1. Mixed batches and symmetric discriminators for GAN training
- Author
-
LUCAS , Thomas, Tallec , Corentin, Verbeek , Jakob, Ollivier , Yann, Apprentissage de modèles à partir de données massives ( Thoth ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Laboratoire Jean Kuntzmann ( LJK ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Laboratoire de Recherche en Informatique ( LRI ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ), TAckling the Underspeficied ( TAU ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique ( Inria ), Facebook AI Research [Paris] ( FAIR ), Facebook, Apprentissage de modèles à partir de données massives (Thoth ), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), TAckling the Underspecified (TAU), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Facebook AI Research [Paris] (FAIR), ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011), ANR-16-CE23-0006,Deep_in_France,Réseaux de neurones profonds pour l'apprentissage(2016), Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Recherche en Informatique (LRI), and Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Computer and information sciences ,Computer Science - Learning ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,Statistics - Machine Learning ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Machine Learning (stat.ML) ,[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,ComputingMilieux_MISCELLANEOUS ,[ INFO.INFO-LG ] Computer Science [cs]/Machine Learning [cs.LG] ,Machine Learning (cs.LG) - Abstract
Generative adversarial networks (GANs) are pow- erful generative models based on providing feed- back to a generative network via a discriminator network. However, the discriminator usually as- sesses individual samples. This prevents the dis- criminator from accessing global distributional statistics of generated samples, and often leads to mode dropping: the generator models only part of the target distribution. We propose to feed the discriminator with mixed batches of true and fake samples, and train it to predict the ratio of true samples in the batch. The latter score does not depend on the order of samples in a batch. Rather than learning this invariance, we introduce a generic permutation-invariant discriminator ar- chitecture. This architecture is provably a uni- versal approximator of all symmetric functions. Experimentally, our approach reduces mode col- lapse in GANs on two synthetic datasets, and obtains good results on the CIFAR10 and CelebA datasets, both qualitatively and quantitatively., Comment: Accepted at ICML 2018 (long oral)
- Published
- 2018