1. Development, Application and Utility of a Machine Learning Approach for Melanoma and Non-Melanoma Lesion Classification Using Counting Box Fractal Dimension
- Author
-
Pablo Romero-Morelos, Elizabeth Herrera-López, and Beatriz González-Yebra
- Subjects
melanoma ,dermatological lesion ,fractal dimension ,machine learning ,artificial intelligence ,Medicine (General) ,R5-920 - Abstract
The diagnosis and identification of melanoma are not always accurate, even for experienced dermatologists. Histopathology continues to be the gold standard, assessing specific parameters such as the Breslow index. However, it remains invasive and may lack effectiveness. Therefore, leveraging mathematical modeling and informatics has been a pursuit of diagnostic methods favoring early detection. Fractality, a mathematical parameter quantifying complexity and irregularity, has proven useful in melanoma diagnosis. Nonetheless, no studies have implemented this metric to feed artificial intelligence algorithms for the automatic classification of dermatological lesions, including melanoma. Hence, this study aimed to determine the combined utility of fractal dimension and unsupervised low-computational-requirements machine learning models in classifying melanoma and non-melanoma lesions. We analyzed 39,270 dermatological lesions obtained from the International Skin Imaging Collaboration. Box-counting fractal dimensions were calculated for these lesions. Fractal values were used to implement classification methods by unsupervised machine learning based on principal component analysis and iterated K-means (100 iterations). A clear separation was observed, using only fractal dimension values, between benign or malignant lesions (sensibility 72.4% and specificity 50.1%) and melanoma or non-melanoma lesions (sensibility 72.8% and specificity 50%) and subsequently, the classification quality based on the machine learning model was ≈80% for both benign and malignant or melanoma and non-melanoma lesions. However, the grouping of metastatic melanoma versus non-metastatic melanoma was less effective, probably due to the small sample size included in MM lesions. Nevertheless, we could suggest a decision algorithm based on fractal dimension for dermatological lesion discrimination. On the other hand, it was also determined that the fractal dimension is sufficient to generate unsupervised artificial intelligence models that allow for a more efficient classification of dermatological lesions.
- Published
- 2024
- Full Text
- View/download PDF