33 results on '"F. Pinsard"'
Search Results
2. Optical Characterization of OMT-Coupled TES Bolometers for LiteBIRD
- Author
-
J. Hubmayr, P. A. R. Ade, A. Adler, E. Allys, D. Alonso, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. E. Austermann, S. Azzoni, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, N. Bartolo, S. Basak, E. Battistelli, L. Bautista, J. A. Beall, D. Beck, S. Beckman, K. Benabed, J. Bermejo-Ballesteros, M. Bersanelli, J. Bonis, J. Borrill, F. Bouchet, F. Boulanger, S. Bounissou, M. Brilenkov, M. L. Brown, M. Bucher, E. Calabrese, M. Calvo, P. Campeti, A. Carones, F. J. Casas, A. Catalano, A. Challinor, V. Chan, K. Cheung, Y. Chinone, C. Chiocchetta, S. E. Clark, L. Clermont, S. Clesse, J. Cliche, F. Columbro, J. A. Connors, A. Coppolecchia, W. Coulton, J. Cubas, A. Cukierman, D. Curtis, F. Cuttaia, G. D’Alessandro, K. Dachlythra, P. de Bernardis, T. de Haan, E. de la Hoz, M. De Petris, S. Della Torre, J. J. Daz Garca, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, D. Douillet, E. Doumayrou, L. Duband, A. Ducout, S. M. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, S. Farrens, F. Finelli, R. Flauger, K. Fleury-Frenette, C. Franceschet, U. Fuskeland, L. Galli, S. Galli, M. Galloway, K. Ganga, J. R. Gao, R. T. Genova-Santos, M. Georges, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, E. Gjerlw, R. Gonzlez Gonzles, M. L. Gradziel, J. Grain, L. Grandsire, F. Grupp, A. Gruppuso, J. E. Gudmundsson, N. W. Halverson, J. Hamilton, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versill, B. Hensley, D. Herman, D. Herranz, G. C. Hilton, E. Hivon, R. A. Hlozek, D. Hoang, A. L. Hornsby, Y. Hoshino, K. Ichiki, T. Iida, T. Ikemoto, H. Imada, K. Ishimura, H. Ishino, G. Jaehnig, M. Jones, T. Kaga, S. Kashima, N. Katayama, A. Kato, T. Kawasaki, R. Keskitalo, C. Kintziger, T. Kisner, Y. Kobayashi, N. Kogiso, A. Kogut, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, I. Kreykenbohm, C. L. Kuo, A. Kushino, L. Lamagna, J. V. Lanen, G. Laquaniello, M. Lattanzi, A. T. Lee, C. Leloup, F. Levrier, E. Linder, M. J. Link, A. I. Lonappan, T. Louis, G. Luzzi, J. Macias-Perez, T. Maciaszek, B. Maffei, D. Maino, M. Maki, S. Mandelli, M. Maris, B. Marquet, E. Martnez-Gonzlez, F. A. Martire, S. Masi, M. Massa, M. Masuzawa, S. Matarrese, F. T. Matsuda, T. Matsumura, L. Mele, A. Mennella, M. Migliaccio, Y. Minami, K. Mitsuda, A. Moggi, M. Monelli, A. Monfardini, J. Montgomery, L. Montier, G. Morgante, B. Mot, Y. Murata, J. A. Murphy, M. Nagai, Y. Nagano, T. Nagasaki, R. Nagata, S. Nakamura, R. Nakano, T. Namikawa, F. Nati, P. Natoli, S. Nerval, N. Neto Godry Farias, T. Nishibori, H. Nishino, F. Noviello, G. C. O’Neil, C. O’Sullivan, K. Odagiri, H. Ochi, H. Ogawa, S. Oguri, H. Ohsaki, I. S. Ohta, N. Okada, L. Pagano, A. Paiella, D. Paoletti, G. Pascual Cisneros, A. Passerini, G. Patanchon, V. Pelgrim, J. Peloton, V. Pettorino, F. Piacentini, M. Piat, G. Piccirilli, F. Pinsard, G. Pisano, J. Plesseria, G. Polenta, D. Poletti, T. Prouv, G. Puglisi, D. Rambaud, C. Raum, S. Realini, M. Reinecke, C. D. Reintsema, M. Remazeilles, A. Ritacco, P. Rosier, G. Roudil, J. Rubino-Martin, M. Russell, H. Sakurai, Y. Sakurai, M. Sandri, M. Sasaki, G. Savini, D. Scott, J. Seibert, Y. Sekimoto, B. Sherwin, K. Shinozaki, M. Shiraishi, P. Shirron, A. Shitvov, G. Signorelli, G. Smecher, F. Spinella, J. Starck, S. Stever, R. Stompor, R. Sudiwala, S. Sugiyama, R. Sullivan, A. Suzuki, J. Suzuki, T. Suzuki, T. L. Svalheim, E. Switzer, R. Takaku, H. Takakura, S. Takakura, Y. Takase, Y. Takeda, A. Tartari, D. Tavagnacco, A. Taylor, E. Taylor, Y. Terao, L. Terenzi, J. Thermeau, H. Thommesen, K. L. Thompson, B. Thorne, T. Toda, M. Tomasi, M. Tominaga, N. Trappe, M. Tristram, M. Tsuji, M. Tsujimoto, C. Tucker, R. Ueki, J. N. Ullom, K. Umemori, L. Vacher, J. Van Lanen, G. Vermeulen, P. Vielva, F. Villa, M. R. Vissers, N. Vittorio, B. Wandelt, W. Wang, I. K. Wehus, J. Weller, B. Westbrook, G. Weymann-Despres, J. Wilms, B. Winter, E. J. Wollack, N. Y. Yamasaki, T. Yoshida, J. Yumoto, K. Watanuki, A. Zacchei, M. Zannoni, A. Zonca, Hubmayr, J, Ade, P, Adler, A, Allys, E, Alonso, D, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Azzoni, S, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Bartolo, N, Basak, S, Battistelli, E, Bautista, L, Beall, J, Beck, D, Beckman, S, Benabed, K, Bermejo-Ballesteros, J, Bersanelli, M, Bonis, J, Borrill, J, Bouchet, F, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Calvo, M, Campeti, P, Carones, A, Casas, F, Catalano, A, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Chiocchetta, C, Clark, S, Clermont, L, Clesse, S, Cliche, J, Columbro, F, Connors, J, Coppolecchia, A, Coulton, W, Cubas, J, Cukierman, A, Curtis, D, Cuttaia, F, D’Alessandro, G, Dachlythra, K, de Bernardis, P, de Haan, T, de la Hoz, E, De Petris, M, Della Torre, S, Daz Garca, J, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Douillet, D, Doumayrou, E, Duband, L, Ducout, A, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Farrens, S, Finelli, F, Flauger, R, Fleury-Frenette, K, Franceschet, C, Fuskeland, U, Galli, L, Galli, S, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Georges, M, Gerbino, M, Gervasi, M, Ghigna, T, Giardiello, S, Gjerlw, E, Gonzles, R, Gradziel, M, Grain, J, Grandsire, L, Grupp, F, Gruppuso, A, Gudmundsson, J, Halverson, N, Hamilton, J, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Henrot-Versill, S, Hensley, B, Herman, D, Herranz, D, Hilton, G, Hivon, E, Hlozek, R, Hoang, D, Hornsby, A, Hoshino, Y, Ichiki, K, Iida, T, Ikemoto, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Jones, M, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kintziger, C, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Laquaniello, G, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Link, M, Lonappan, A, Louis, T, Luzzi, G, Macias-Perez, J, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Maris, M, Marquet, B, Martnez-Gonzlez, E, Martire, F, Masi, S, Massa, M, Masuzawa, M, Matarrese, S, Matsuda, F, Matsumura, T, Mele, L, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Moggi, A, Monelli, M, Monfardini, A, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Nakano, R, Namikawa, T, Nati, F, Natoli, P, Nerval, S, Neto Godry Farias, N, Nishibori, T, Nishino, H, Noviello, F, O’Neil, G, O’Sullivan, C, Odagiri, K, Ochi, H, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Pascual Cisneros, G, Passerini, A, Patanchon, G, Pelgrim, V, Peloton, J, Pettorino, V, Piacentini, F, Piat, M, Piccirilli, G, Pinsard, F, Pisano, G, Plesseria, J, Polenta, G, Poletti, D, Prouv, T, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Reintsema, C, Remazeilles, M, Ritacco, A, Rosier, P, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Shitvov, A, Signorelli, G, Smecher, G, Spinella, F, Starck, J, Stever, S, Stompor, R, Sudiwala, R, Sugiyama, S, Sullivan, R, Suzuki, A, Suzuki, J, Suzuki, T, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Tavagnacco, D, Taylor, A, Taylor, E, Terao, Y, Terenzi, L, Thermeau, J, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ueki, R, Ullom, J, Umemori, K, Vacher, L, Van Lanen, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wandelt, B, Wang, W, Wehus, I, Weller, J, Westbrook, B, Weymann-Despres, G, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Watanuki, K, Zacchei, A, Zannoni, M, Zonca, A, and National Aeronautics and Space Administration (US)
- Subjects
CMB ,TES ,OMT ,Low temperature detector ,Bolometer ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,General Materials Science ,Condensed Matter Physics ,CMB, TES, OMT, Low temperature detector, Bolometer ,Atomic and Molecular Physics, and Optics - Abstract
et al., Feedhorn- and orthomode transducer- (OMT) coupled transition edge sensor (TES) bolometers have been designed and micro-fabricated to meet the optical specifications of the LiteBIRD high frequency telescope (HFT) focal plane. We discuss the design and optical characterization of two LiteBIRD HFT detector types: dual-polarization, dual-frequency-band pixels with 195/280 GHz and 235/337 GHz band centers. Results show well-matched passbands between orthogonal polarization channels and frequency centers within 3% of the design values. The optical efficiency of each frequency channel is conservatively reported to be within the range 0.64−0.72, determined from the response to a cryogenic, temperature-controlled thermal source. These values are in good agreement with expectations and either exceed or are within 10% of the values used in the LiteBIRD sensitivity forecast. Lastly, we report a measurement of loss in Nb/SiNx/Nb microstrip at 100 mK and over the frequency range 200–350 GHz, which is comparable to values previously reported in the literature., This work is supported by NASA under grant no. 80NSSC18K0132.
- Published
- 2022
3. The Infra-Red Telescope (IRT) on board the THESEUS mission
- Author
-
Stéphane Basa, Chris Tenzer, Benjamin Schneider, L. Genolet, Tony Pamplona, Isabel Escudero Sanz, Céline Paries, Isabelle Le Mer, Diego Götz, F. Pinsard, Laurent Martin, Axel Arhancet, Enrico Bozzo, Henri Triou, Thierry Tourrette, Emeric Le Floc'h, Stéphane Paltani, Christophe Cara, Pierre-Antoine Frugier, Paul Hedderman, Thibaut Prod'homme, and Johan Floriot
- Subjects
Physics ,High energy ,Cosmic Vision ,010308 nuclear & particles physics ,Infrared ,Payload ,Measure (physics) ,FOS: Physical sciences ,01 natural sciences ,7. Clean energy ,law.invention ,On board ,Telescope ,law ,0103 physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysics ,Gamma-ray burst ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Remote sensing - Abstract
The Infra-Red Telescope (IRT) is part of the payload of the THESEUS mission, which is one of the two ESA M5 candidates within the Cosmic Vision program, planned for launch in 2032. The THESEUS payload, composed by two high energy wide field monitors (SXI and XGIS) and a near infra-red telescope (IRT), is optimized to detect, localize and characterize Gamma-Ray Bursts and other high-energy transients. The main goal of the IRT is to identify and precisely localize the NIR counterparts of the high-energy sources and to measure their distance. Here we present the design of the IRT and its expected performance., Proceedings of the SPIE 2020, paper 11444-305
- Published
- 2020
- Full Text
- View/download PDF
4. First Characterization of the Focal Plane of the Micro-Channel X-Ray Telescope on board the SVOM Mission and Preparation of Radiation Tests to Predict its Performances in Low-Earth Orbit
- Author
-
Diana Renaud, Eric Doumayrou, Diego Götz, Francesco Ceraudo, Modeste Donati, F. Pinsard, Francois Visticot, Aline Meuris, Clement Raux, and Marin Prieur
- Subjects
Physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,X-ray telescope ,South Atlantic Anomaly ,law.invention ,Telescope ,symbols.namesake ,Optics ,Cardinal point ,law ,Van Allen radiation belt ,symbols ,Satellite ,Spectral resolution ,business - Abstract
This paper describes the simulated in-orbit environment and the first on-ground experimental characterisation of the focal plane of the Micro-channel X-ray Telescope (MXT) on board the Chinese-French Space-based multi-band astronomical Variable Object Monitor (SVOM), for the study of Gamma-Ray Bursts (GRBs). MXT will mount a back-illuminated 450 µm-thick fully-depleted frame-store pnCCD at the focal plane of lobster-eye optics to study the afterglow of GRBs in the 0.2 to 10 keV energy range. The performances of the MXT detector are predicted to degrade due to the radiation environment of the low Earth orbit of the SVOM satellite, which includes regular passages through the South Atlantic Anomaly (SAA). Of special concern are the leakage current and the Charge Transfer Efficiency (CTE), affecting the low-energy threshold and the spectral resolution of the camera, which will be operated at -65°C. In-orbit degradation will be experimentally studied on ground at the beginning of 2019 with proton irradiation tests at the Paul Scherrer Institute (PSI) in Switzerland. In preparation for this test campaign, simulations were performed to evaluate the particle flux on the detector and hence the displacement damage at the end of the mission, with emphasis on the contribution of protons trapped in the radiation belts. The simulations used the SPENVIS web service and the Geant4 toolkit, and were based on a simplified geometrical model of the camera, increasingly detailed around the focal plane of MXT. In parallel, a first laboratory characterisation was performed on the Engineering Model (EM) of the MXT focal plane.
- Published
- 2018
- Full Text
- View/download PDF
5. MXT instrument on-board the French-Chinese SVOM mission
- Author
-
A. Meuris, Diego Götz, Vadim Burwitz, F. Gonzalez, Albert Gomes, Charlotte Feldman, Laurent Perraud, Richard Willingale, F. Pinsard, James F. Pearson, Narjiss Boufracha, Paul Drumm, P. T. O'Brien, Norbert Meidinger, Pierre Pasqier, Martin Boutelier, Estelle Raynal, J. P. Osborne, Jean Michel Le Duigou, K. Mercier, and Marie Claire Charmeau
- Subjects
On board ,Computer science ,Payload ,Real-time computing ,X-ray telescope ,Gamma-ray burst - Abstract
The SVOM (Space-based multi-band astronomical Variable Objects Monitor) French-Chinese mission is dedicated to the detection, localization and study of Gamma Ray Bursts (GRBs) and other high-energy transient phenomena. We first present the general description of the French payload composed of the ECLAIRs instrument, dedicated to GRB detection and localization and the MXT instrument, dedicated to GRB follow-up observation in soft X-ray band. Then the paper describes more in detail the design and the performances of the MXT instrument, finally a status of MXT development will be given.
- Published
- 2018
- Full Text
- View/download PDF
6. ATHENA X-ray Integral Field Unit on-board event processor: analysis of performance of two triggering algorithms
- Author
-
Philippe Peille, Simon R. Bandler, Thomas Dauser, Frederick S. Porter, Michel Gros, Caroline A. Kilbourne, Kazuhiro Sakai, María Teresa Ceballos, Beatriz Cobo, Christophe Cara, Christian Kirsch, F. Pinsard, L. Ravera, Jörn Wilms, and Jean-Michel Mesnager
- Subjects
Physics ,Field (physics) ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Event (relativity) ,Real-time computing ,Astrophysics::Instrumentation and Methods for Astrophysics ,01 natural sciences ,Physics::History of Physics ,On board ,Physics::Popular Physics ,Physics::Plasma Physics ,0103 physical sciences ,Unit (ring theory) - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, United States.
- Published
- 2018
- Full Text
- View/download PDF
7. Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope
- Author
-
M. Billot, A. Penquer, F. Soufflet, F. Lugiez, A. Meuris, R. Bocage, M.C. Vassal, E. Delagnes, I. Le Mer, C. Blondel, F. Pinsard, Olivier Gevin, and O. Limousin
- Published
- 2017
- Full Text
- View/download PDF
8. Development and characterisation of MCT detectors for space astrophysics at CEA
- Author
-
V. Moreau, Bruno Fièque, N. Baier, P. Castelein, J. P. Zanatta, Philippe Chorier, F. Pinsard, Fabrice Guellec, G. Destefanis, Olivier Gravrand, C. Cervera, P. Mulet, and Olivier Boulade
- Subjects
Physics ,Far infrared ,Operating temperature ,law ,Detector ,Bolometer ,Astrophysics ,Photometer ,Space exploration ,Diode ,law.invention ,Dark current - Abstract
The Laboratoire Electronique et Traitement de l’Information (LETI) of the Commissariat a l’Energie Atomique (CEA, Grenoble, France) has been involved in the development of infrared detectors based on HgCdTe (MCT) material for over 30 years, mainly for defence and security programs [1]. Once the building blocks are developed at LETI (MCT material process, diode technology, hybridization, …), the industrialization is performed at SOFRADIR (also in Grenoble, France) which also has its own R&D program [2]. In past years, LETI also developed infrared detectors for space astrophysics in the mid infrared range – the long wave detector of the ISOCAM camera onboard ISO – as well as in the far infrared range – the bolometer arrays of the Herschel/PACS photometer unit –, both instruments which were under the responsibility of the Astrophysics department of CEA (IRFU/SAp, Saclay, France). Nowadays, the infrared detectors used in space and ground based astronomical instruments all come from vendors in the US. For programmatic reasons – increase the number of available vendors, decrease the cost, mitigate possible export regulations, …– as well as political ones – spend european money in Europe –, the European Space Agency (ESA) defined two roadmaps (one in the NIR-SWIR range, one in the MWIR-LWIR range) that will eventually allow for the procurement of infrared detectors for space astrophysics within Europe. The French Space Agency (CNES) also started the same sort of roadmaps, as part of its contribution to the different space missions which involve delivery of instruments by French laboratories. It is important to note that some of the developments foreseen in these roadmaps also apply to Earth Observations. One of the main goal of the ESA and CNES roadmaps is to reduce the level of dark current in MCT devices at all wavelengths. The objective is to use the detectors at the highest temperature where the noise induced by the dark current stays compatible with the photon noise, as the detector operating temperature has a very strong impact at system level. A consequence of reaching low levels of dark current is the need for very low noise readout circuits. CEA and SOFRADIR are involved in a number of activities that have already started in this framework. CEA/LETI does the development of the photo-voltaic (PV) layers – MCT material growth, diode technologies–, as well as some electro-optical characterisation at wafer, diode and hybrid component levels, and CEA/IRFU/SAp does all the electro-optical characterisation involving very low flux measurements (mostly dark current measurements). Depending of the program, SOFRADIR can also participate in the development of the hybrid components, for instance the very low noise readout circuits (ROIC) can be developed either at SOFRADIR or at CEA/LETI. Depending of the component specifications, the MCT epitaxy can be either liquid phase (LPE, which is the standard at SOFRADIR for production purposes) or molecular beam (MBE), the diode technology can be n/p (standard at LETI and SOFRADIR) or p/n (under development for several years now) [3], and the input stage of the ROIC can be Source Follower per Detector (SFD for very low flux low noise programs) or Capacitive Trans Impedance Amplifier (CTIA for intermediate flux programs) [4]. This paper will present the different developments and results obtained so far in the two NIR-SWIR and MWIR-LWIR spectral ranges, as well as the perspectives for the near future. CEA/LETI is also involved in the development of MCT Avalanche Photo Diodes (APD) that will be discussed in other papers [5,6].
- Published
- 2017
- Full Text
- View/download PDF
9. High-resolution time synchronization over SpaceWire links
- Author
-
Christophe Cara and F. Pinsard
- Subjects
Computer science ,Interface (computing) ,Real-time computing ,Aerospace Engineering ,High resolution ,Extension (predicate logic) ,SpaceWire ,Footprint ,Space and Planetary Science ,Factor (programming language) ,Electrical and Electronic Engineering ,Field-programmable gate array ,computer ,computer.programming_language ,Time synchronization - Abstract
We have demonstrated the benefits of the high-resolution extension to the SpaceWire standard. Initially limited to 280 ns, we are able now to achieve a time-tagging accuracy of 40 ns, which represents a gain by a factor of seven. When in the free-running counter configuration, the highest time resolution could still be achieved even with low SpaceWire data rates. In that case, the time resolution is dramatically increased with our extension with respect to the standard; e.g., the gain is 35 for a data rate of 10 Mbps and a 100-MHz free running counter. As mentioned, the footprint of the extension stays very limited, which allows an easy implementation in any space FPGA. Such an extension combines the benefits of the SpaceWire standard and high-resolution time tagging without the need for another dedicated interface for clock and synchronization signal distribution.
- Published
- 2013
- Full Text
- View/download PDF
10. Caliste 256: A CdTe imaging spectrometer for space science with a 580μm pixel pitch
- Author
-
R. Bocage, M.C. Vassal, O. Gevin, Fabrice Soufflet, Olivier Limousin, E. Delagnes, J. Martignac, Modeste Donati, A. Meuris, F. Lugiez, F. Pinsard, I. Le Mer, and C. Blondel
- Subjects
Physics ,Nuclear and High Energy Physics ,Pixel ,business.industry ,Detector ,Imaging spectrometer ,Dead time ,Dot pitch ,Optics ,Cardinal point ,Optoelectronics ,Full custom ,business ,Instrumentation ,Image resolution - Abstract
Caliste project aims at hybridizing 1 cm 2 CdTe or CdZnTe pixel detectors with low-noise full custom front-end electronics, in a single component standing in a 1×1×2 cm 3 volume. Caliste device is 4-side buttable and can be used as elementary detection unit of a large mosaic to form a hard X-ray focal plane of any size and shape. Caliste is especially designed to match astronomical space mission requirements and its design takes into account environmental constraints, radiation environment in particular. This new imaging spectrometer for hard X-rays detection offers high spectral and spatial resolution together with accurate time-tagging capability and low dead time. Caliste concept relies on a 3D hybridization technology that consists in stacking full custom ASICs perpendicular to the detection surface into a single component. This technique simultaneously permits to realize a buttable imager and to enhance performance and uniformity response. Our last prototype is called Caliste 256 and integrates 16×16 pixels array, 580 μm pitch and 256 corresponding independent spectroscopy channels. This paper presents Caliste 256 design and properties. We emphasize spectral performance and demonstrate spectral resolution capabilities better than 1 keV FWHM at 60 keV.
- Published
- 2011
- Full Text
- View/download PDF
11. Caliste 64, a new CdTe micro-camera for hard X-ray spectro-imaging
- Author
-
F. Lugiez, I. Le Mer, O. Limousin, Fabrice Soufflet, O. Gevin, F. Pinsard, A. Meuris, M.C. Vassal, and C. Blondel
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,Pixel ,business.industry ,Resolution (electron density) ,Detector ,Schottky diode ,Semiconductor ,Optics ,Electronics ,business ,Instrumentation ,Energy (signal processing) - Abstract
In the frame of the Simbol-X mission of hard X-ray astrophysics, a prototype of micro-camera with 64 pixels called Caliste 64 has been designed and several samples have been tested. The device integrates ultra-low-noise IDeF-X V1.1 ASICs from CEA and a 1 cm 2 Al Schottky CdTe detector from Acrorad because of its high uniformity and spectroscopic performance. The process of hybridization, mastered by the 3D Plus company, respects space applications standards. The camera is a spectro-imager with time-tagging capability. Each photon interacting in the semiconductor is tagged with a time, a position and an energy. Time resolution is better than 100 ns rms for energy deposits greater than 20 keV, taking into account electronic noise and technological dispersal of the front-end electronics. The spectrum summed across the 64 pixels results in an energy resolution of 664 eV fwhm at 13.94 keV and 842 eV fwhm at 59.54 keV, when the detector is cooled down to −10 °C and biased at −500 V.
- Published
- 2009
- Full Text
- View/download PDF
12. Micro Hard-X Ray Camera: From Caliste 64 to Caliste 256
- Author
-
M.C. Vassal, R. Bocage, O. Gevin, F. Lugiez, Olivier Limousin, I. Le Mer, Fabrice Soufflet, M. Chavassieux, A. Meuris, F. Daly, C. Blondel, Eric Delagnes, and F. Pinsard
- Subjects
Physics ,Nuclear and High Energy Physics ,X-ray astronomy ,Pixel ,business.industry ,Detector ,X-ray detector ,Gamma ray ,Schottky diode ,Noise (electronics) ,Particle detector ,Full width at half maximum ,Cardinal point ,Optics ,Nuclear Energy and Engineering ,Nuclear electronics ,Optoelectronics ,Electrical and Electronic Engineering ,Photonics ,business - Abstract
Caliste project aims at hybridizing 1 cm2 Cd(Zn)Te detectors with low noise front-end electronics, in a single component standing in a 1 times 1times 2 cm3 volume. The micro-camera is a spectroscopic imager for X and gamma rays detection, with time-tagging capability. Hybridization consists in stacking full custom ASICs perpendicular to the detection surface. The first prototype Caliste 64 integrates a detector of 8 times 8 pixels of 1 mm pitch. Fabrication and characterizations of nine cameras units validate the design and the hybridization concept. Spectroscopic tests result in a mean energy resolution of ~0.7 keV FWHM at 14 keV and ~0.85 keV FWHM at 60 keV using 1 mm-thick Al Schottky CdTe detectors biased at -400 V and cooled down to -15degC. The new prototype called Caliste 256 integrates 16 times 16 pixels of 580 mum pitch in the same volume as Caliste 64. Electrical tests with the first sample fabricated without detector result in a mean equivalent noise charge of 64 e- rms (9.6 mus, no leakage current). Caliste devices are 4-side buttable and can be used as elementary detection units of a large hard X-ray focal plane, as for the 64 cm2 high energy detector of the Simbol-X astronomical space mission.
- Published
- 2009
- Full Text
- View/download PDF
13. IDeF-X ECLAIRs: A CMOS ASIC for the Readout of CdTe and CdZnTe Detectors for High Resolution Spectroscopy
- Author
-
Olivier Limousin, P. Baron, X. Coppolani, F. Lugiez, E. Delagnes, F. Daly, O. Gevin, D. Renaud, A. Meuris, and F. Pinsard
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Detector ,Schottky diode ,Capacitance ,Noise (electronics) ,Cadmium telluride photovoltaics ,Cadmium zinc telluride ,law.invention ,chemistry.chemical_compound ,Capacitor ,Nuclear Energy and Engineering ,chemistry ,CMOS ,law ,Optoelectronics ,Electrical and Electronic Engineering ,business - Abstract
The very last member of the IDeF-X ASIC family is presented: IDeF-X ECLAIRs is a 32-channel front end ASIC designed for the readout of Cadmium Telluride (CdTe) and Cadmium Zinc Telluride (CdZnTe) Detectors. Thanks to its noise performance (Equivalent Noise Charge floor of 33 e- rms) and to its radiation hardened design (Single Event Latchup Linear Energy Transfer threshold of 56 MeV.cm2.mg-1), the chip is well suited for soft X-rays energy discrimination and high energy resolution, ldquospace proof,rdquo hard X-ray spectroscopy. We measured an energy low threshold of less than 4 keV with a 10 pF input capacitor and a minimal reachable sensitivity of the Equivalent Noise Charge (ENC) to input capacitance of less than 7 e-/pF obtained with a 6 mus peak time. IDeF-X ECLAIRs will be used for the readout of 6400 CdTe Schottky monopixel detectors of the 2D coded mask imaging telescope ECLAIRs aboard the SVOM satellite. IDeF-X ECLAIRs (or IDeF-X V2) has also been designed for the readout of a pixelated CdTe detector in the miniature spectro-imager prototype Caliste 256 that is currently foreseen for the high energy detector module of the Simbol-X mission.
- Published
- 2009
- Full Text
- View/download PDF
14. Caliste 64, an Innovative CdTe Hard X-Ray Micro-Camera
- Author
-
Olivier Limousin, E. Delagnes, Fabrice Soufflet, A. Meuris, O. Gevin, R. Bocage, M.C. Vassal, F. Pinsard, I. Le Mer, and F. Lugiez
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,Pixel ,business.industry ,Schottky barrier ,Detector ,Noise (electronics) ,Semiconductor detector ,Full width at half maximum ,Optics ,Nuclear Energy and Engineering ,Stack (abstract data type) ,Observatory ,Optoelectronics ,Spectral resolution ,Electrical and Electronic Engineering ,business ,Dark current - Abstract
In the frame of the hard X-ray simbol-X observatory, a joint CNES-ASI space mission to be flown in 2013, a prototype of miniature camera equipped with 64 pixels has been designed. The device, called CALISTE 64, is a spectro- imager with high resolution event time-tagging capability. CALISTE 64 integrates a CdTe semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analogue readout channels. This 10times10times18 mm3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of CALISTE 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs in a 3D-module, perpendicular to the detection plane. We achieved good noise performances, with an equivalent noise charge better than 60 electrons rms in average. We choose CdTe detectors equipped with aluminum Schottky barrier contacts because of their very low dark current and excellent spectroscopic performances. The first integrated CALISTE 64 camera was realized and tested. The device operates properly and all the 64 pixels show good spectra. When the crystal is cooled down to -10degC and biased at -400 V, the resulting sum spectrum shows a spectral resolution of 697 eV FWHM at 13.9 keV and 808 eV FWHM at 59.54 keV. This paper presents the CALISTE 64 design and preliminary performance test results.
- Published
- 2008
- Full Text
- View/download PDF
15. GLYCEMIES A JEUN VEINEUSES POTENTIELLEMENT INADAPTEES DANS LE SUIVI DU DIABETE : QUEL COUT EN FRANCE EN 2018 ?
- Author
-
B BOURRION, L GUERRIER, F PINSARD, S MAHUT, L DEVILLERS, and M FRANCOIS
- Abstract
Introduction. Le diabète touche plus de 3,3 millions de Français. Son coût représente près de 10 milliards d’euros par an, dont 250 millions en analyses de biologie médicale. Selon les recommandations, le suivi de l’équilibre glycémique s’effectue sur l’hémoglobine glyquée (HbA1c) et non sur la mesure de la glycémie à jeun au laboratoire (GAJ). Pourtant, il semble que beaucoup de GAJ soient prescrites chez les patients diabétiques. Objectif. Évaluer le coût des GAJ potentiellement inadaptées en ambulatoire chez les patients diabétiques. Méthode. La base de données de l’Échantillon généraliste des bénéficiaires (EGB) a été utilisée pour inclure les patients diabétiques au 1er janvier 2018. Les GAJ dosées en 2018 ont été recherchées. Pour chaque GAJ, une pratique d’autosurveillance glycémique (ASG) et, en fonction, une Hba1c prescrite de manière synchrone ou la prise d’un traitement à risque d’hypoglycémie étaient recherchées afin de repérer les GAJ justifiées. Elles correspondaient soit à une GAJ annuelle pour contrôler le bon fonctionnement du matériel d’ASG, soit aux GAJ dosées seules pour la recherche d’une hypoglycémie iatrogène en l’absence d’ASG. Le coût d’une GAJ a été utilisé pour obtenir le coût global sur l’EGB puis sur la population française. Résultats. 40 656 patients diabétiques ont été inclus et 66 874 GAJ ont été prescrites, dont 52 771 (78,9 %) étaient potentiellement inadaptées. Ceci représentait un coût de 71 240 € pour l’EGB, soit près de 7 millions d’euros pour la population française. Conclusion. Ce coût ne représente qu’une infime partie du budget de la santé. Cependant, l’impact iatrogénique de la répétition des GAJ potentiellement inadaptées n’ayant pas été étudié, il serait intéressant d’étudier l’enjeu de la multiplication de ce test chez les patients atteints de diabète de type 2.
- Published
- 2002
- Full Text
- View/download PDF
16. The mid-infrared channel of the EChO mission
- Author
-
P. O. Lagage, N. Nguyen-Tuong, J. P. Beaulieu, V. Coudé de Foresto, Christophe Cara, Pernelle Bernardi, O. Boulade, Giovanna Tinetti, D. Zeganadin, J. Tanrin, Marc Ollivier, Jean-Michel Reess, Gilles Morinaud, F. Pinsard, Pierre Drossart, and R. Cledassou
- Subjects
Physics ,Spectrometer ,Payload ,business.industry ,Detector ,Echo (computing) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Dichroic glass ,Exoplanet ,Optics ,Observatory ,Astrophysics::Earth and Planetary Astrophysics ,business ,Communication channel ,Remote sensing - Abstract
The Exoplanet Characterisation Observatory, EChO, is a dedicated space mission to investigate the physics and chemistry of Exoplanet atmospheres. Using the differential spectroscopy by transit method, it provides simultaneously a complete spectrum in a wide wavelength range between 0.4μm and 16μm of the atmosphere of exoplanets. The payload is subdivided into 6 channels. The mid-infrared channel covers the spectral range between 5μm and 11μm. In order to optimize the instrument response and the science objectives, the bandpass is split in two using an internal dichroic. We present the opto-mechanical concept of the MWIR channel and the detector development that have driven the thermal and mechanical designs of the channel. The estimated end-to-end performance is also presented.
- Published
- 2014
- Full Text
- View/download PDF
17. The camera of the Microchannel X-ray telescope onboard the SVOM mission
- Author
-
Thierry Tourrette, Mickael Carty, Norbert Meidinger, Danilo Miessner, François Nico, F. Pinsard, Luc Dumaye, Diego Götz, A. Meuris, Modeste Donati, Eric Doumayrou, Alain Goetschy, and K. Mercier
- Subjects
Physics ,Microchannel ,Pixel ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,X-ray telescope ,law.invention ,Telescope ,Optics ,Cardinal point ,law ,Active cooling ,Electromagnetic shielding ,Electronics ,business - Abstract
The Microchannel X-Ray Telescope will be implemented on board the SVOM space mission to observe the afterglow of gamma-ray bursts and localize them with 2 arcmin precision. The optical system is based on microchannel plates assembling in Wolter-I configuration to focus the X-rays in the focal plane, like done for the MIXS telescope of the BepiColombo ESA mission. The sensor part is a 256 × 256 pixel pnCCD from the Max-Planck Institute for Extraterrestrial Physics for high resolution spectroscopy and high quantum efficiency over 0.2 – 10 keV energy range, based on the same technology and design as the eROSITA telescopes for the Russian-German SRG mission. CEA-Irfu (Saclay) is in charge of the design and the realization of the camera, including the focal plane, the calibration wheel, the front-end electronics, the structure housing for background shielding and the active cooling system. A prototype of the full detection chain and the acquisition system was set up. The paper presents the preliminary design of the electrical, mechanical and thermal architectures of the camera. It focuses on the fabrication and testing of the critical elements of the design and concludes on the on-going developments.
- Published
- 2014
- Full Text
- View/download PDF
18. The French payload on-board the SVOM French-Chinese mission
- Author
-
Stéphane Schanne, K. Mercier, Shuang-Nan Zhang, Stéphane Basa, Jian-Yan Wei, Jean-Luc Atteia, F. Pinsard, P. Mandrou, Diego Götz, F. Gonzalez, R. Pons, Bertrand Cordier, Martine Jouret-Perl, and C. Lachaud
- Subjects
Physics ,On board ,Payload ,Astronomy ,Gamma-ray burst ,Alert system - Abstract
The SVOM (Space-based multi-band astronomical Variable Objects Monitor) French-Chinese mission is dedicated to the detection, localization and study of Gamma Ray Bursts (GRBs) and other high-energy transient phenomena. We first present the major principles of the SVOM system including the alert system providing near-real-time GRB localizations to large ground-based telescopes. Then the paper describes the definition of the SVOM payload and more particularly the French payload composed of the ECLAIRs instrument, dedicated to GRB detection and positioning, and the MXT instrument, dedicated to GRB followup observation in soft X-ray band.
- Published
- 2014
- Full Text
- View/download PDF
19. MCT planar p-on-n LW and VLW IRFPAs
- Author
-
A. Kerlain, Laurent Rubaldo, N. Baier, O. Gravrand, V. Moreau, Laurent Mollard, G. Bourgeois, J. P. Zanatta, L. Tauziède, A. Bardoux, Gérard Destefanis, F. Pinsard, Jean-Christophe Peyrard, and Olivier Boulade
- Subjects
Materials science ,Equivalent series resistance ,business.industry ,Detector ,Dot pitch ,Cutoff frequency ,Photodiode ,law.invention ,chemistry.chemical_compound ,Optics ,chemistry ,Operating temperature ,law ,Optoelectronics ,Mercury cadmium telluride ,business ,Dark current - Abstract
In this paper, we report on results obtained both at CEA/LETI and SOFRADIR on p-on-n HgCdTe (MCT) grown by liquid phase epitaxy (LPE) Infra-Red Focal Plane Arrays (IR FPAs) for the Long-wave (LW) and the Very-long-wave (VLW) spectral ranges. For many years, p-on-n arsenic-ion implanted planar technology has been developed and improved within the framework of the joint laboratory DEFIR. Compared to n-on-p, p-on-n technology presents lower dark current and series resistance. Consequently, p-on-n photodiodes are well-adapted for very large FPAs operating either at high temperature or very low flux. The long wave (LW) spectral ranges have been firstly addressed with TV/4, 30 µm pitch FPAs. Our results showed state-of-the-art detector performances, consistent with "Rule 07" law [1], a relevant indicator of the maturity of photodiode technology. The low dark current allows increasing the operating temperature without any degradation of the performances. The subsequent development of p-on-n imagers has produced more compact, less energy consuming systems, with a substantial resolution enhancement. Space applications are another exciting but challenging domains and are good candidates for the p-on-n technology. For this purpose, TV/4 arrays, 30 µm pixel pitch, have been manufactured for the very long wave spectral range. For this detection range, the quality of material and reliability of technology are the most critical. Detectors with different cutoff wavelength have been manufactured to aim 12.5 µm at 78K, 12.5 µm at 40K and 15 µm at 78K. Electro-optical characterizations reveal homogeneous imagers with excellent current operabilities (over 99.9% at best). The results highlight the very good quality of p-on-n technology with carrier diffusion limited dark current, fitting the "Rule 07" law, and high quantum efficiency. Further process developments have been made to improve photodiodes performances. Especially the transition temperature where the dark current shifts from diffusion limited regime to another one, has been lowered by more than 10K. Extremely low dark current has been obtained, down to 50 e-/s/pixel.
- Published
- 2013
- Full Text
- View/download PDF
20. Design of the MWIR channels of EChO
- Author
-
D. Zeganadin, Giovanna Tinetti, Gilles Morinaud, Jean-Phillippe Beaulieu, Pernelle Bernardi, Jean-Christophe Leclec'h, N. Baier, Jean-Michel Reess, Fabrice Guellec, J. P. Zanatta, P. O. Lagage, V. Coudé du Foresto, Christophe Cara, Jean-Tristan Buey, O. Boulade, Olivier Gravrand, F. Pinsard, Marc Ollivier, Laurent Mollard, V. Moreau, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Haute résolution angulaire en astrophysique, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Univ. College London (United Kingdom), Laboratoire d'électronique et des technologies de l'Information [Sfax] (LETI), École Nationale d'Ingénieurs de Sfax | National School of Engineers of Sfax (ENIS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'astrophysique spatiale (IAS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
- Subjects
Physics ,Spectrometer ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Echo (computing) ,Dichroic glass ,Wavelength ,Optics ,Optical materials ,Thermal ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,business ,Communication channel - Abstract
International audience; In this paper, we present the design of the MWIR channels of EChO. Two channels cover the 5-11 micron spectral range. The choice of the boundaries of each channel is a trade-off driven by the science goals (spectral features of key molecules) and several parameters such as the common optics design, the dichroic plates design, the optical materials characteristics, the detector cut-off wavelength. We also will emphasize the role of the detectors choice that drives the thermal and mechanical designs and the cooling strategy.
- Published
- 2012
- Full Text
- View/download PDF
21. Caliste HD: A new fine pitch Cd(Zn)Te imaging spectrometer from 2 keV up to 1 MeV
- Author
-
M.C. Vassal, Isabelle Le Mer, Eric Delagnes, Modeste Donati, Fabrice Soufflet, F. Lugiez, Aline Meuris, O. Gevin, F. Pinsard, Alicja Michalowska, C. Blondel, and Olivier Limousin
- Subjects
Physics ,Full width at half maximum ,Optics ,Physics::Instrumentation and Detectors ,Dynamic range ,business.industry ,Nuclear electronics ,Detector ,Imaging spectrometer ,Schottky diode ,business ,Particle detector ,Semiconductor detector - Abstract
Caliste HD is the last member of the Caliste family of Cd(Zn)Te micro-cameras for space applications. This hybrid component is made of the assembly of one 16 × 16 pixel Cd(Zn)Te detector and eight analog front-end ASIC named IDeF-X HD equipped with 32 spectroscopic channels. The pixels are 625 µm pitch and are surrounded by a 20 µm wide guard ring. The new generation of ASIC has the advantage of having a power consumption 4 times lower as the previous version (0.2 W for the full device) and offers the possibility to extend the dynamic range from 250 keV to 1 MeV. The technology is fully compliant with operation in space (tolerant to radiation, thermal and mechanical constraints). This paper presents the preliminary spectroscopic results obtained with the samples produced so far. At −16°C the sum spectrum built with all single events of the 1 mm-thick Al Schottky detector show an energy resolution of 0.82 keV FWHM at 14 keV and 0.92 keV FWHM at 60 keV. A good uniformity in gain and in noise is measured over the 256 pixels; the low level-threshold is lower than 2 keV for all pixels.
- Published
- 2011
- Full Text
- View/download PDF
22. IDeF-X HD: A low power multi-gain CMOS ASIC for the readout of Cd(Zn)Te detectors
- Author
-
F. Pinsard, O. Lemaire, O. Gevin, P. Baron, H. Grabas, Alicja Michalowska, E. Delagnes, Olivier Limousin, and F. Lugiez
- Subjects
Physics ,Pixel ,business.industry ,Detector ,Electrical engineering ,Integrated circuit ,Modular design ,Capacitance ,law.invention ,High-definition video ,Application-specific integrated circuit ,law ,Optoelectronics ,business ,Gamma camera - Abstract
SINCE few years, our group is developing a family of ASICs for space applications, named IDeF-X for Imaging Detector Front-end [l]-[4]. IDeF-X HD is the new member of the IDeF-X family. It has been optimized for the readout of 16 × 16 pixels CdTe or CdZnTe pixelated detectors to build a new low power Caliste 256 module [5]. This micro gamma-camera will be the elementary unit of the MAC SI (Modular Assembly of Caliste Spectro Imager) camera: A 2048-pixels 8 cm2 gamma camera designed with 8 identical Caliste modules.
- Published
- 2010
- Full Text
- View/download PDF
23. BASIC: a high-sensitivity all silicon bolometer focal plane for the SAFARI instrument aboard the SPICA Observatory
- Author
-
L. Rodriguez, J.-L. Sauvageot, Eric Doumayrou, S. Malhouitre, O. Boulade, Christophe Cara, F. Visticot, I. LeMer, J. Martignac, Christelle Cloue, Jean-Charles Cigna, V. Revéret, F. Pinsard, P. Mulet, B. Horeau, P. Agnèse, and J. LePennec
- Subjects
Physics ,business.industry ,Bolometer ,Detector ,Spica ,Particle detector ,law.invention ,Primary mirror ,Optics ,Cardinal point ,Far infrared ,law ,Observatory ,business - Abstract
The 6 K cooled primary mirror of the SPICA observatory, to be launched in 2018, allows a photometry gain in sensitivity in the far infrared of more than two orders of magnitude when compared with current instrumentation in space. All the proposed detector solutions will have to deploy radically different solutions from previous developments to cope with the extremely low background and very low power budgets available at all the temperature stages. We present the current design of very large "all Silicon" filled Bolometer Arrays cooled below 100 mK, and the solutions we develop for the BASIC (Bolometer Arrays for the All Silicon SAFARI Imaging Camera) focal planes of SAFARI. They will cover simultaneously three wavelength bands between 30 and 210 μm.
- Published
- 2010
- Full Text
- View/download PDF
24. The Herschel-SPIRE instrument and its in-flight performance
- Author
-
M. J. Griffin, A. Abergel, A. Abreu, P. A. R. Ade, P. André, J.-L. Augueres, T. Babbedge, Y. Bae, T. Baillie, J.-P. Baluteau, M. J. Barlow, G. Bendo, D. Benielli, J. J. Bock, P. Bonhomme, D. Brisbin, C. Brockley-Blatt, M. Caldwell, C. Cara, N. Castro-Rodriguez, R. Cerulli, P. Chanial, S. Chen, E. Clark, D. L. Clements, L. Clerc, J. Coker, D. Communal, L. Conversi, P. Cox, D. Crumb, C. Cunningham, F. Daly, G. R. Davis, P. De Antoni, J. Delderfield, N. Devin, A. Di Giorgio, I. Didschuns, K. Dohlen, M. Donati, A. Dowell, C. D. Dowell, L. Duband, L. Dumaye, R. J. Emery, M. Ferlet, D. Ferrand, J. Fontignie, M. Fox, A. Franceschini, M. Frerking, T. Fulton, J. Garcia, R. Gastaud, W. K. Gear, J. Glenn, A. Goizel, D. K. Griffin, T. Grundy, S. Guest, L. Guillemet, P. C. Hargrave, M. Harwit, P. Hastings, E. Hatziminaoglou, M. Herman, B. Hinde, V. Hristov, M. Huang, P. Imhof, K. J. Isaak, U. Israelsson, R. J. Ivison, D. Jennings, B. Kiernan, K. J. King, A. E. Lange, W. Latter, G. Laurent, P. Laurent, S. J. Leeks, E. Lellouch, L. Levenson, B. Li, J. Li, J. Lilienthal, T. Lim, S. J. Liu, N. Lu, S. Madden, G. Mainetti, P. Marliani, D. McKay, K. Mercier, S. Molinari, H. Morris, H. Moseley, J. Mulder, M. Mur, D. A. Naylor, H. Nguyen, B. O'Halloran, S. Oliver, G. Olofsson, H.-G. Olofsson, R. Orfei, M. J. Page, I. Pain, P. Panuzzo, A. Papageorgiou, G. Parks, P. Parr-Burman, A. Pearce, C. Pearson, I. Pérez-Fournon, F. Pinsard, G. Pisano, J. Podosek, M. Pohlen, E. T. Polehampton, D. Pouliquen, D. Rigopoulou, D. Rizzo, I. G. Roseboom, H. Roussel, M. Rowan-Robinson, B. Rownd, P. Saraceno, M. Sauvage, R. Savage, G. Savini, E. Sawyer, C. Scharmberg, D. Schmitt, N. Schneider, B. Schulz, A. Schwartz, R. Shafer, D. L. Shupe, B. Sibthorpe, S. Sidher, A. Smith, A. J. Smith, D. Smith, L. Spencer, B. Stobie, R. Sudiwala, K. Sukhatme, C. Surace, J. A. Stevens, B. M. Swinyard, M. Trichas, T. Tourette, H. Triou, S. Tseng, C. Tucker, A. Turner, M. Vaccari, I. Valtchanov, L. Vigroux, E. Virique, G. Voellmer, H. Walker, R. Ward, T. Waskett, M. Weilert, R. Wesson, G. J. White, N. Whitehouse, C. D. Wilson, B. Winter, A. L. Woodcraft, G. S. Wright, C. K. Xu, A. Zavagno, M. Zemcov, L. Zhang, E. Zonca, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Physical sciences ,Field of view ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,law.invention ,Telescope ,Optics ,law ,0103 physical sciences ,instrumentation: photometers ,instrumentation: spectrographs ,space vehicles: instruments ,submillimeter: general ,[INFO]Computer Science [cs] ,Spectral resolution ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,QB ,Physics ,Instrument control ,Spectrometer ,010308 nuclear & particles physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Spectral bands ,Photometer ,Spire ,Space and Planetary Science ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
The Spectral and Photometric Imaging Receiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 microns, and an imaging Fourier Transform Spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 microns (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2., Comment: Accepted for publication in Astronomy & Astrophyics (Herschel first results special issue)
- Published
- 2010
- Full Text
- View/download PDF
25. The High Energy Detector of Simbol-X
- Author
-
A. Meuris, O. Limousin, F. Lugiez, O. Gevin, C. Blondel, I. Le Mer, F. Pinsard, C. Cara, A. Goetschy, J. Martignac, G. Tauzin, S. Hervé, P. Laurent, R. Chipaux, Y. Rio, J. Fontignie, B. Horeau, M. Authier, P. Ferrando, Jéro^me Rodriguez, Phillippe Ferrando, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département d'Astrophysique (ex SAP) (DAP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, APC - Astrophysique des Hautes Energies (APC - AHE), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Jérôme Rodriguez, Phillippe Ferrando, SIMBOL-X, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Dipartimento di Astronomia, Universita degli Studi di Bologna, Università di Bologna [Bologna] (UNIBO)-Università di Bologna [Bologna] (UNIBO), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Dipartimento di Astronomia, Universita degli Studi di Bologna, and Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
- Subjects
[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Photon ,Charge-coupled devices ,02 engineering and technology ,01 natural sciences ,010309 optics ,Optics ,and IR detector arrays ,0103 physical sciences ,Electronics ,Physics ,Range (particle radiation) ,Spacecraft ,business.industry ,Artificial Earth satellites ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Detector ,021001 nanoscience & nanotechnology ,Cadmium telluride photovoltaics ,X- and gamma-ray telescopes and instrumentation ,image detectors ,Optoelectronics ,Full custom ,0210 nano-technology ,business ,Spectroscopy and spectrophotometry ,Energy (signal processing) - Abstract
ISBN: 978-0-07354-0662-9; International audience; The High Energy Detector (HED) is one of the three detection units on board the Simbol-X detector spacecraft. It is placed below the Low Energy Detector so as to collect focused photons in the energy range from 8 to 80 keV. It consists of a mosaic of 64 independent cameras, divided in 8 sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique component. The status of the HED design will be reported. The promising results obtained from the first micro-camera prototypes called Caliste 64 and Caliste 256 will be presented to illustrate the expected performance of the instrument.
- Published
- 2008
- Full Text
- View/download PDF
26. Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope
- Author
-
I. Le Mer, C. Blondel, O. Gevin, Olivier Limousin, A. Meuris, R. Bocage, Fabrice Soufflet, M.C. Vassal, E. Delagnes, F. Pinsard, and F. Lugiez
- Subjects
Physics ,Photon ,Pixel ,business.industry ,Noise (electronics) ,Particle detector ,Semiconductor detector ,law.invention ,Telescope ,Optics ,law ,Optoelectronics ,Spectral resolution ,business ,Dark current - Abstract
In the frame of the hard X-ray Simbol-X observatory, a jo int CNES-ASI space mission to be flown in 2014, a prototype of miniature Cd(Zn)Te camera equipped with 64 pixels has been designed. The device, called Caliste 64, is a spectro-imager with high resolution event time-tagging capability. Calis te 64 integrates a Cd(Zn)Te semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analog readout channels. This 1 u 1 u 2 cm 3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of Caliste 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs, perpendicular to the detection plane. We achieved good noise performances, with a mean Equivalent Noise Charge of ~65 electrons rms over the 64 channels. Time resolution is better than 70 ns rms for energy deposits greater than 50 keV, ta king into account electronic noise and technological dispersal, which enables to reject background by anticoincidence with very low probability of error. For the first prototypes, we chose CdTe detectors equipped with Al-Ti-Au Schottky barrier contacts because of their very low dark current and excellent spectroscopic performances. So fa r, three Caliste 64 cameras have been r ealized and tested. When the crystal is cooled down to -10°C, the sum spectrum built with the 64 pixels of a Caliste 64 sample results in a spectral resolution of 664 eV FWHM at 13.94 keV and 841 eV FWHM at 59.54 keV. Keywords: CdTe, Simbol-X, spectro-imager, X rays
- Published
- 2008
- Full Text
- View/download PDF
27. The Herschel-SPIRE photometer data processing pipeline
- Author
-
Kevin Xu, Dave Clements, Michael Pohlen, S. Guest, Tanya Lim, Lijun Zhang, Hien Nguyen, K. J. King, R. Gastaud, Matthew Joseph Griffin, Gabrielle Mainetti, C. Darren Dowell, Nieves Castro-Rodriguez, Christophe Cara, G. J. Bendo, Pasquale Panuzzo, F. Pinsard, Glenn Laurent, Arnold A. Schwartz, Chris Pearson, James J. Bock, Bruce Swinyard, Pierre Chanial, D. Rizzo, Victor V. Hristov, Bruce Sibthorpe, Huw R. Morris, Bernhard Schulz, Nanyao Lu, Jason Glenn, Edward Polehampton, Oschmann, Jacobus M., Jr., de Graauw, Mattheus W. M., and MacEwen, Howard A.
- Subjects
Physics ,Data processing ,Point source ,business.industry ,Pipeline (computing) ,Detector ,Bolometer ,Uranus ,Astrophysics::Instrumentation and Methods for Astrophysics ,Flux ,Photometer ,law.invention ,Optics ,law ,business ,Remote sensing - Abstract
We describe the on-board electronics chain and the on-ground data processing pipeline that will operate on data from the Herschel-SPIRE photometer to produce calibrated astronomical products. Data from the three photometer arrays will be conditioned and digitised by on-board electronics and sent to the ground with no further on-board data processing. On the ground, the data pipeline will process the data from point source, jiggle-map, and scan-map observations in a fully automatic manner, producing measured flux densities (for point source observations) or maps. It includes calculation of the bolometer voltages from the raw telemetry, glitch removal, and corrections for various effects including time constants associated with the detectors and electronics, electrical and optical crosstalk, detector temperature drifts, flatfielding, and non-linear response of the bolometers to strong sources. Flux density calibration will be with respect to standard astronomical sources with the planets Uranus and Neptune being adopted as the baseline primary standards. The pipeline will compute estimated values of in-beam flux density for a standard flat νS(ν) source spectrum.
- Published
- 2008
28. The European contribution to the SPICA mission
- Author
-
P. Mauskopf, Sébastien Vivès, Nicola Rando, Thomas Jagemann, Anna Maria Di Giorgio, Ana M. Heras, Lionel Duband, Doug Griffin, Hideo Matsuhara, Bruce Swinyard, Takao Nakagawa, Javier R. Goicoechea, Norbert Geis, Paul Eccleston, Jochem J. A. Baselmans, Marc Ferlet, Kate Gudrun Isaak, Nicholas Luchier, Walfried Raab, Louis Rodriguez, and F. Pinsard
- Subjects
Physics ,Telescope ,Cosmic Vision ,law ,Infrared telescope ,Astronomy ,Spica ,Ground segment ,law.invention - Abstract
The Japanese led Space Infrared telescope for Cosmology and Astrophysics (SPICA) will observe the universe over the 5 to 210 micron band with unprecedented sensitivity owing to its cold (~5 K) 3.5m telescope. The scientific case for a European involvement in the SPICA mission has been accepted by the ESA advisory structure and a European contribution to SPICA is undergoing an assessment study as a Mission of Opportunity within the ESA Cosmic Vision 1015-2015 science mission programme. In this paper we describe the elements that are being studied for provision by Europe for the SPICA mission. These entail ESA directly providing the cryogenic telescope and ground segment support and a consortium of European insitutes providing a Far Infrared focal plane instrument. In this paper we describe the status of the ESA study and the design status of the FIR focal plane instrument.
- Published
- 2008
- Full Text
- View/download PDF
29. High Resolution Time Synchronization over SpaceWire Links
- Author
-
Christophe Cara and F. Pinsard
- Subjects
Engineering ,Resource (project management) ,business.industry ,Detector ,Real-time computing ,Field-programmable gate array ,business ,Scope (computer science) ,SpaceWire ,Synchronization ,Data access layer ,Data transmission - Abstract
In this paper, an extension to the SpaceWire standard (Parkes et al., 2003) is presented which increases considerably its synchronization capability. Initially developed in the scope of Simbol-X (Ferrando et al., 2006), a CNES formation flying instrument where time-tagging of data science from three detectors is critical to perform on-board processing, the extension can be implemented in all equipments where the use of the performing spacewire standard is not possible due to its intrinsic synchronization limitation. This limitation gives a lack of precision ten times the data transmission period rate plus two periods of the receiver synchronization clock. With the additional feature this uncertainty is reduced to two periods of the receiver synchronization clock. The extension takes advantage of already existing capabilities of the spacewire standard with no impact on the data layer and very limited additional resource needs. The resulting performances measured on a prototype are presented still in the framework of the Simbol-X instrument using ACTEL space qualified FPGA as target.
- Published
- 2008
- Full Text
- View/download PDF
30. IDeF-X ECLAIRs: An ultra low noise CMOS ASIC for the readout of Cd(Zn)Te detectors
- Author
-
A. Meuris, E. Delagnes, F. Daly, X. Coppolani, P. Baron, F. Lugiez, F. Pinsard, Olivier Limousin, and O. Gevin
- Subjects
Physics ,business.industry ,Detector ,Schottky diode ,Capacitance ,Cadmium telluride photovoltaics ,Cadmium zinc telluride ,law.invention ,chemistry.chemical_compound ,Capacitor ,CMOS ,chemistry ,law ,Nuclear electronics ,Optoelectronics ,business - Abstract
The very last member of the IDeF-X ASIC family is presented: IDeF-X ECLAIRs is a 32-channel front end ASIC designed for the readout of low capacitive (2 to 5 pF) and low leakage current (1 pA to 2 nA) cadmium telluride (CdTe) and cadmium zinc telluride detectors (CdZnTe). Thanks to its ultra low noise performances (equivalent noise charge floor of 33 e- rms) and to its radiation hardened design (single event latchup linear energy transfer threshold of 56 MeV.cm2.mg-1), the chip is well suited for very low energy discrimination, very high energy resolution, "space proof," hard X-ray spectroscopy. We measured a very low energy threshold of less than 2 keV with a 14 pF input capacitor and a minimal sensitivity of the equivalent noise charge (ENC) to input capacitance of less than 7 e-/pF obtained with a 6 mus peaking time. IDeF-X ECLAIRs will be used for the readout of 6400 CdTe Schottky monopixel detectors of the 2D coded mask imaging telescope ECLAIRs aboard the SVOM satellite [1]. IDeF-X ECLAIRs has also been designed for the readout of a pixelated CdTe detector in the future miniature spectro-imager prototype CALISTE 256 that is currently foreseen for the high energy detector module of the SIMBOL-X mission [2], [3].
- Published
- 2007
- Full Text
- View/download PDF
31. SIMBOL-X, a formation flying-mission for hard X-ray astrophysics
- Author
-
Olivier Limousin, Ulrich G. Briel, P. Ferrando, J. Martignac, Oberto Citterio, Giuseppe Malaguti, Philippe Laurent, Lothar Strueder, J. P. Roques, Günther Hasinger, G. Pareschi, Fabrizio Fiore, G. Tagliaferri, F. Pinsard, Andrea Goldwurm, Y. Rio, APC - Astrophysique des Hautes Energies (APC - AHE), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Dipartimento di Astronomia, Universita degli Studi di Bologna, Università di Bologna [Bologna] (UNIBO)-Università di Bologna [Bologna] (UNIBO), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Oberto Citterio, Stephen L. O'Dell, SIMBOL-X, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Dipartimento di Astronomia, Universita degli Studi di Bologna, Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Physics ,COSMIC cancer database ,Spacecraft ,High-energy astronomy ,business.industry ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Astrophysics (astro-ph) ,FOS: Physical sciences ,02 engineering and technology ,Astrophysics ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,Accretion (astrophysics) ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Acceleration ,Range (aeronautics) ,0103 physical sciences ,Focal length ,Angular resolution ,0210 nano-technology ,business ,010303 astronomy & astrophysics - Abstract
SIMBOL-X is a hard X-ray mission, operating in the ~ 0.5-70 keV range, which is proposed by a consortium of European laboratories in response to the 2004 call for ideas of CNES for a scientific mission to be flown on a formation flying demonstrator. Relying on two spacecrafts in a formation flying configuration, SIMBOL-X uses for the first time a ~ 30 m focal length X-ray mirror to focus X-rays with energy above 10 keV, resulting in a two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non focusing techniques. The SIMBOL-X revolutionary instrumental capabilities will allow to elucidate outstanding questions in high energy astrophysics, related in particular to the physics of accretion onto compact objects, to the acceleration of particles to the highest energies, and to the nature of the Cosmic X-Ray background. The mission, which has gone through a thorough assessment study performed by CNES, is expected to start a competitive phase A in autumn 2005, leading to a flight decision at the end of 2006, for a launch in 2012. The mission science objectives, the current status of the instrumentation and mission design, as well as potential trade-offs are presented in this paper., 10 pages; Proc. of SPIE conference "Optics for EUV, X-Ray, and Gamma-Ray Astronomy II", San Diego July 31st-Aug.4th, 2005, Vol. 5900
- Published
- 2005
- Full Text
- View/download PDF
32. The COSPIX mission: focusing on the energetic and obscured Universe
- Author
-
Monique Arnaud, Chiara Feruglio, Jörn Wilms, R. Chipaux, Sylvain Chaty, Robert Petre, C. Tenzer, Marguerite Pierre, C. J. Hailey, Matthieu Renaud, Stephen L. O'Dell, Isabel Caballero, Ignacio Negueruela, Finn Erland Christensen, Chiara Ferrari, Andrea Santangelo, David Elbaz, J.-L. Sauvageot, W. Zhang, Maurizio Falanga, Stéphane Paltani, J. L. Robert, Gabriele Ponti, Julien Malzac, Simona Soldi, Peggy Varniere, D. Bomans, Juan J. Rodriguez, F. Pinsard, Anne Decourchelle, Krzysztof Nalewajko, M. De Becker, F. Mattana, G. Trap, Olivier Limousin, Stephane Corbel, P.-O. Petrucci, Margarita Hernanz, A. Meuris, Regis Terrier, J. A. Zurita Heras, Agata Różańska, Francisco J. Carrera, Jérôme Chenevez, Emanuele Daddi, Andrea Goldwurm, Ph. Laurent, J. Martignac, Philippe Ferrando, Michel Tagger, Judith H. Croston, Xavier Barcons, Ingo Kreykenbohm, Christian Gouiffes, Giovanni Miniutti, D. Gotz, Volker Beckmann, Arnaud Claret, Nanda Rea, Gregor Rauw, APC - Astrophysique des Hautes Energies (APC - AHE), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Astroparticules (LPTA), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et chimie de l'environnement (LPCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Frank M. Rieger, Christopher van Eldik, Werner Hofmann, COSPIX, Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Dipartimento di Astronomia, Universita degli Studi di Bologna, Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Dipartimento di Astronomia, Universita degli Studi di Bologna, Università di Bologna [Bologna] (UNIBO)-Università di Bologna [Bologna] (UNIBO), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,media_common.quotation_subject ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,7. Clean energy ,01 natural sciences ,Occultation ,law.invention ,Telescope ,Observatory ,law ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,media_common ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Supermassive black hole ,010308 nuclear & particles physics ,Payload ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Astronomy ,Universe ,Galaxy ,85-06 ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Trabajo presentado al 25th Texas Symposium on Relativistic Astrophysics - Session P9: Next generation major instruments, celebrado en Heidelberg (Alemania) del 6 al 10 de diciembre de 2010., Tracing the formation and evolution of all supermassive black holes, including the obscured ones, understanding how black holes influence their surroundings and how matter behaves under extreme conditions, are recognized as key science objectives to be addressed by the next generation of instruments. These are the main goals of the COSPIX proposal, made to ESA in December 2010 in the context of its call for selection of the M3 mission. In addition, COSPIX, will also provide key measurements on the non thermal Universe, particularly in relation to the question of the acceleration of particles, as well as on many other fundamental questions as for example the energetic particle content of clusters of galaxies. COSPIX is proposed as an observatory operating from 0.3 to more than 100 keV. The payload features a single long focal length focusing telescope offering an effective area close to ten times larger than any scheduled focusing mission at 30 keV, an angular resolution better than 20 arcseconds in hard X-rays, and polarimetric capabilities within the same focal plane instrumentation. In this paper, we describe the science objectives of the mission, its baseline design, and its performances, as proposed to ESA.
- Full Text
- View/download PDF
33. Quality of Life in COVID-19 Outpatients: A Long-Term Follow-Up Study.
- Author
-
Tarazona V, Kirouchena D, Clerc P, Pinsard-Laventure F, and Bourrion B
- Abstract
Background: The long-term issues faced by COVID-19 survivors remain unclear. Symptoms may persist for several months, even in non-hospitalized patients, probably impacting the quality of life. Objective: To assess the health-related quality of life of outpatients one year after SARS-CoV-2 infection. Design, Settings, and Participants: This prospective multicentre study, conducted in France from February 2020 to February 2022, compared 150 COVID-19 cases (PCR+ and/or CT scan+) and 260 controls (PCR-) selected from a database of four COVID centres. Main outcomes: Health-related quality of life assessed using the EQ-5D-5L scale. Results: COVID-19 outpatients (n = 96) had significantly lower health-related quality of life than controls (n = 81) one year after SARS-CoV-2 infection: the EQ-5D-5L index averaged 0.87 in cases and 0.95 in controls (p = 0.002); the EQ- VAS averaged 78 in cases and 86.7 in controls (p < 0.001). This alteration in quality of life was more intense in the areas of pain or discomfort and daily activities. Conclusions: This study is the first to show an alteration in the quality of life of COVID-19 outpatients after one year. Appropriate guidance and community rehabilitation programs are required for outpatients with persistent symptoms of COVID-19. Research must continue to confirm these results in larger cohorts.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.