Claude-Alain Pillet, Armen Shirikyan, Vojkan Jaksic, Department of Mathematics and Statistics [Montréal], McGill University = Université McGill [Montréal, Canada], Fédération de Recherche des Unités de MAthématiques de Marseille (FRUMAM), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Avignon Université (AU)-Université de Toulon (UTLN), CPT - E5 Physique statistique et systèmes complexes, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Analyse, Géométrie et Modélisation (AGM - UMR 8088), CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS), CNRS PICS RESSPDE, PICS RESSPDE, Avignon Université (AU)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
We consider a general network of harmonic oscillators driven out of thermal equilibrium by coupling to several heat reservoirs at different temperatures. The action of the reservoirs is implemented by Langevin forces. Assuming the existence and uniqueness of the steady state of the resulting process, we construct a canonical entropy production functional $$S^t$$ which satisfies the Gallavotti–Cohen fluctuation theorem. More precisely, we prove that there exists $$\kappa _c>\frac{1}{2}$$ such that the cumulant generating function of $$S^t$$ has a large-time limit $$e(\alpha )$$ which is finite on a closed interval $$[\frac{1}{2}-\kappa _c,\frac{1}{2}+\kappa _c]$$ , infinite on its complement and satisfies the Gallavotti–Cohen symmetry $$e(1-\alpha )=e(\alpha )$$ for all $$\alpha \in {\mathbb {R}}$$ . Moreover, we show that $$e(\alpha )$$ is essentially smooth, i.e., that $$e'(\alpha )\rightarrow \mp \infty $$ as $$\alpha \rightarrow \tfrac{1}{2}\mp \kappa _c$$ . It follows from the Gartner–Ellis theorem that $$S^t$$ satisfies a global large deviation principle with a rate function I(s) obeying the Gallavotti–Cohen fluctuation relation $$I(-s)-I(s)=s$$ for all $$s\in {\mathbb {R}}$$ . We also consider perturbations of $$S^t$$ by quadratic boundary terms and prove that they satisfy extended fluctuation relations, i.e., a global large deviation principle with a rate function that typically differs from I(s) outside a finite interval. This applies to various physically relevant functionals and, in particular, to the heat dissipation rate of the network. Our approach relies on the properties of the maximal solution of a one-parameter family of algebraic matrix Riccati equations. It turns out that the limiting cumulant generating functions of $$S^t$$ and its perturbations can be computed in terms of spectral data of a Hamiltonian matrix depending on the harmonic potential of the network and the parameters of the Langevin reservoirs. This approach is well adapted to both analytical and numerical investigations.