1. Cross-Survey Image Transformation: Enhancing SDSS and DECaLS Images to Near-HSC Quality for Advanced Astronomical Analysis
- Author
-
Luo, Zhijian, Zhang, Shaohua, Chen, Jianzhen, Chen, Zhu, Fu, Liping, Xiao, Hubing, Du, Wei, and Shu, Chenggang
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
This study focuses on transforming galaxy images between astronomical surveys, specifically enhancing images from the Sloan Digital Sky Survey (SDSS) and the Dark Energy Camera Legacy Survey (DECaLS) to achieve quality comparable to the Hyper Suprime-Cam survey (HSC). We proposed a hybrid model called Pix2WGAN, which integrates the pix2pix framework with the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) to convert low-quality observational images into high-quality counterparts. Our model successfully transformed DECaLS images into pseudo-HSC images, yielding impressive results and significantly enhancing the identification of complex structures, such as galaxy spiral arms and tidal tails, which may have been overlooked in the original DECaLS images. Moreover, Pix2WGAN effectively addresses issues like artifacts, noise, and blurriness in both source and target images. In addition to the basic Pix2WGAN model, we further developed an advanced architecture called Cascaded Pix2WGAN, which incorporates a multi-stage training mechanism designed to bridge the quality gap between SDSS and HSC images, demonstrating similarly promising outcomes. We systematically assessed the similarity between the model-generated pseudo-HSC images and actual HSC images using various metrics, including Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM), along with perceptual metrics such as Learned Perceptual Image Patch Similarity (LPIPS) and Fr\'echet Inception Distance (FID). The results indicate that images transformed by our model outperform both the original SDSS and DECaLS images across nearly all evaluation metrics. Our research is expected to provide significant technical support for astronomical data analysis, cross-survey image integration, and high-precision astrometry.
- Published
- 2024