1. Medial Prefrontal Cortex Dysfunction Mediates Working Memory Deficits in Patients With Schizophrenia.
- Author
-
Williams JC, Zheng ZJ, Tubiolo PN, Luceno JR, Gil RB, Girgis RR, Slifstein M, Abi-Dargham A, and Van Snellenberg JX
- Abstract
Background: Schizophrenia (SCZ) is marked by working memory (WM) deficits, which predict poor functional outcome. While most functional magnetic resonance imaging studies of WM in SCZ have focused on the dorsolateral prefrontal cortex (PFC), some recent work suggests that the medial PFC (mPFC) may play a role. We investigated whether task-evoked mPFC deactivation is associated with WM performance and whether it mediates deficits in SCZ. In addition, we investigated associations between mPFC deactivation and cortical dopamine release., Methods: Patients with SCZ ( n = 41) and healthy control participants (HCs) ( n = 40) performed a visual object n-back task during functional magnetic resonance imaging. Dopamine release capacity in mPFC was quantified with [
11 C]FLB457 in a subset of participants (9 SCZ, 14 HCs) using an amphetamine challenge. Correlations between task-evoked deactivation and performance were assessed in mPFC and dorsolateral PFC masks and were further examined for relationships with diagnosis and dopamine release., Results: mPFC deactivation was associated with WM task performance, but dorsolateral PFC activation was not. Deactivation in the mPFC was reduced in patients with SCZ relative to HCs and mediated the relationship between diagnosis and WM performance. In addition, mPFC deactivation was significantly and inversely associated with dopamine release capacity across groups and in HCs alone, but not in patients., Conclusions: Reduced WM task-evoked mPFC deactivation is a mediator of, and potential substrate for, WM impairment in SCZ, although our study design does not rule out the possibility that these findings could relate to cognition in general rather than WM specifically. We further present preliminary evidence of an inverse association between deactivation during WM tasks and dopamine release capacity in the mPFC., (© 2022 The Authors.)- Published
- 2022
- Full Text
- View/download PDF