V. Balédent, Yuan Li, Martin Greven, Yvan Sidis, Xudong Zhao, Guichuan Yu, N. Barišić, Richard A. Mole, P. Bourges, Paul Steffens, K. Hradil, Physics Department [Stanford], Stanford University, Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), School of Physics and Astronomy [Minneapolis], University of Minnesota [Twin Cities] (UMN), University of Minnesota System-University of Minnesota System, T.H. Geballe Laboratory for Advanced Materials, Institut für Physikalische Chemie [Göttingen], Georg-August-University [Göttingen], Forschungsneutronenquelle Heinz Maier-Leibnitz, FRM2, Institut Laue-Langevin (ILL), and ILL
The pseudogap phenomenon, a discontinuity in the energy level of a material's electronic spectrum, is a universal characteristic of the high transition temperature (Tc) copper oxides. The nature of the pseudogap has been a central question in condensed matter physics for more than a decade, but many of its properties remain unexplained. Recent studies have pointed to the universal existence of an unusual magnetic order below T*, the temperature below which the anomalous properties associated with the pseudogap become apparent. If confirmed, this would have the profound implication that the pseudogap regime constitutes a genuine new phase of matter rather than a mere crossover phenomenon. The results of inelastic neutron scattering experiments on the superconductor HgBa2CuO4+δ (Hg1201) now reveal a fundamental collective magnetic mode associated with the unusual order, providing further support for this picture. Recent findings indicate that the pseudogap regime in the high-transition-temperature copper oxides constitutes a new phase of matter rather than a mere crossover phenomenon. These authors report inelastic neutron scattering results for HgBa2CuO4+δ that reveal a fundamental collective magnetic mode associated with the unusual order, further supporting this picture. The mode's intensity rises below the pseudogap characteristic temperature and its dispersion is weak. The elucidation of the pseudogap phenomenon of the high-transition-temperature (high-Tc) copper oxides—a set of anomalous physical properties below the characteristic temperature T* and above Tc—has been a major challenge in condensed matter physics for the past two decades1. Following initial indications of broken time-reversal symmetry in photoemission experiments2, recent polarized neutron diffraction work demonstrated the universal existence of an unusual magnetic order below T* (refs 3, 4). These findings have the profound implication that the pseudogap regime constitutes a genuine new phase of matter rather than a mere crossover phenomenon. They are furthermore consistent with a particular type of order involving circulating orbital currents, and with the notion that the phase diagram is controlled by a quantum critical point5. Here we report inelastic neutron scattering results for HgBa2CuO4+δ that reveal a fundamental collective magnetic mode associated with the unusual order, and which further support this picture. The mode’s intensity rises below the same temperature T* and its dispersion is weak, as expected for an Ising-like order parameter6. Its energy of 52–56 meV renders it a new candidate for the hitherto unexplained ubiquitous electron–boson coupling features observed in spectroscopic studies7,8,9,10.