1. A new cure model that corrects for increased risk of non-cancer death: analysis of reliability and robustness, and application to real-life data
- Author
-
Botta, Laura, Goungounga, Juste, Capocaccia, Riccardo, Romain, Gaëlle, Colonna, Marc, Gatta, Gemma, Boussari, Olayidé, Jooste, Valérie, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Equipe EPICAD (LNC - U1231), Lipides - Nutrition - Cancer [Dijon - U1231] (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Agro Dijon, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Agro Dijon, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Centre de Recherches sur l'Action Politique en Europe (ARENES), Université de Rennes (UR)-Institut d'Études Politiques [IEP] - Rennes-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Centre National de la Recherche Scientifique (CNRS), École des Hautes Études en Santé Publique [EHESP] (EHESP), Registre Bourguignon des Cancers Digestifs, Lipides - Nutrition - Cancer (U866) (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation de Dijon (ENSBANA)-Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation de Dijon (ENSBANA)-Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), The work was partially supported by the French Institut National du Cancer (INCa grant number 2018–178) and the European Union (Fonds Européen de Développement Regional: FEDER grant number BG0028239)., and Internationale
- Subjects
Population-based data ,Net survival ,Cure model ,Life tables ,Epidemiology ,[SDV]Life Sciences [q-bio] ,Health Informatics ,Increased non-cancer mortality ,Reliability ,Robustness ,Cancer - Abstract
Background Non-cancer mortality in cancer patients may be higher than overall mortality in the general population due to a combination of factors, such as long-term adverse effects of treatments, and genetic, environmental or lifestyle-related factors. If so, conventional indicators may underestimate net survival and cure fraction. Our aim was to propose and evaluate a mixture cure survival model that takes into account the increased risk of non-cancer death for cancer patients. Methods We assessed the performance of a corrected mixture cure survival model derived from a conventional mixture cure model to estimate the cure fraction, the survival of uncured patients, and the increased risk of non-cancer death in two settings of net survival estimation, grouped life-table data and individual patients’ data. We measured the model’s performance in terms of bias, standard deviation of the estimates and coverage rate, using an extensive simulation study. This study included reliability assessments through violation of some of the model’s assumptions. We also applied the models to colon cancer data from the FRANCIM network. Results When the assumptions were satisfied, the corrected cure model provided unbiased estimates of parameters expressing the increased risk of non-cancer death, the cure fraction, and net survival in uncured patients. No major difference was found when the model was applied to individual or grouped data. The absolute bias was Conclusions The present analysis supports the use of the corrected mixture cure model, with the inclusion of increased risk of non-cancer death for cancer patients to provide better estimates of indicators based on cancer survival. These are important to public health decision-making; they improve patients’ awareness and facilitate their return to normal life.
- Published
- 2023
- Full Text
- View/download PDF