1. Modulating Efficiency and Color of Thermally Activated Delayed Fluorescence by Rationalizing the Substitution Effect.
- Author
-
Jodra A, Marazzi M, Frutos LM, and García-Iriepa C
- Abstract
Thermally activated delayed fluorescence (TADF) constitutes the process by which third-generation organic light-emitting diodes (OLEDs) are being designed and produced. Despite several years of trial-and-error attempts, mainly driven by chemical intuition about how to improve a certain aspect of the process, few studies focused on the in-depth description of its two key properties: efficiency of the T
1 → S1 intersystem crossing and further S1 → S0 emission. Here, by means of a newly developed theoretical formalism, we propose a systematic rationalization of the substituent effect in a paradigmatic class of OLED compounds, based on phenothiazine-dibenzothiophene- S , S -dioxide, known as PTZ-DBTO2. Our methodology allows to discern among geometrical and electronic effects induced by the substituent, deeply understanding the relationships existing between charge transfer, spin density, geometrical deformations, and energy modulations between electronic states. By our results, we can finally elucidate, depending on the substituent, the fate of the overall TADF process, quantitatively assessing its efficiency and predicting the color emission. Moreover, the general terms by which this methodology was developed allow its application to any chromophore of interest.- Published
- 2024
- Full Text
- View/download PDF