplanet science moves from detecting exoplanets to characterising their architectures and atmospheres in depth. In this work ephemerides are updated for 22 Kepler planets and 4 Kepler planet candidates, constituting all Kepler planets and candidates with sufficient signal to noise in the TESS 2min dataset. A purely photometric method is utilised here to allow ephemeris updates for planets even when they do not posses significant radial velocity data. The obtained ephemerides are of very high precision and at least seven years 'fresher' than archival ephemerides. In particular, significantly reduced period uncertainties for Kepler-411d, Kepler-538b and the candidates K00075.01/K00076.01 are reported. O-C diagrams were generated for all objects, with the most interesting ones discussed here. Updated TTV fits of five known multiplanet systems with significant TTVs were also attempted (Kepler-18, Kepler-25, Kepler-51, Kepler-89, and Kepler-396), however these suffered from the comparative scarcity and dimness of these systems in TESS. Despite these difficulties, TESS has once again shown itself to be an incredibly powerful follow-up instrument as well as a planet-finder in its own right. Extension of the methods used in this paper to the 30min-cadence TESS data and TESS extended mission has the potential to yield updated ephemerides of hundreds more systems in the future., Comment: 13 pages, 11 figures, 4 tables, accepted for publication in MNRAS
- Published
- 2021
40. A hot mini-Neptune in the radius valley orbiting solar analogue HD 110113
- Author
-
Sara Seager, Ravit Helled, Rodrigo F. Díaz, Douglas A. Caldwell, Tansu Daylan, Stéphane Udry, Don Pollacco, J. F. Otegi, David R. Anderson, Keivan G. Stassun, Elisa Delgado-Mena, David J. Armstrong, D. W. Latham, H. P. Osborn, Jeffrey C. Smith, S. C. C. Barros, Edward M. Bryant, Nuno C. Santos, Diana Dragomir, David Barrado, Eric L. N. Jensen, Nicholas M. Law, N. Scott, Cesar Briceno, C. Ziegler, Benjamin V. Rackham, Daniel Bayliss, J. Villasenor, Jon M. Jenkins, Richard G. West, Andrew W. Mann, Peter J. Wheatley, George R. Ricker, Vardan Adibekyan, Magali Deleuil, Jorge Lillo-Box, Louise D. Nielsen, Christopher J. Burke, P. A. Strøm, Karen A. Collins, D. R. Rodriguez, Olivier Demangeon, D. J. A. Brown, Roland Vanderspek, A. Osborn, Coel Hellier, Sergio Hoyer, Joshua N. Winn, P. Figueira, Steve B. Howell, George W. King, Dana R. Louie, François Bouchy, Caroline Dorn, S. G. Sousa, Dennis M. Conti, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Dorn, C. [0000-0001-6110-4610], Anderson, D. [0000-0001-7416-7522], Barros, S. [0000-0003-2434-3625], Adibekyan, V. [0000-0002-0601-6199], Armstrong, D. [0000-0002-5080-4117], Santos, N. [0000-0003-4422-2919], Fundacao para a Ciencia e a Tecnologia (FCT), Science and Technology Facilities Council (STFC), Agencia Estatal de Investigación (AEI), National Aeronautics and Space Administration (NASA), and UK Space Agency
- Subjects
010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Atmosphere ,purl.org/becyt/ford/1 [https] ,Planet ,QB460 ,0103 physical sciences ,DETECTION [PLANETS AND SATELLITES] ,INDIVIDUAL: HD110113 [STARS] ,010303 astronomy & astrophysics ,QB600 ,QC ,QB ,0105 earth and related environmental sciences ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Stellar rotation ,Astronomy and Astrophysics ,Radius ,purl.org/becyt/ford/1.3 [https] ,Exoplanet ,Radial velocity ,Photometry (astronomy) ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Mini-Neptune ,QB799 ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report the discovery of HD 110113 b (TOI-755.01), a transiting mini-Neptune exoplanet on a 2.5-day orbit around the solar-analogue HD 110113 (Teff = 5730K). Using TESS photometry and HARPS radial velocities gathered by the NCORES program, we find HD 110113 b has a radius of $2.05\pm0.12$ $R_\oplus$ and a mass of $4.55\pm0.62$ $M_\oplus$. The resulting density of $2.90^{+0.75}_{-0.59}$ g cm^{-3} is significantly lower than would be expected from a pure-rock world; therefore, HD 110113 b must be a mini-Neptune with a significant volatile atmosphere. The high incident flux places it within the so-called radius valley; however, HD 110113 b was able to hold onto a substantial (0.1-1\%) H-He atmosphere over its $\sim4$ Gyr lifetime. Through a novel simultaneous gaussian process fit to multiple activity indicators, we were also able to fit for the strong stellar rotation signal with period $20.8\pm1.2$ d from the RVs and confirm an additional non-transiting planet with a mass of $10.5\pm1.2$ $M_\oplus$ and a period of $6.744^{+0.008}_{-0.009}$ d., Comment: 17 pages, 11 figures. Accepted for publication at MNRAS. HARPS RVs available at https://dace.unige.ch/radialVelocities/?pattern=HD110113
- Published
- 2021
41. A nearby transiting rocky exoplanet that is suitable for atmospheric investigation
- Author
-
Carlos Cifuentes, J. P. de Leon, Richard P. Schwarz, Joshua N. Winn, Hannu Parviainen, Christopher E. Henze, Thomas Henning, M. Lafarga, Courtney D. Dressing, Martin Kürster, Jorge Sanz-Forcada, Roland Vanderspek, A. Kaminski, Andreas Schweitzer, David W. Latham, Don Pollacco, Guillem Anglada-Escudé, Benjamin T. Montet, Eric L. N. Jensen, P. J. Amado, Jacob L. Bean, Ignasi Ribas, A. Fukui, P. Bluhm, C. Rodríguez López, Sara Seager, Enric Palle, Stefan Dreizler, Víctor J. S. Béjar, E. Esparza-Borges, Andrew W. Mann, Michael Fausnaugh, Rafael Luque, M. Stangret, Jose A. Caballero, Andreas Seifahrt, S. Stock, M. Cortés-Contreras, Karan Molaverdikhani, D. Montes, Núria Casasayas-Barris, Juan Carlos Morales, George R. Ricker, Artie P. Hatzes, Karen A. Collins, Thiam-Guan Tan, Felipe Murgas, Kevin I. Collins, Joseph D. Twicken, Enrique Herrero, Norio Narita, Avi Shporer, Mathias Zechmeister, Trifon Trifonov, Thomas Barclay, P. Tenenbaum, Dennis L. Kasper, Ansgar Reiners, Mahmoudreza Oshagh, Jon M. Jenkins, Julian Stürmer, Coel Hellier, Andreas Quirrenbach, Diana Kossakowski, Néstor Espinoza, V. M. Passegger, Samuel N. Quinn, S. V. Jeffers, M. Azzaro, Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709, Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548, Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Trifonov, T. [0000-0002-0236-775X], Caballero, J. A. [0000-0002-7349-1387], Morales, J. C. [0000-0003-0061-518X], Seifahrt, A. [0000-0003-4526-3747], Ribas, I. [0000-0002-6689-0312], Bean, J. [0000-0003-4733-6532], Luque, R. [0000-0002-4671-2957], Parviainen, H. [0000-0001-5519-1391], Pallé, E. [0000-0003-0987-1593], Stock, S. [0000-0002-1166-9338], Zechmeister, M. [0000-0002-6532-4378], Amado, P. J. [0000-0002-8388-6040], Anglada Escudé, G. [0000-0002-3645-5977], Azzaro, M. [0000-0002-1317-0661], Barclay, T. [0000-0001-7139-2724], Béjar, V. J. S. [0000-0002-5086-4232], Bluhm, P. [0000-0002-0374-8466], Casasayas Barris, N. [0000-0002-2891-8222], Cifuentes, C. [0000-0003-1715-5087], Collins, K. A. [0000-0001-6588-9574], Collins, K. I. [0000-0003-2781-3207], Cortés Contreras, M. [0000-0003-3734-9866], Dreizler, S. [0000-0001-6187-5941], Dressing, C. D. [0000-0001-8189-0233], Esparza Borges, E. [0000-0002-2341-3233], Espinoza, N. [0000-0001-9513-1449], Fausnaugh, M. [0000-0002-9113-7162], Fukui, A. [0000-0002-4909-5763], Hatzes, A. P. [0000-0002-3404-8358], Hellier, C. [0000-0002-3439-1439], Henning, T. [0000-0002-1493-300X], Herrero, E. [0000-0001-8602-6639], Jeffers, S. V. [0000-0003-2490-4779], Jenkins, J. M. [0000-0002-4715-9460], Jensen, E. L. N. [0000-0002-4625-7333], Kaminski, A. [0000-0003-0203-8208], Kasper, D. [0000-0003-0534-6388], Kossakowski, D. [0000-0002-0436-7833], Lafarga, M. [0000-0002-8815-9416], Latham, D. W. [0000-0001-9911-7388], Mann, A. W. [0000-0003-3654-1602], Molaverdikhani, K. [0000-0002-0502-0428], Montes, D. [0000-0002-7779-238X], Montet, B. T. [0000-0001-7516-8308], Murgas, F. [0000-0001-9087-1245], Narita, N. [0000-0001-8511-2981], Oshagh, M. [0000-0002-0715-8789], Passegger, V. M. [0000-0002-8569-7243], Pollacco, D. [0000-0001-9850-9697], Quinn, S. N. [0000-0002-8964-8377], Rodríguez López, C. [0000-0001-5559-7850], Sanz Forcada, J. [0000-0002-1600-7835], Schwarz, R. P. [0000-0001-8227-1020], Schweitzer, A. [0000-0002-1624-0389], Seager, S. [0000-0002-6892-6948], Stangret, M. [0000-0002-1812-8024], Stürmer, J. [0000-0002-4410-4712], Tan, T. G. [0000-0001-5603-6895], Tenenbaum, P. [0000-0002-1949-4720], Twicken, J. D. [0000-0002-6778-7552], Vanderspek, R. [0000-0001-6763-6562], Winn, J. N. [0000-0002-4265-047X], Deutsche Forschungsgemeinschaft (DFG), Agencia Estatal de Investigación (AEI), National Aeronautics and Space Administration (NASA), European Research Council (ERC), Japan Society for the Promotion of Science (JSPS), La Caixa, Japan Science and Technology Agency (JST), German Research Foundation, Ministerio de Ciencia e Innovación (España), European Commission, National Aeronautics and Space Administration (US), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), Japan Science and Technology Agency, and Ministry of Education, Culture, Sports, Science and Technology (Japan)
- Subjects
Astrofísica ,010504 meteorology & atmospheric sciences ,Red dwarf ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Q1 ,01 natural sciences ,7. Clean energy ,Physics::Geophysics ,Planet ,0103 physical sciences ,QB460 ,Transit (astronomy) ,010303 astronomy & astrophysics ,QB600 ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,QB ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Multidisciplinary ,Astronomy ,Orbital period ,Light curve ,Exoplanet ,Astronomía ,Radial velocity ,13. Climate action ,Terrestrial planet ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Spectroscopy of transiting exoplanets can be used to investigate their atmospheric properties and habitability. Combining radial velocity (RV) and transit data provides additional information on exoplanet physical properties. We detect a transiting rocky planet with an orbital period of 1.467 days around the nearby red dwarf star Gliese 486. The planet Gliese 486 b is 2.81 Earth masses and 1.31 Earth radii, with uncertainties of 5%, as determined from RV data and photometric light curves. The host star is at a distance of ~8.1 parsecs, has a J-band magnitude of ~7.2, and is observable from both hemispheres of Earth. On the basis of these properties and the planet's short orbital period and high equilibrium temperature, we show that this terrestrial planet is suitable for emission and transit spectroscopy. © 2021 American Association for the Advancement of Science. All rights reserved., Funding was provided by Deutsche Forschungsgemeinschaft through research unit FOR2544 "Blue Planets around Red Stars" and priority program SPP1992 "Exploring the Diversity of Extrasolar Planets"; Agencia Estatal de Investigacion of the Ministerio de Ciencia e Innovacion and the European Regional Development Fund through projects PID2019-109522GB-C51/2/3/4, PGC2018-098153-B-C33, SEV-2017-0709, MDM-2017-0737, AYA2016-79425-C3-1/2/3-P, ESP2016-80435-C2-1-R, and SEV-2015-0548; Klaus Tschira Stiftung; European Union's Horizon 2020 through Marie Sklodowska Curie grant 713673; "la Caixa" through INPhINT grant LCF/BQ/IN17/1162033; NASA through grants NNX17AG24G, 80NSSC19K0533, 80NSSC19K1721, and 80NSSC18K158 and the NASA Science Mission Directorate; Japan Society for the Promotion of Science KAKENHI through grants JP17H04574, JP18H01265, and JP18H05439; and Japan Science and Technology Agency PRESTO through grant JPMJPR1775.
- Published
- 2021
42. Six transiting planets and a chain of Laplace resonances in TOI-178
- Author
-
A. Leleu, Nathan Hara, Rosanna H. Tilbrook, Matthew J. Hooton, Jack S. Acton, Giuseppina Micela, Heike Rauer, Francisco J. Pozuelos, Xavier Dumusque, Michael R. Goad, T. Bárczy, Andrew Collier Cameron, Francesco Pepe, G. Lo Curto, Rafael Rebolo, Juan Cabrera, Pedro Figueira, M. Buder, Willy Benz, Romain Allart, Oliver Turner, Enric Palle, Alexis M. S. Smith, Ignasi Ribas, F. Ratti, M. Steller, Richard G. West, James McCormac, A. Lecavelier des Etangs, Alexandre C. M. Correia, Daniel Sebastian, S. G. Sousa, Emmanuel Jehin, Mathias Beck, J. Schneider, François Bouchy, Baptiste Lavie, J.-B. Delisle, Liam Raynard, Roberto Ragazzoni, K. Lam, H. Venus, Kate Gudrun Isaak, Roi Alonso, C. Murray, Laetitia Delrez, Martti H. Kristiansen, Mario Damasso, A. Bonfanti, David Ehrenreich, Stéphane Udry, Samuel Gill, Sergio Hoyer, Lionel Garcia, V. Adibekyan, Carina M. Persson, Maximiliano Moyano, Beth A. Henderson, Giampaolo Piotto, Andrés Jordán, Samantha Thompson, Alexis Brandeker, Elsa Ducrot, Daniel Angerhausen, Nuno C. Santos, David Barrado, Xavier Bonfils, Vincent Bourrier, F. Verrecchia, Monika Lendl, Andrea Mehner, C. Broeg, M. R. Zapatero Osorio, Matthew R. Burleigh, D. Futyan, Damien Ségransan, Amaury H. M. J. Triaud, Mahmoudreza Oshagh, C. Allende Prieto, J. Asquier, B. O. Demory, Philippe Robutel, C. Corral Van Damme, Nicola Rando, Malcolm Fridlund, Gisbert Peter, Roland Ottensamer, Alessandro Sozzetti, Paolo Molaro, James S. Jenkins, Melvyn B. Davies, Jorge Lillo-Box, S. Chamberlain, Thomas Beck, P. Di Marcantonio, Carlos Martins, Maximilian N. Günther, Daniel Bayliss, Jacques Laskar, Peter J. Wheatley, P. P. Pedersen, Nicolas Thomas, Nicholas A. Walton, Göran Olofsson, Marko Sestovic, David R. Anderson, Artem Burdanov, Kevin Heng, Manuel Guedel, Jose I. Vines, A. García Muñoz, Edward Gillen, Valérie Van Grootel, T. G. Wilson, Michaël Gillon, Olivier Demangeon, D. Wolter, Demetrio Magrin, G. Polenta, G. Anglada Escudé, Stefano Cristiani, J. Haldemann, László L. Kiss, H. P. Osborn, Valerio Nascimbeni, Aleisha Hogan, Ennio Poretti, Pierre F. L. Maxted, S. C. C. Barros, G. Boué, Sébastien Charnoz, Benjamin F. Cooke, Nicolas Billot, C. Reimers, Don Pollacco, Gaetano Scandariato, Luca Fossati, Douglas R. Alves, J. I. González Hernández, Edward M. Bryant, Anders Erikson, Nelson J. Nunes, Wolfgang Baumjohann, Yann Alibert, A. Suárez Mascareño, Antoine Simon, Gy. M. Szabó, C. Lovis, Magali Deleuil, Andrea Fortier, Isabella Pagano, A. Bekkelien, G. Di Persio, Didier Queloz, Davide Gandolfi, Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève = University of Geneva (UNIGE), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, ITA, USA, GBR, FRA, DEU, AUT, BEL, CHL, DNK, NLD, PRT, SWE, CHE, HUN, Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Genève (UNIGE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Swiss National Science Foundation, Agence Nationale de la Recherche (France), Science and Technology Facilities Council (UK), Belgian Science Policy Office, Université de Liège, Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Generalitat de Catalunya, Fundação para a Ciência e a Tecnologia (Portugal), Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Alvarez, M. [0000-0002-6786-2620], Carrasco Martínez, J. M. [0000-0002-3029-5853], Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. St Andrews Centre for Exoplanet Science
- Subjects
Brightness ,planets and satellites: detection ,Laplace resonance ,010504 meteorology & atmospheric sciences ,spectroscopic techniques ,planets and satellites: dynamical evolution and stability ,Astrophysics ,01 natural sciences ,Transits ,spectroscopic [Techniques] ,techniques: photometric ,Planet ,QB460 ,QB Astronomy ,010303 astronomy & astrophysics ,planets and satellites dynamical evolution and stability ,QC ,Institut für Optische Sensorsysteme ,QB ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Laplace transform ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,520 Astronomy ,photmetric [Techniques] ,3rd-DAS ,dynamical evolution and stability [Planets and satellites] ,planets and satellites detection ,Astrophysics::Earth and Planetary Astrophysics ,Extrasolare Planeten und Atmosphären ,Techniques: photmetric ,FOS: Physical sciences ,Context (language use) ,SPECULOOS ,Earth radius ,Mean-motion resonance ,0103 physical sciences ,Celestial mechanics ,CHEOPS ,QB600 ,0105 earth and related environmental sciences ,photometric techniques ,TESS ,Scattering ,Leitungsbereich PF ,photometric [Techniques] ,Astronomy and Astrophysics ,celestial mechanics ,620 Engineering ,detection [Planets and satellites] ,QC Physics ,13. Climate action ,Space and Planetary Science ,NGTS ,Planetare Sensorsysteme ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Event (particle physics) ,techniques: spectroscopic ,QB799 ,Planets and satellites: Detection ,Planets and satellites: Dynamical evolution and stability ,Techniques: Photometric ,Techniques: Spectroscopic ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Leleu, A., et al., Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152to 2.87Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02to 0.177times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes., The authors acknowledge support from the Swiss NCCR PlanetS and the Swiss National Science Foundation. Y.A. and M.J.H. acknowledge the support of the Swiss National Fund under grant 200020_172746. A.C.C. and T.W. acknowledge support from STFC consolidated grant number ST/M001296/1. This work was granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. SH acknowledges CNES funding through the grant 837319. Based on data collected under the NGTS project at the ESO La Silla Paranal Observatory. The NGTS facility is operated by the consortium institutes with support from the UK Science and Technology Facilities Council (STFC) project ST/M001962/1. The Belgian participation to CHEOPS has been supported by the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Program, and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. V.A. acknowledges the support from FCT through Investigador FCT contract nr. IF/00650/2015/CP1273/CT0001. We acknowledge support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, PGC2018-098153-B-C33, PGC2018-098153-B-C31, ESP2017-87676-C5-1-R, MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC), as well as the support of the Generalitat de Catalunya/CERCA programme. The MOC activities have been supported by the ESA contract No. 4000124370. S.C.C.B. acknowledges support from FCT through FCT contracts nr. IF/01312/2014/CP1215/CT0004. X.B., S.C., D.G., M.F. and J.L. acknowledge their role as ESA-appointed CHEOPS science team members. ABr was supported by the SNSA. A.C. acknowledges support by CFisUC projects (UIDB/04564/2020 and UIDP/04564/2020), GRAVITY (PTDC/FIS-AST/7002/2020), ENGAGE SKA (POCI-01-0145-FEDER-022217), and PHOBOS (POCI-01-0145-FEDER-029932), funded by COMPETE 2020 and FCT, Portugal. This work was supported by FCT - Fundaçãopara a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 - Programa OperacionalCompetitividade e Internacionalização by these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 and POCI-01-0145-FEDER- 032113; PTDC/FIS-AST/28953/2017 and POCI-01-0145-FEDER-028953; PTDC/FIS-AST/28987/2017 and POCI-01-0145-FEDER-028987. O.D.S.D. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through FCT. B.-O.D. acknowledges support from the Swiss National Science Foundation (PP00P2-190080). M.F. and C.M.P. gratefully acknowledgethe support of the Swedish National Space Agency (DNR 65/19, 174/18). D.G. gratefully acknowledges financial support from the CRT foundation under Grant No. 2018.2323 “Gaseousor rocky? Unveiling the nature of small worlds”. E.G. gratefully acknowledges support from the David and Claudia Harding Foundation in the form of a WintonExoplanet Fellowship. M.G. is an F.R.S.-FNRS Senior Research Associate. J.I.G.H. acknowledges financial support from Spanish Ministry of Science and Innovation (MICINN) under the 2013 Ramón y Cajal programme RYC-2013-14875. J.I.G.H., A.S.M., R.R., and C.A.P. acknowledge financial support from the Spanish MICINN AYA2017-86389-P. A.S.M. acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) under the 2019 Juan de la Cierva Programme. MNG ackowledges support from the MIT Kavli Institute as a Juan Carlos Torres Fellow. J.H. acknowledges the support of the Swiss National Fund under grant 200020_172746. KGI is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS Guest Observers Programme.She does not participate in, or contribute to, the definition of the Guaranteed Time Programme of the CHEOPS mission through which observations described in this paper have been taken, nor to any aspect of target selection forthe programme. J.S.J. acknowledges support by FONDECYT grant 1201371, and partial support from CONICYT project Basal AFB-170002. A.J. acknowledges support from ANID - Millennium Science Initiative - ICN12_009 and from FONDECYT project 1171208. P.M. acknowledges support from STFC research grant number ST/M001040/1. N.J.N is supported by the contract and exploratory project IF/00852/2015, and projects UID/FIS/04434/2019, PTDC/FIS-OUT/29048/2017, COMPETE2020: POCI-01-0145-FEDER-028987 & FCT: PTDC/FIS-AST/28987/2017. N.J.N is supported by the contract and exploratory project IF/00852/2015, and project PTDC/FIS-OUT/29048/2017. This work was also partially supported by a grant from the Simons Foundation (PI Queloz, grant number 327127). Acknowledges support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grant PGC2018-098153-B- C33, as well as the support of the Generalitat de Catalunya/CERCA programme. S.G.S. acknowledges support from FCT through FCT contract nr. CEECIND/00826/2018 and POPH/FSE (EC). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This project has been supported by the Hungarian National Research, Development and Innovation Office (NKFIH) grants GINOP-2.3.2-15-2016-00003, K-119517, K-125015, and the City of Szombathely under Agreement No. 67.177-21/2016. This research received funding from the MERAC foundation, from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 803193/ BEBOP, and from the Science and Technology Facilites Council (STFC, grant no ST/S00193X/1). V.V.G. is an F.R.S-FNRS Research Associate. J.I.V. acknowledges support of CONICYT-PFCHA/Doctorado Nacional-21191829. M. R. Z. O. acknowledges financial support from projects AYA2016-79425-C3-2-P and PID2019-109522GB-C51 from the Spanish Ministry of Science, Innovation and Universities.
- Published
- 2021
43. Spi-OPS: Spitzer and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection
- Author
-
T. Bárczy, Willy Benz, Sz. Csizmadia, Sergio Hoyer, David Ehrenreich, Nicholas A. Walton, Carina M. Persson, T. G. Wilson, Anders Erikson, Kevin Heng, H. Parviainen, M. Deleuil, Michaël Gillon, Yann Alibert, Ignasi Ribas, Olivier Demangeon, Don Pollacco, Demetrio Magrin, Juan Cabrera, Gy. M. Szabó, F. Ratti, Gaetano Scandariato, Luca Fossati, Mahmoudreza Oshagh, A. Bonfanti, Giampaolo Piotto, Nicolas Billot, G. Anglada Escudé, Alexis Brandeker, Gisbert Peter, Roberto Ragazzoni, Matthew J. Hooton, Heike Rauer, X. Bonfils, Nicola Rando, Malcolm Fridlund, Antoine Simon, C. Lovis, László L. Kiss, Göran Olofsson, Roi Alonso, Stéphane Udry, Enric Palle, S. G. Sousa, Andrea Fortier, M.-D. Busch, C. Broeg, Nuno C. Santos, David Barrado, Damien Ségransan, Roland Ottensamer, M. Steller, A. Luntzer, A. Deline, B. Ulmer, B. O. Demory, Brett M. Morris, Thomas Beck, Nicolas Thomas, Valerio Nascimbeni, Pierre F. L. Maxted, S. C. C. Barros, Sébastien Charnoz, Wolfgang Baumjohann, Isabella Pagano, Valérie Van Grootel, D. Futyan, Jacques Laskar, K. Jones, A. Lecavelier des Etangs, Mathias Beck, Alexis M. S. Smith, Laetitia Delrez, Vincent Bourrier, A. Collier Cameron, Melvyn B. Davies, Manuel Güdel, Kate Gudrun Isaak, Monika Lendl, Davide Gandolfi, Jacopo Farinato, S. Sulis, Didier Queloz, D. Kitzmann, Sébastien Salmon, Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, University of St Andrews. St Andrews Centre for Exoplanet Science, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Swiss National Science Foundation, Science and Technology Facilities Council (UK), Fundação para a Ciência e a Tecnologia (Portugal), European Research Council, European Commission, National Aeronautics and Space Administration (US), Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), European Space Agency, and Generalitat de Catalunya
- Subjects
Astrophysics ,01 natural sciences ,Geometric albedo ,QB460 ,Planets and satellites: atmospheres ,QB Astronomy ,610 Medicine & health ,010303 astronomy & astrophysics ,QC ,QB ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,520 Astronomy ,3rd-DAS ,techniques photometric ,symbols ,atmospheres [Planets and satellites] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,individual: MASCARA-1 b [Planets and satellites] ,Photometry (optics) ,symbols.namesake ,Bond albedo ,planets and satellites individual ,0103 physical sciences ,Hot Jupiter ,planets and satellites physical evolution ,MASCARA-1 b ,Gravity darkening ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,QB600 ,physical evolution [Planets and satellites] ,MCC ,010308 nuclear & particles physics ,Stellar rotation ,photometric [Techniques] ,Planets and satellites: individual: MASCARA-1 b ,Astronomy and Astrophysics ,620 Engineering ,Light curve ,Stars ,QC Physics ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,planets and satellites atmospheres ,Planets and satellites: physical evolution ,Techniques: photometric ,570 Life sciences ,biology ,Astrophysics - Earth and Planetary Astrophysics - Abstract
M. J. Hooton et al., [Context] The light curves of tidally locked hot Jupiters transiting fast-rotating, early-type stars are a rich source of information about both the planet and star, with full-phase coverage enabling a detailed atmospheric characterisation of the planet. Although it is possible to determine the true spin–orbit angle Ψ – a notoriously difficult parameter to measure – from any transit asymmetry resulting from gravity darkening induced by the stellar rotation, the correlations that exist between the transit parameters have led to large disagreements in published values of Ψ for some systems., [Aims] We aimed to study these phenomena in the light curves of the ultra-hot Jupiter MASCARA-1 b, which is characteristically similar to well-studied contemporaries such as KELT-9 b and WASP-33 b., [Methods] We obtained optical CHaracterising ExOPlanet Satellite (CHEOPS) transit and occultation light curves of MASCARA-1 b, and analysed them jointly with a Spitzer/IRAC 4.5 μm full-phase curve to model the asymmetric transits, occultations, and phase-dependent flux modulation. For the latter, we employed a novel physics-driven approach to jointly fit the phase modulation by generating a single 2D temperature map and integrating it over the two bandpasses as a function of phase to account for the differing planet–star flux contrasts. The reflected light component was modelled using the general ab initio solution for a semi-infinite atmosphere., [Results] When fitting the CHEOPS and Spitzer transits together, the degeneracies are greatly diminished and return results consistent with previously published Doppler tomography. Placing priors informed by the tomography achieves even better precision, allowing a determination of Ψ = 72.1−2.4+2.5 deg. From the occultations and phase variations, we derived dayside and nightside temperatures of 3062−68+66 K and 1720 ± 330 K, respectively.Our retrieval suggests that the dayside emission spectrum closely follows that of a blackbody. As the CHEOPS occultation is too deep to be attributed to blackbody flux alone, we could separately derive geometric albedo Ag = 0.171−0.068+0.066 and spherical albedo As = 0.266−0.100+0.097 from the CHEOPS data, and Bond albedoAB = 0.057−0.101+0.083 from the Spitzer phase curve.Although small, the Ag and As indicate that MASCARA-1 b is more reflective than most other ultra-hot Jupiters, where H− absorption is expected to dominate., [Conclusions] Where possible, priors informed by Doppler tomography should be used when fitting transits of fast-rotating stars, though multi-colour photometry may also unlock an accurate measurement of Ψ. Our approach to modelling the phase variations at different wavelengths provides a template for how to separate thermal emission from reflected light in spectrally resolved James Webb Space Telescope phase curve data., Y.A. acknowledge the support of the Swiss National Fund under grant 200020_172746. S.H. gratefully acknowledges CNES funding through the grant 837319. D.K. acknowledges partial financial support from the Center for Space and Habitability (CSH), the PlanetS National Center of Competence in Research (NCCR), and the Swiss National Science Foundation and the Swiss-based MERAC Foundation. A.C.C. and T.G.W. acknowledge support from STFC consolidated grant number ST/M001296/1. P.M. acknowledges support from STFC research grant number ST/M001040/1. This work was also partially supported by a grant from the Simons Foundation (PI Queloz, grant number 327127). B.-O.D. acknowledges support from the Swiss National Science Foundation (PP00P2-190080). S.S. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 833925, project STAREX). A.Br. was supported by the SNSA. This work was supported by FCT – Fundação para a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 – Programa Operacional Competitividade e Internacionalizacão by these grants: UID/FIS/04434/2019, UIDB/04434/2020, UIDP/04434/2020, PTDC/FIS-AST/32113/2017 and POCI-01-0145-FEDER- 032113, PTDC/FIS-AST/28953/2017 and POCI-01-0145-FEDER-028953, PTDC/FIS-AST/28987/2017 and POCI-01-0145-FEDER-028987, O.D.S.D. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through FCT. We acknowledge support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, PGC2018-098153-B-C33, PGC2018-098153-B-C31, ESP2017-87676-C5-1-R, MDM-2017-0737 Unidad de Excelencia Maria de Maeztu-Centro de Astrobiologí a (INTA-CSIC), as well as the support of the Generalitat de Catalunya/CERCA programme. The MOC activities have been supported by the ESA contract No. 4000124370. S.C.C.B. acknowledges support from FCT through FCT contracts nr. IF/01312/2014/CP1215/CT0004. X.B., S.C., D.G., M.F., and J.L. acknowledge their roles as ESA-appointed CHEOPS science team members. This project was supported by the CNES. The Belgian participation to CHEOPS has been supported by the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Program, and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project FOUR ACES. grant agreement no. 724427). D.E. acknowledges financial support from the Swiss National Science Foundation for project 200021_200726. C.M.P. and M.F. gratefully acknowledge the support of the Swedish National Space Agency (DNR 65/19, 174/18). D.G. gratefully acknowledges financial support from the CRT foundation under Grant No. 2018.2323 ‘Gaseousor rocky? Unveiling the nature of small worlds’. M.G. is an F.R.S.-FNRS Senior Research Associate. KGI is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS Guest Observers Programme. She does not participate in, or contribute to, the definition of the Guaranteed Time Programme of the CHEOPS mission through which observations described in this paper have been taken, nor to any aspect of target selection for the programme. This work was granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. Acknowledges support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grant PGC2018-098153-B-C33, as well as the support of the Generalitat de Catalunya/CERCA programme. S.G.S. acknowledges support from FCT through FCT contract nr. CEECIND/00826/2018 and POPH/FSE (EC). This project has been supported by the Hungarian National Research, Development and Innovation Office (NKFIH) grants GINOP-2.3.2-15-2016-00003, K-119517, K-125015, and the City of Szombathely under Agreement No. 67.177-21/2016., , , ,
- Published
- 2021
- Full Text
- View/download PDF
44. Evidence that short period AM CVn systems are diverse in outburst behaviour
- Author
-
Kendall Ackley, G. Ramsay, D. Mata Sánchez, P. T. O'Brien, L. K. Nuttall, Don Pollacco, V. S. Dhillon, Duncan K. Galloway, K. Noysena, Martin J. Dyer, Krzysztof Ulaczyk, C. Duffy, Danny Steeghs, and J. D. Lyman
- Subjects
astro-ph.SR ,close [binaries] ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Instability ,accretion ,surveys ,Accretion disc ,0103 physical sciences ,ST/T007184/1 ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,STFC ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,Accretion (meteorology) ,010308 nuclear & particles physics ,RCUK ,Astronomy and Astrophysics ,ST/T003103/1 ,accretion discs ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,dwarf novae [stars] - Abstract
We present results of our analysis of up to 15 years of photometric data from eight AM CVn systems with orbital periods between 22.5 and 26.8 min. Our data has been collected from the GOTO, ZTF, Pan-STARRS, ASAS-SN and Catalina all-sky surveys and amateur observations collated by the AAVSO. We find evidence that these interacting ultra-compact binaries show a similar diversity of long term optical properties as the hydrogen accreting dwarf novae. We found that AM CVn systems in the previously identified accretion disc instability region are not a homogenous group. Various members of the analysed sample exhibit behaviour reminiscent of Z Cam systems with long super outbursts and standstills, SU UMa systems with regular, shorter super outbursts, and nova-like systems which appear only in a high state. The addition of TESS full frame images of one of these systems, KL Dra, reveals the first evidence for normal outbursts appearing as a precursor to super outbursts in an AM CVn system. Our results will inform theoretical modelling of the outbursts of hydrogen deficient systems., Comment: 11 Pages, 7 Figures, 2 Tables. Accepted for publication in MNRAS. Author's final submitted version
- Published
- 2021
- Full Text
- View/download PDF
45. A search for transiting planets around hot subdwarfs: I. Methods and performance tests on light curves from Kepler, K2, TESS, and CHEOPS
- Author
-
Pierre F. L. Maxted, S. C. C. Barros, Sébastien Charnoz, Luca Fossati, J-Y. Plesseria, Davide Gandolfi, Valentina Viotto, Roland Ottensamer, Isabella Pagano, Nicola Rando, Michaël Gillon, Anders Erikson, Alexis M. S. Smith, Roy Ostensen, A. Bekkelien, Giampaolo Piotto, Olivier Demangeon, Wolfgang Baumjohann, M. Steller, N. Thomas, Kevin Heng, Roberto Ragazzoni, K. Westerdorff, A. Thuillier, Valerio Nascimbeni, Nuno C. Santos, Heike Rauer, Manuel Guedel, David Barrado, C. Lovis, Enric Palle, Damien Ségransan, Demetrio Magrin, Magali Deleuil, Jacques Laskar, Alexander J. Mustill, G. Anglada Escudé, C. Broeg, Monika Lendl, Stéphane Charpinet, B.-O. Demory, T. Bárczy, Gisbert Peter, Francisco J. Pozuelos, M. Mecina, László L. Kiss, Nicolas Billot, J. Cabrera, M. Fridlund, L. Delrez, D. Queloz, G. Bruno, Andrea Fortier, Thomas Beck, Willy Benz, Don Pollacco, Gaetano Scandariato, K. G. Isaak, Andrew Collier Cameron, Brad N. Barlow, Valérie Van Grootel, Xavier Bonfils, Roberto Silvotti, Roi Alonso, Stéphane Udry, Yann Alibert, Melvyn B. Davies, N. A. Walton, D. Futyan, David Ehrenreich, A. Lecavelier des Etangs, Göran Olofsson, J. Asquier, M. Dévora-Pajares, S. G. Sousa, Gyula M. Szabó, A. E. Simon, Alexis Brandeker, Ignasi Ribas, Sergio Hoyer, T. G. Wilson, M. Beck, Belgian Science Policy Office, European Commission, Université de Liège, Swiss National Science Foundation, Centre National D'Etudes Spatiales (France), Swedish Research Council, Fundação para a Ciência e a Tecnologia (Portugal), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, Hungarian Scientific Research Fund, National Aeronautics and Space Administration (US), Danish National Research Foundation, Aarhus University Research Foundation, Queloz, Didier [0000-0002-3012-0316], Walton, Nicholas [0000-0003-3983-8778], Apollo - University of Cambridge Repository, Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. St Andrews Centre for Exoplanet Science
- Subjects
Planet-star interactions ,Red giant ,Subdwarfs ,Context (language use) ,Astrophysics ,Photometric ,01 natural sciences ,Planet-Star Interactions ,Planet ,Planetary systems ,Stars: horizontal-branch ,Techniques: photometric ,0103 physical sciences ,QB Astronomy ,Planetary Systems ,Horizontal-Branch ,010303 astronomy & astrophysics ,QC ,QB ,Physics ,010308 nuclear & particles physics ,photometric [Techniques] ,Astronomy and Astrophysics ,3rd-DAS ,Planetary system ,Light curve ,Orbital period ,Stars ,Techniques ,Red-giant branch ,QC Physics ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,horizontal-branch [Stars] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We thank the anonymous referee for comments that improved the manuscript. The authors thank the Belgian Federal Science Policy Office (BELSPO) for the provision of financial support in the framework of the PRODEX Programme of the European Space Agency (ESA) under contract number PEA 4000131343. This work has been supported by the University of Liege through an ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. The authors acknowledge support from the Swiss NCCR PlanetS and the Swiss National Science Foundation. V.V.G. is a F.R.S.-FNRS Research Associate. M.G. is an F.R.S.-FNRS Senior Research Associate. St.C. acknowledges financial support from the Centre National d'Etudes Spatiales (CNES, France) and from the Agence Nationale de la Recherche (ANR, France) under grant ANR-17-CE31-0018. K.G.I. is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS Guest Observers Programme. She does not participate in, or contribute to, the definition of the Guaranteed Time Programme of the CHEOPS mission through which observations described in this paper have been taken, nor to any aspect of target selection for the programme. D.E. has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (project FOUR ACES; grant agreement No 724427). This project has been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). G.B. acknowledges support from CHEOPS ASI-INAF agreement n. 2019-29-HH.0. A.J.M. acknowledges funding from the Swedish Research Council (starting grant 2017-04945) and the Swedish National Space Agency (career grant 120/19C). A.C.C. and T.G.W. acknowledge support from STFC consolidated grant number ST/M001296/1. A.B. was supported by the SNSA. M.F. gratefully acknowledge the support of the Swedish National Space Agency (DNR 65/19, 174/18). S.H. acknowledges CNES funding through the grant 837319. S.C.C.B. acknowledges support from FCT through FCT contracts nr. IF/01312/2014/CP1215/CT0004. S.G.S. acknowledge support from FCT through FCT contract nr. CEECIND/00826/2018 and POPH/FSE (EC). This work was supported by FCT -Fundacao para a Ciencia e a Tecnologia through national funds and by FEDER through COMPETE2020 -Programa Operacional Competitividade e Internacionalizacao by these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 & POCI-01-0145-FEDER032113; PTDC/FIS-AST/28953/2017 & POCI-01-0145-FEDER-028953; PTDC/FIS-AST/28987/2017 & POCI-01-0145-FEDER-028987. O.D.S.D. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through FCT. B.-O.D. acknowledges support from the Swiss National Science Foundation (PP00P2-190080). B.N.B. acknowledges funding through the TESS Guest Investigator Program Grant 80NSSC21K0364. We acknowledge support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, PGC2018-098153-B-C33, PGC2018-098153-B-C31, ESP2017-87676-C5-1-R, MDM-2017-0737 Unidad de Excelencia "Maria de Maeztu"-Centro de Astrobiologia (INTA-CSIC), as well as the support of the Generalitat de Catalunya/CERCA programme. The MOC activities have been supported by the ESA contract No. 4000124370. I.R. acknowledges support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grant PGC2018-098153-BC33, as well as the support of the Generalitat de Catalunya/CERCA programme. X.B., Se.C., D.G., M.F. and J.L. acknowledge their role as ESA-appointed CHEOPS science team members. D.G. gratefully acknowledges financial support from the CRT foundation under Grant No. 2018.2323 "Gaseous or rocky? Unveiling the nature of small worlds". P.F.L.M. acknowledges support from STFC research grant number ST/M001040/1. This project has been supported by the Hungarian National Research, Development and Innovation Office (NKFIH) grants GINOP-2.3.2-15-2016-00003, K-119517, K-125015, and the City of Szombathely under Agreement No. 67.177-21/2016. This paper includes data collected by the TESS mission. Funding for the TESS mission is provided by the NASA Explorer Program. Funding for the TESS Asteroseismic Science Operations Centre is provided by the Danish National Research Foundation (Grant agreement no.: DNRF106), ESA PRODEX (PEA 4000119301) and Stellar Astrophysics Centre (SAC) at Aarhus University. We thank the TESS team and staff and TASC/TASOC for their support of the present work. This work has made use of data from the ESA mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement., Context. Hot subdwarfs experienced strong mass loss on the red giant branch (RGB) and are now hot and small He-burning objects. These stars constitute excellent opportunities for addressing the question of the evolution of exoplanetary systems directly after the RGB phase of evolution. Aims. In this project we aim to perform a transit survey in all available light curves of hot subdwarfs from space-based telescopes (Kepler, K2, TESS, and CHEOPS) with our custom-made pipeline SHERLOCK in order to determine the occurrence rate of planets around these stars as a function of orbital period and planetary radius. We also aim to determine whether planets that were previously engulfed in the envelope of their red giant host star can survive, even partially, as a planetary remnant. Methods. For this first paper, we performed injection-and-recovery tests of synthetic transits for a selection of representative Kepler, K2, and TESS light curves to determine which transiting bodies in terms of object radius and orbital period we will be able to detect with our tools. We also provide estimates for CHEOPS data, which we analyzed with the pycheops package. Results. Transiting objects with a radius less than or similar to 1.0 R-circle times can be detected in most of the Kepler, K2, and CHEOPS targets for the shortest orbital periods (1 d and shorter), reaching values as low as similar to 0.3 R-circle times in the best cases. Sub-Earth-sized bodies are only reached for the brightest TESS targets and for those that were observed in a significant number of sectors. We also give a series of representative results for larger planets at greater distances, which strongly depend on the target magnitude and on the length and quality of the data. Conclusions. The TESS sample will provide the most important statistics for the global aim of measuring the planet occurrence rate around hot subdwarfs. The Kepler, K2, and CHEOPS data will allow us to search for planetary remnants, that is, very close and small (possibly disintegrating) objects., European Space Agency European Commission PEA 4000131343, University of Liege through an ARC grant for Concerted Research Actions - Wallonia-Brussels Federation, Swiss NCCR PlanetS, Swiss National Science Foundation (SNSF) European Commission, Centre National D'etudes Spatiales, French National Research Agency (ANR) ANR-17-CE31-0018, European Research Council (ERC) 724427, Swiss National Science Foundation (SNSF), CHEOPS ASI-INAF 2019-29-HH.0, Swedish Research Council European Commission 2017-04945, Swedish National Space Agency 120/19C - DNR 65/19 - 174/18, UK Research & Innovation (UKRI) Science & Technology Facilities Council (STFC) ST/M001296/1- ST/M001040/1, SNSA, Centre National D'etudes Spatiales 837319, European Commission European Commission Joint Research Centre European Social Fund (ESF), Portuguese Foundation for Science and Technology DL 57/2016/CP1364/CT0004 - IF/01312/2014/CP1215/CT0004 - CEECIND/00826/2018, European Commission UID/FIS/04434/2019 - UIDB/04434/2020 - UIDP/04434/2020 - PTDC/FIS-AST/32113/2017 - POCI-01-0145-FEDER032113 - PTDC/FIS-AST/28953/2017 - POCI-01-0145-FEDER-028953 - PTDC/FIS-AST/28987/2017 - POCI-01-0145-FEDER-028987, Swiss National Science Foundation (SNSF) European Commission PP00P2-190080, TESS Guest Investigator Program Grant 80NSSC21K0364, Spanish Government, European Commission ESP2016-80435-C2-1-R - ESP2016-80435-C2-2-R - PGC2018-098153-B-C33 - PGC2018-098153-B-C31 - ESP2017-87676-C5-1-R - MDM-2017-0737 - PGC2018-098153-BC33, Generalitat de Catalunya/CERCA programme, European Space Agency 4000124370, CRT foundation 2018.2323, National Research, Development & Innovation Office (NRDIO) - Hungary GINOP-2.3.2-15-2016-00003 - K-119517 - K-125015, City of Szombathely 67.177-21/2016, National Aeronautics & Space Administration (NASA), Danmarks Grundforskningsfond DNRF106, European Space Agency PEA 4000119301, Stellar Astrophysics Centre (SAC) at Aarhus University, TASC/TASOC, Gaia Multilateral Agreement, DPAC
- Published
- 2021
46. The Gravitational-wave Optical Transient Observer (GOTO)
- Author
-
Danny Steeghs, Kendall Ackley, Rene P. Breton, P. T. O'Brien, Gavin Ramsay, K. Noysena, Don Pollacco, V. S. Dhillon, Martin J. Dyer, J. D. Lyman, Krzysztof Ulaczyk, Rubina Kotak, L. Nuttall, Duncan K. Galloway, Enric Palle, Marshall, Heather K., Spyromilio, Jason, and Usuda, Tomonori
- Subjects
Goto ,Computer science ,gr-qc ,sky surveys ,FOS: Physical sciences ,Field of view ,General Relativity and Quantum Cosmology (gr-qc) ,General Relativity and Quantum Cosmology ,law.invention ,Telescope ,law ,Observatory ,ST/T007184/1 ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,STFC ,transient follow-up ,Gravitational wave ,RCUK ,Astronomy ,telescopes ,Observer (special relativity) ,ST/T003103/1 ,Mount ,gravitational waves ,multi-site observatories ,Magnitude (astronomy) ,Astrophysics - Instrumentation and Methods for Astrophysics ,astro-ph.IM - Abstract
The Gravitational-wave Optical Transient Observer (GOTO) is a wide-field telescope project focused on detecting optical counterparts to gravitational-wave sources. GOTO uses arrays of 40 cm unit telescopes (UTs) on a shared robotic mount, which scales to provide large fields of view in a cost-effective manner. A complete GOTO mount uses 8 unit telescopes to give an overall field of view of 40 square degrees, and can reach a depth of 20th magnitude in three minutes. The GOTO-4 prototype was inaugurated with 4 unit telescopes in 2017 on La Palma, and was upgraded to a full 8-telescope array in 2020. A second 8-UT mount will be installed on La Palma in early 2021, and another GOTO node with two more mount systems is planned for a southern site in Australia. When complete, each mount will be networked to form a robotic, dual-hemisphere observatory, which will survey the entire visible sky every few nights and enable rapid follow-up detections of transient sources., Comment: 8 pages, 5 figures, 1 table, submitted to SPIE Astronomical Telescopes + Instrumentation 2020
- Published
- 2020
47. MARVEL, a four-telescope array for high-precision radial-velocity monitoring
- Author
-
Ignasi Ribas, S. Halverson, Hugues Sana, S. Prins, G. Avila, Bart Vandenbussche, J. Perez Padilla, J. Stuermer, L. Decin, Manuel Guedel, Denis Defrere, A. Glasse, Don Pollacco, Andrew Tkachenko, Lars A. Buchhave, David H. Atkinson, Giovanna Tinetti, Alexis Brandeker, Pierre Royer, Cyprien Lanthermann, Gert Raskin, Jacob Pember, J. De Ridder, H. Van Winckel, Christian Schwab, Johan Morren, Evans, CJ, Bryant, JJ, Motohara, K, Evans, Christopher J., Bryant, Julia J., and Motohara, Kentaro
- Subjects
Physics ,Radial velocity ,Optical fiber ,Spectrograph ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy ,Exoplanet ,Space exploration ,law.invention ,Telescope ,Planet ,Observatory ,law ,Sky ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Telescopes ,media_common - Abstract
Since the first discovery of a planet outside of our Solar System in 1995, exoplanet research has shifted from detecting to characterizing worlds around other stars. The TESS (NASA, launched 2019) and PLATO mission (ESA, planned launch 2026) will find and constrain the size of thousands of exoplanets around bright stars all over the sky. Radial velocity measurements are needed to characterize the orbit and mass, and complete the picture of densities and composition of the exoplanet systems found. The Ariel mission (ESA, planned launch 2028) will characterize exoplanet atmospheres with infrared spectroscopy. Characterization of stellar activity using optical spectroscopy from the ground is key to retrieve the spectral footprint of the planetary atmosphere in Ariel's spectra. To enable the scientific harvest of the TESS, PLATO and Ariel space missions, we plan to install MARVEL as an extension of the existing Mercator Telescope at the Roque De Los Muchachos Observatory on La Palma (SPAIN). MARVEL consists of an array of four 80 cm telescopes linked through optical fibers to a single high-resolution echelle spectrograph, optimized for extreme-precision radial velocity measurements. It can observe the radial velocities of four different stars simultaneously or, alternatively, combine the flux from four telescopes pointing to a single faint target in one spectrum. MARVEL is constructed by a KU Leuven (Belgium) led collaboration, with contributions from the UK, Austria, Australia, Sweden, Denmark and Spain. In this paper, we present the MARVEL instrument with special focus on the optical design and expected performance of the spectrograph, and report on the status of the project., SPIE Astronomical Telescopes + Instrumentation 2020, Ground-based and Airborne Instrumentation for Astronomy VIII
- Published
- 2020
48. The PLATO mission: Studying the diversity of exoplanets orbiting up to the habitable zone of Sun-like stars
- Author
-
Don Pollacco, Conny Aerts, Magali Deleuil, Marie-Jo Goupil, Heike Rauer, Giampaolo Piotto, Gavin Ramsay, Stéphane Udry, Miguel Mas-Hesse, Roberto Ragazzoni, Ana M. Heras, and Laurent Gizon
- Subjects
Stars ,media_common.quotation_subject ,Circumstellar habitable zone ,Exoplanet ,Geology ,Astrobiology ,Diversity (politics) ,media_common - Abstract
The ESA PLATO mission will provide unprecedented data to study the diversity of planets orbiting up to the habitable zone of bright Sun-like stars. PLATO will detect and characterise exoplanets using the transit method combined with ground-based radial velocity measurements, and study the host stars with asteroseismology. PLATO’s core observing sample consists of Sun-like stars of V < 11. For statistical studies, PLATO will also monitor a large sample of Sun-like stars with V < 13 and cool late-type dwarfs with V < 16. To benefit from PLATO’s advanced photometric capabilities, the general community will be invited to submit proposals on complementary science topics in the framework of a guest observer’s programme. The PLATO payload consists of four groups of six cameras each that overlap covering a total field of about 2150 deg2 with four different sensitivities. Two additional cameras will observe the brightest stars (V < 8.5) in two-colours, and will be used as fine guidance sensor. PLATO is the third medium-class mission in ESA’s Cosmic Vision programme, with a planned launch date in 2026. The satellite will operate in an orbit around the second Lagrange point, L2. We will present the status of the mission science definition and performance, and of the satellite and ground-segment developments.
- Published
- 2020
49. A search for young exoplanets in Sectors 1-5 of the TESS Full-Frame-Images
- Author
-
Don Pollacco, David J. Armstrong, and Matthew P. Battley
- Subjects
Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,010504 meteorology & atmospheric sciences ,Stellar rotation ,Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Rotation ,01 natural sciences ,Exoplanet ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Planet ,0103 physical sciences ,Satellite ,Transit (astronomy) ,Visibility ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) ,0105 earth and related environmental sciences ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Young (, 22 pages, 21 figures, accepted for publication in MNRAS
- Published
- 2020
50. A long period (P = 61.8-d) M5V dwarf eclipsing a Sun-like star from TESS and NGTS
- Author
-
Michael R. Goad, Jack S. Acton, Maximilian N. Günther, Samuel Gill, Maximiliano Moyano, Monika Lendl, Fracois Bouchy, Stéphane Udry, Claudia Belardi, Daniel Bayliss, Peter J. Wheatley, Alexander Chaushev, Sarah L. Casewell, Matthew R. Burleigh, David R. Anderson, Rossana H. Tilbrook, Oliver Turner, Christopher A. Watson, Richard G. West, James McCormac, Alexis M. S. Smith, James A. G. Jackman, Don Pollacco, James S. Jenkins, Edward M. Bryant, Louise D. Nielsen, Liam Raynard, Jose I. Vines, H. P. Osborn, and Benjamin F. Cooke
- Subjects
Physics ,Extrasolare Planeten und Atmosphären ,Earth and Planetary Astrophysics (astro-ph.EP) ,010308 nuclear & particles physics ,binaries: eclipsing ,FOS: Physical sciences ,Astronomy and Astrophysics ,01 natural sciences ,Astrophysics - Solar and Stellar Astrophysics ,eclipsing [binaries] ,Space and Planetary Science ,Long period ,0103 physical sciences ,010303 astronomy & astrophysics ,Humanities ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The Transiting Exoplanet Survey Satellite (TESS) has produced a large number of single transit event candidates which are being monitored by the Next Generation Transit Survey (NGTS). We observed a second epoch for the TIC-231005575 system (Tmag = 12.06, Teff = 5500 +- 85 K) with NGTS and a third epoch with Las Cumbres Observatory's (LCO) telescope in South Africa to constrain the orbital period (P = 61.777 d). Subsequent radial velocity measurements with CORALIE revealed the transiting object has a mass of M2 = 0.128 +- 0.003 M$_\odot$, indicating the system is a G-M binary. The radius of the secondary is R2 = 0.154 +- 0.008 R$_\odot$ and is consistent with models of stellar evolution to better than 1-$\sigma$., Comment: 8 pages, 5 figures, 3 tables. Accepted for publication in MNRAS
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.