1. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment
- Author
-
Jane M. Carlton, Clay Fuqua, James R. Henriksen, Steven A. Sullivan, Qinghu Ren, Wenying Ye, Robert Belas, Robert T. DeBoy, Grace Pai, William C. Nelson, John F. Heidelberg, Mary Ann Moran, Elisha Rahe, Ian T. Paulsen, William B. Whitman, Jeremy D. Selengut, Ronald P. Kiene, Daniel H. Haft, Jonathan A. Eisen, Wade M. Sheldon, Matthew R. Lewis, A. Scott Durkin, Robert J. Dodson, Sean C. Daugherty, Lauren M. Brinkac, Shivani Johri, Ramana Madupu, Bruce Weaver, Gary M. King, Alison Buchan, Todd R. Miller, David A. Rasko, M. J. Rosovitz, José M. González, and Naomi L. Ward
- Subjects
Genetics ,Whole genome sequencing ,Multidisciplinary ,biology ,Oceans and Seas ,Ruegeria ,Molecular Sequence Data ,fungi ,Marine Biology ,Bacterioplankton ,Plankton ,Roseobacter ,biology.organism_classification ,Adaptation, Physiological ,Genome ,Genes, Bacterial ,RNA, Ribosomal, 16S ,Seawater ,Carrier Proteins ,Silicibacter pomeroyi ,Gene ,Genome, Bacterial ,Phylogeny - Abstract
Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise approximately 10-20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.
- Published
- 2004
- Full Text
- View/download PDF