I.V. Sukhorukova, N.A. Gloushankova, Dmitry V. Shtansky, Anton Manakhov, Josef Polčák, Elizaveta S. Permyakova, A. M. Kozmin, A.N. Sheveyko, Viktor A. Ponomarev, Oleg I. Lebedev, Sergei G. Ignatov, Irina Y. Zhitnyak, National Research University of Electronic Technology [Moscow], State Research Center for Applied Microbiology and Biotechnology (SRCAMB), N.N. Blokhin National Medical Research Center of Oncology, Laboratoire de cristallographie et sciences des matériaux (CRISMAT), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC), Brno University of Technology [Brno] (BUT), Ministry of Education and Science of the Russian Federation (Increase Competitiveness Program of NUST 'MISIS') [K2-2018-012], Sectoral Scientific Program of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR) under the project CEITEC 2020 [LQ1601], National University of Science and Technology (MISIS), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
International audience; It is very important to prevent bacterial colonization at the early postoperative stages. There are four major strategies and their corresponding types of antibacterial surfaces specifically designed to fight infection bactericide release, anti-adhesion, pH-sensitive, and contact-killing. Herein, we aimed at determining the antibacterial efficiency of different types of bactericidal ions and revealing the possible contribution of surface microgalvanic effects arising from a potential difference on heterogeneous surfaces. We considered five types of TiCaPCON films, with Ag, Zn, Pt, Ag + Zn, and Pt + Zn nanoparticles (NPs) on their surface. The Ag-modified film demonstrated a pronounced antibacterial effect at a very low Ag ion concentration of 0.11 ppb in physiological solution that was achieved already after 3 h of immersion in Escherichia coli (E. coli) bacterial culture. The Zn-containing sample also showed a noticeable antibacterial effect against E. coli and Staphylococcus aureus (S. aureus) strains, wherein the concentration of Zn ions was 2 orders of magnitude higher (15 ppb) compared with the Ag ions. The presence of Ag NPs accelerated the leaching of Zn ion out of the TiCaPCON-Ag-Zn film, but no synergistic effect of the simultaneous presence of the two bactericidal components was observed. After the incubation of the samples with Ag, Zn, and Ag + Zn NPs in E. coli and S. aureus suspensions for 24 and 8 h, respectively, all bacterial cells were completely inactivated. The Pt-containing film showed a very low Pt ion release, and therefore the contribution of this type of ions to the total bactericidal effect could be neglected. The results of the electrochemical studies and Kelvin probe force microscopy indicated that microgalvanic couples were formed between the Pt NPs and the TiCaPCON film, but no noticeable antibacterial effect against either E. coli or S. aureus strains was observed. All ion-modified samples provided good osteoblastic cell attachment, spreading, and proliferation and therefore were concluded to be nontoxic for cells. In addition, the TiCaPCON films with Ag, Pt, and Zn NPs on their surface demonstrated good osteoconductive characteristics.