4 results on '"Imene Aicha Djebour"'
Search Results
2. Feedback stabilization of parabolic systems with input delay
- Author
-
Imene Aicha Djebour, Takéo Takahashi, Julie Valein, Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), The two first authors were partially supported by the ANR research project IFSMACS (ANR-15-CE40-0010). The third author was partially supported by the ANR research projects ISDEEC (ANR-16-CE40-0013) and ANR ODISSE (ANR-19-CE48-0004-01)., ANR-15-CE40-0010,IFSMACS,Interaction Fluide-Structure : Modélisation, analyse, contrôle et simulation(2015), ANR-16-CE40-0013,ISDEEC,Interactions entre Systèmes Dynamiques, Equations d'Evolution et Contrôle(2016), and ANR-19-CE48-0004,ODISSE,Synthèse d'observateur pour des systèmes de dimension infinie(2019)
- Subjects
0209 industrial biotechnology ,Work (thermodynamics) ,Control and Optimization ,Feedback control ,parabolic systems ,2010 Mathematics Subject Classification 93B52, 93D15, 35Q30, 76D05, 93C20 ,02 engineering and technology ,01 natural sciences ,Navier-Stokes system ,020901 industrial engineering & automation ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematics - Optimization and Control ,Mathematics ,delay control ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,stabilizability ,finite-dimensional control ,Nonlinear system ,Transformation (function) ,Optimization and Control (math.OC) ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Constant (mathematics) ,Stationary state ,Analysis of PDEs (math.AP) - Abstract
This work is devoted to the stabilization of parabolic systems with a finite-dimensional control subjected to a constant delay. Our main result shows that the Fattorini-Hautus criterion yields the existence of such a feedback control, as in the case of stabilization without delay. The proof consists in splitting the system into a finite dimensional unstable part and a stable infinite-dimensional part and to apply the Artstein transformation on the finite-dimensional system to remove the delay in the control. Using our abstract result, we can prove new results for the stabilization of parabolic systems with constant delay: the \begin{document}$ N $\end{document}-dimensional linear reaction-convection-diffusion equation with \begin{document}$ N\geq 1 $\end{document} and the Oseen system. We end the article by showing that this theory can be used to stabilize nonlinear parabolic systems with input delay by proving the local feedback distributed stabilization of the Navier-Stokes system around a stationary state.
- Published
- 2020
- Full Text
- View/download PDF
3. Local null controllability of a fluid-rigid body interaction problem with Navier slip boundary conditions
- Author
-
Imene Aicha Djebour, Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0209 industrial biotechnology ,navier slip boundary conditions ,Control and Optimization ,35Q30, 93C20, 93B05 ,Mathematics::Analysis of PDEs ,Newton's laws of motion ,02 engineering and technology ,Slip (materials science) ,null controllability ,Navier-Stokes system ,Physics::Fluid Dynamics ,020901 industrial engineering & automation ,Mathematics - Analysis of PDEs ,Position (vector) ,FOS: Mathematics ,Boundary value problem ,[MATH]Mathematics [math] ,Mathematics ,Mathematical analysis ,Null (mathematics) ,fluid-solid interaction system ,021001 nanoscience & nanotechnology ,Rigid body ,Controllability ,Computational Mathematics ,Control and Systems Engineering ,Compressibility ,0210 nano-technology ,Analysis of PDEs (math.AP) - Abstract
International audience; The aim of this work is to show the local null controllability of a fluid-solid interaction system by using a distributed control located in the fluid. The fluid is modeled by the incompressible Navier-Stokes system with Navier slip boundary conditions and the rigid body is governed by the Newton laws. Our main result yields that we can drive the velocities of the fluid and of the structure to 0 and we can control exactly the position of the rigid body. One important ingredient consists in a new Carleman estimate for a linear fluid-rigid body system with Navier boundary conditions. This work is done without imposing any geometrical conditions on the rigid body.
- Published
- 2020
- Full Text
- View/download PDF
4. On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions
- Author
-
Takéo Takahashi, Imene Aicha Djebour, Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Small data ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Boundary (topology) ,Condensed Matter Physics ,01 natural sciences ,Navier-Stokes system ,Physics::Fluid Dynamics ,010101 applied mathematics ,Strong solutions ,Computational Mathematics ,damped beam equation ,Fluid–structure interaction ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Fluid motion ,strong solutions ,Uniqueness ,Boundary value problem ,0101 mathematics ,fluid-structure interaction systems ,Plate equation ,Mathematical Physics - Abstract
International audience; We consider a fluid-structure interaction system composed by a three-dimensional viscous incompressible fluid and an elastic plate located on the upper part of the fluid boundary. The fluid motion is governed by the Navier-Stokes system whereas we add a damping in the plate equation. We use here Navier-slip boundary conditions instead of the standard no-slip boundary conditions. The main results are the local in time existence and uniqueness of strong solutions of the corresponding system and the global in time existence and uniqueness of strong solutions for small data and if we assume the presence of frictions in the boundary conditions.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.