37 results on '"M., Zemcov"'
Search Results
2. APPLICATION OF INFORMATION TECHNOLOGY IN THE TAX SYSTEM
- Author
-
M. Zemcov
- Subjects
business.industry ,Computer science ,Aerospace Engineering ,Information technology ,ComputingMilieux_LEGALASPECTSOFCOMPUTING ,business ,Telecommunications - Abstract
This article provides an analysis of the implementation of automation in tax authorities. In the course of the research work, it was proved that the introduction of advanced information technologies had a beneficial effect on the work of the tax authorities. The article lists the benefits of applying automation, both for tax officials and taxpayers. Also, the reason for the creation of the informatization department and its role in the tax inspection are given. The basis for the introduction of information technology in the Russian Federation was given. A description of the impact of highly developed automation activities on tax officials is given. The basis for the application of accounting and tax reporting was given, as well as the advantage of their application in electronic form. Listed are the databases in which the activities of state bodies and their purposes are carried out. The function of the database, which is responsible for accounting for alcohol and tobacco products, is disclosed. The main tasks are identified, the solution of which is carried out in the course of the implementation of the tax system automation program. Revealed the validity of the introduction of the latest information systems and listed their tasks. The article describes the basic principles of automation used in the applied software complexes of the Federal Tax Service of Russia. The reason for the differentiation of technical means and their main functions are revealed.
- Published
- 2020
- Full Text
- View/download PDF
3. Analysis of Dark Data of the PICNIC IR Arrays in the CIBER
- Author
-
D. H. Lee, M. G. Kim, K. Tsumura, M. Zemcov, U. W. Nam, J. Bock, J. Battle, V. Hristov, T. Renbarger, T. Matsumoto, I. Sullivan, L. R. Levenson, P. Mason, S. Matsuura, and G. H. Kim
- Subjects
instrument-CIBER ,analysis-dark current ,detector-PICNIC ,Astronomy ,QB1-991 - Abstract
We have measured and analyzed the dark data of two PICNIC IR arrays (P574 and P560) obtained through the Cosmic Infrared Background ExpeRiment (CIBER). First, we identified three types of bad pixels: the cold, the hot, and the transient, which are figured in total as 0.06% for P574 and 0.19% for P560. Then, after the bad pixels were masked, we determined the dark noise to be 20.5 ± 0.05 e- and 16.1 ± 0.05 e-, and the dark current to be 0.6 ± 0.05 e-/sec and 0.7 ± 0.05 e-/sec for P574 and P560, respectively. Finally, we discussed glitches and readout modes for a future mission.
- Published
- 2010
- Full Text
- View/download PDF
4. Measurements of the Zodiacal Light Absolute Intensity through Fraunhofer Absorption Line Spectroscopy with CIBER
- Author
-
P. M. Korngut, M. G. Kim, T. Arai, P. Bangale, J. Bock, A. Cooray, Y. T. Cheng, R. Feder, V. Hristov, A. Lanz, D. H. Lee, L. Levenson, T. Matsumoto, S. Matsuura, C. Nguyen, K. Sano, K. Tsumura, and M. Zemcov
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Scattered sunlight from the interplanetary dust (IPD) cloud in our solar system presents a serious foreground challenge for spectrophotometric measurements of the extragalactic background light (EBL). In this work, we report on inferred measurements of the absolute intensity of the zodiacal light (ZL) using the novel technique of Fraunhofer line spectroscopy on the deepest 8542 Å line of the near-infrared Ca ii absorption triplet. The measurements are performed with the narrow band spectrometer (NBS) on board the Cosmic Infrared Background Experiment sounding rocket instrument. We use the NBS data to test the accuracy of two ZL models widely cited in the literature, the Kelsall and Wright models, which have been used in foreground removal analyses that produce high and low EBL results respectively. We find a mean reduced χ 2 = 3.5 for the Kelsall model and χ 2 = 2.0 for the Wright model. The best description of our data is provided by a simple modification to the Kelsall model, which includes a free ZL offset parameter. This adjusted model describes the data with a reduced χ 2 = 1.5 and yields an inferred offset amplitude of 46 ± 19 nW m−2 sr−1 extrapolated to 12500 Å. These measurements elude to the potential existence of a dust cloud component in the inner solar system whose intensity does not strongly modulate with the Earth’s motion around the Sun.
- Published
- 2021
- Full Text
- View/download PDF
5. Hafnium Films and Magnetic Shielding for TIME, A mm-Wavelength Spectrometer Array
- Author
-
Jonathon Hunacek, A. C. Weber, Lorenzo Moncelsi, Isaac Trumper, Yun-Ting Cheng, Guochao Sun, Charles M. Bradford, Asantha Cooray, Dae Wook Kim, V. Butler, M. Zemcov, J. J. Bock, Tzu-Ching Chang, Bryan Steinbach, Erik Shirokoff, Clifford Frez, S. Hailey-Dunsheath, Benjamin L. Hoscheit, B. Uzgil, Chao-Te Li, Daniel P. Marrone, A. T. Crites, and A. D. Turner
- Subjects
Materials science ,Spectrometer ,business.industry ,Bolometer ,chemistry.chemical_element ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Hafnium ,law.invention ,chemistry.chemical_compound ,Wavelength ,chemistry ,Silicon nitride ,law ,0103 physical sciences ,Electromagnetic shielding ,Optoelectronics ,General Materials Science ,Emission spectrum ,010306 general physics ,business ,010303 astronomy & astrophysics ,Reionization - Abstract
TIME is a mm-wavelength grating spectrometer array that will map fluctuations of the 157.7-μm emission line of singly ionized carbon ([CII]) during the epoch of reionization (redshift z ∼5–9). Sixty transition-edge sensor (TES) bolometers populate the output arc of each of the 32 spectrometers, for a total of 1920 detectors. Each bolometer consists of gold absorber on a ∼ 3 × 3 mm silicon nitride micro-mesh suspended near the corners by 1 × 1 × 500 μm silicon nitride legs targeting a photon-noise-dominated NEP ∼1×10^(-17)W/√Hz. Hafnium films are explored as a lower-T_c alternative to Ti (500 mK) for TIME TESs, allowing thicker support legs for improved yield. Hf T_c is shown to vary between 250 and 450 mK when varying the resident Ar pressure during deposition. Magnetic shielding designs and simulations are presented for the TIME first-stage SQUIDs. Total axial field suppression is predicted to be 5×10^7.
- Published
- 2018
- Full Text
- View/download PDF
6. HerMES: Herschel-SPIRE observations of Lyman break galaxies
- Author
-
D. Rigopoulou, G. Magdis, R. J. Ivison, A. Amblard, V. Arumugam, H. Aussel, A. Blain, J. Bock, A. Boselli, V. Buat, D. Burgarella, N. Castro-Rodríguez, A. Cava, P. Chanial, D. L. Clements, A. Conley, L. Conversi, A. Cooray, C. D. Dowell, E. Dwek, S. Eales, D. Elbaz, D. Farrah, A. Franceschini, J. Glenn, M. Griffin, M. Halpern, E. Hatziminaoglou, J.-S. Huang, E. Ibar, K. Isaak, G. Lagache, L. Levenson, N. Lu, S. Madden, B. Maffei, G. Mainetti, L. Marchetti, H. T. Nguyen, B. O’Halloran, S. J. Oliver, A. Omont, M. J. Page, P. Panuzzo, A. Papageorgiou, C. P. Pearson, I. Pérez-Fournon, M. Pohlen, D. Rizzo, I. G. Roseboom, M. Rowan-Robinson, B. Schulz, Douglas Scott, N. Seymour, D. L. Shupe, A. J. Smith, J. A. Stevens, M. Symeonidis, M. Trichas, K. E. Tugwell, M. Vaccari, I. Valtchanov, L. Vigroux, L. Wang, G. Wright, C. K. Xu, and M. Zemcov
- Subjects
Physics ,Sample selection ,010308 nuclear & particles physics ,Infrared ,Spectral density ,Flux ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Galaxy ,Wavelength ,Spire ,Space and Planetary Science ,0103 physical sciences ,010303 astronomy & astrophysics - Abstract
We present first results of a study of the submillimetre (rest frame far-infrared) properties of z~3 Lyman Break Galaxies (LBGs) and their lower-redshift counterparts BX/BM galaxies, based on Herschel-SPIRE observations of the Northern field of the Great Observatories Origins Deep Survey (GOODS-N). We use stacking analysis to determine the properties of LBGs well below the current limit of the survey. Although LBGs are not detected individually, stacking the infrared luminous LBGs (those detected with Spitzer at 24 microns yields a statistically significant submm detection with mean flux = 5.9+/-1.4 mJy confirming the power of SPIRE in detecting UV-selected high-redshift galaxies at submillimetre wavelengths. In comparison, the Spitzer 24 microns detected BX/BM galaxies appear fainter with a stacked value of = 2.7 +/-0.8 mJy. By fitting the Spectral Energy Distributions (SEDs) we derive median infrared luminosities, L_{IR}, of 2.8x10^{12} Lsun and 1.5x10^{11} Lsun for z~3 LBGs and BX/BMs, respectively. We find that $L_{IR} estimates derived from present measurements are in good agreement with those based on UV data for z~2 BX/BM galaxies, unlike the case for z~3 infrared luminous LBGs where the UV underestimates the true $L_{IR}. Although sample selection effects may influence this result we suggest that differences in physical properties (such as morphologies, dust distribution and extent of star-forming regions) between z ~3 LBGs and z~2 BX/BMs may also play a significant role.
- Published
- 2010
- Full Text
- View/download PDF
7. Cold dust and young starbursts: spectral energy distributions of Herschel SPIRE sources from the HerMES survey★
- Author
-
M. Rowan-Robinson, I. G. Roseboom, M. Vaccari, A. Amblard, V. Arumugam, R. Auld, H. Aussel, T. Babbedge, A. Blain, J. Bock, A. Boselli, D. Brisbin, V. Buat, D. Burgarella, N. Castro-Rodriguez, A. Cava, P. Chanial, D. L. Clements, A. Conley, L. Conversi, A. Cooray, C. D. Dowell, E. Dwek, S. Dye, S. Eales, D. Elbaz, D. Farrah, M. Fox, A. Franceschini, W. Gear, J. Glenn, E. A. González Solares, M. Griffin, M. Halpern, E. Hatziminaoglou, J. Huang, E. Ibar, K. Isaak, R. J. Ivison, G. Lagache, L. Levenson, N. Lu, S. Madden, B. Maffei, G. Mainetti, L. Marchetti, A. M. J. Mortier, H. T. Nguyen, B. O'Halloran, S. J. Oliver, A. Omont, M. J. Page, P. Panuzzo, A. Papageorgiou, H. Patel, C. P. Pearson, I. Perez Fournon, M. Pohlen, J. I. Rawlings, G. Raymond, D. Rigopoulou, D. Rizzo, B. Schulz, Douglas Scott, N. Seymour, D. L. Shupe, A. J. Smith, J. A. Stevens, M. Symeonidis, M. Trichas, K. E. Tugwell, I. Valtchanov, L. Vigroux, L. Wang, R. Ward, G. Wright, C. K. Xu, and M. Zemcov
- Subjects
Physics ,010308 nuclear & particles physics ,Spectral density ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Galaxy ,Spire ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Cirrus ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Optical depth - Abstract
We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5-sigma at 250, 350 and 500 mu in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and for AGN dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies (~ 56 %) are well fitted with the templates used to fit IRAS, ISO and Spitzer sources, for about half the galaxies two new templates are required: quiescent ('cirrus') models with colder (10-20 K) dust, and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5-24 mu data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5-70 mu data. Herschel galaxies detected at 500 mu tend to be those with the very highest dust masses.
- Published
- 2010
- Full Text
- View/download PDF
8. The far-infrared/radio correlation as probed by Herschel
- Author
-
R. J. Ivison, B. Magnelli, E. Ibar, P. Andreani, D. Elbaz, B. Altieri, A. Amblard, V. Arumugam, R. Auld, H. Aussel, T. Babbedge, S. Berta, A. Blain, J. Bock, A. Bongiovanni, A. Boselli, V. Buat, D. Burgarella, N. Castro-Rodríguez, A. Cava, J. Cepa, P. Chanial, A. Cimatti, M. Cirasuolo, D. L. Clements, A. Conley, L. Conversi, A. Cooray, E. Daddi, H. Dominguez, C. D. Dowell, E. Dwek, S. Eales, D. Farrah, N. Förster Schreiber, M. Fox, A. Franceschini, W. Gear, R. Genzel, J. Glenn, M. Griffin, C. Gruppioni, M. Halpern, E. Hatziminaoglou, K. Isaak, G. Lagache, L. Levenson, N. Lu, D. Lutz, S. Madden, B. Maffei, G. Magdis, G. Mainetti, R. Maiolino, L. Marchetti, G. E. Morrison, A. M. J. Mortier, H. T. Nguyen, R. Nordon, B. O'Halloran, S. J. Oliver, A. Omont, F. N. Owen, M. J. Page, P. Panuzzo, A. Papageorgiou, C. P. Pearson, I. Pérez-Fournon, A. M. Pérez García, A. Poglitsch, M. Pohlen, P. Popesso, F. Pozzi, J. I. Rawlings, G. Raymond, D. Rigopoulou, L. Riguccini, D. Rizzo, G. Rodighiero, I. G. Roseboom, M. Rowan-Robinson, A. Saintonge, M. Sanchez Portal, P. Santini, B. Schulz, D. Scott, N. Seymour, L. Shao, D. L. Shupe, A. J. Smith, J. A. Stevens, E. Sturm, M. Symeonidis, L. Tacconi, M. Trichas, K. E. Tugwell, M. Vaccari, I. Valtchanov, J. Vieira, L. Vigroux, L. Wang, R. Ward, G. Wright, C. K. Xu, M. Zemcov, Royal Observatory Edinburgh (ROE), University of Edinburgh, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AUTRES, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), XMM-Newton Science Operations Centre, European Space Agency (ESA), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Department of Astronomy and Astrophysics [Universty of Toronto], University of Toronto, Station de Pathologie Végétale [Angers], Institut National de la Recherche Agronomique (INRA), Laboratoire Colloïdes et Matériaux Divisés (LCMD), Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Department of Physics [Berkeley], University of California [Berkeley], University of California-University of California, Max Planck Institute for Extraterrestrial Physics (MPE), Max-Planck-Gesellschaft, School of Physics and Astronomy [Cardiff], Cardiff University, Division of Engineering, Colorado School of Mines, Max-Planck-Institut für Extraterrestrische Physik (MPE), Service de Chimie Physique (SCP), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Centre de recherches Paul Pascal (CRPP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), National Radio Astronomy Observatory (NRAO), Department of Chemistry and Biochemistry, University of California [Los Angeles] (UCLA), National Institute of Water and Atmospheric Research [Wellington] (NIWA), Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), GoLP/Instituto Plasmas e Fusa˜o Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), Laboratoire de Mathématiques Raphaël Salem (LMRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS), CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction de l'Energie Nucléaire (CEA-DEN), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Agence Spatiale Européenne = European Space Agency (ESA), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), R. J. Ivison, B. Magnelli, E. Ibar, P. Andreani, D. Elbaz, B. Altieri, A. Amblard, V. Arumugam, R. Auld, H. Aussel, T. Babbedge, S. Berta, A. Blain, J. Bock, A. Bongiovanni, A. Boselli, V. Buat, D. Burgarella, N. Castro, A. Cava, J. Cepa, P. Chanial, A. Cimatti, M. Cirasuolo, D. L. Clement, A. Conley, L. Conversi, A. Cooray, E. Daddi, H. Dominguez, C. D. Dowell, E. Dwek, S. Eale, D. Farrah, M. Fox, A. Franceschini, W. Gear, R. Genzel, J. Glenn, M. Griffin, C. Gruppioni, M. Halpern, E. Hatziminaoglou, K. Isaak, G. Lagache, L. Levenson, N. Lu, D. Lutz, S. Madden, B. Maffei, G. Magdi, G. Mainetti, R. Maiolino, L. Marchetti, G. E. Morrison, A. M. J. Mortier, H. T. Nguyen, R. Nordon, B. O'Halloran, S. J. Oliver, A. Omont, F. N. Owen, M. J. Page, P. Panuzzo, A. Papageorgiou, C. P. Pearson, A., A. Poglitsch, M. Pohlen, P. Popesso, F. Pozzi, J. I. Rawling, G. Raymond, D. Rigopoulou, L. Riguccini, D. Rizzo, G. Rodighiero, I. G. Roseboom, M. Rowan-Robinson, A. Saintonge, M. Sanchez Portal, P. Santini, B. Schulz, Douglas Scott, N. Seymour, L. Shao, D. L. Shupe, A. J. Smith, J. A. Steven, E. Sturm, M. Symeonidi, L. Tacconi, M. Tricha, K. E. Tugwell, M. Vaccari, I. Valtchanov, J. Vieira, L. Vigroux, L. Wang, R. Ward, G. Wright, C. K. Xu, and M. Zemcov
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Flux ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Redshift ,Galaxy ,Luminosity ,Wavelength ,Spire ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Far infrared ,Space and Planetary Science ,0103 physical sciences ,Galaxy formation and evolution ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,010303 astronomy & astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We set out to determine the ratio, q(IR), of rest-frame 8-1000um flux, S(IR), to monochromatic radio flux, S(1.4GHz), for galaxies selected at far-IR and radio wavelengths, to search for signs that the ratio evolves with redshift, luminosity or dust temperature, and to identify any far-IR-bright outliers - useful laboratories for exploring why the far-IR/radio correlation is generally so tight when the prevailing theory suggests variations are almost inevitable. We use flux-limited 250-um and 1.4-GHz samples, obtained in GOODS-N using Herschel (HerMES; PEP) and the VLA. We determine bolometric IR output using ten bands spanning 24-1250um, exploiting data from PACS and SPIRE, as well as Spitzer, SCUBA, AzTEC and MAMBO. We also explore the properties of an L(IR)-matched sample, designed to reveal evolution of q(IR) with z, spanning log L(IR) = 11-12 L(sun) and z=0-2, by stacking into the radio and far-IR images. For 1.4-GHz-selected galaxies, we see tentative evidence of a break in the flux ratio, q(IR), at L(1.4GHz) ~ 10^22.7 W/Hz, where AGN are starting to dominate the radio power density, and of weaker correlations with z and T(d). From our 250-um-selected sample we identify a small number of far-IR-bright outliers, and see trends of q(IR) with L(1.4GHz), L(IR), T(d) and z, noting that some of these are inter-related. For our L(IR)-matched sample, there is no evidence that q(IR) changes significantly as we move back into the epoch of galaxy formation: we find q(IR) goes as (1+z)^gamma, where gamma = -0.04 +/- 0.03 at z=0-2; however, discounting the least reliable data at z1., A&A Herschel Special Issue, in press as a Letter. 5 pages
- Published
- 2010
- Full Text
- View/download PDF
9. THE
- Author
-
M. P. Viero, V. Asboth, I. G. Roseboom, L. Moncelsi, G. Marsden, E. Mentuch Cooper, M. Zemcov, G. Addison, A. J. Baker, A. Beelen, J. Bock, C. Bridge, A. Conley, M. J. Devlin, O. Dorxe9, D. Farrah, S. Finkelstein, A. Font-Ribera, J. E. Geach, K. Gebhardt, A. Gill, J. Glenn, A. Hajian, M. Halpern, S. Jogee, P. Kurczynski, A. Lapi, M. Negrello, S. J. Oliver, C. Papovich, R. Quadri, and et al. (including L. Wang)
- Published
- 2014
10. HerMES: The Contribution to the Cosmic Infrared Background from Galaxies Selected by Mass and Redshift
- Author
-
M. P. Viero, L. Moncelsi, R. F. Quadri, V. Arumugam, R. J. Assef, M. Béthermin, J. Bock, C. Bridge, C. M. Casey, A. Conley, A. Cooray, D. Farrah, J. Glenn, S. Heinis, E. Ibar, S. Ikarashi, R. J. Ivison, K. Kohno, G. Marsden, S. J. Oliver, I. G. Roseboom, B. Schulz, D. Scott, P. Serra, M. Vaccari, J. D. Vieira, L. Wang, J. Wardlow, G. W. Wilson, M. S. Yun, M. Zemcov, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Stellar mass ,Stacking ,FOS: Physical sciences ,galaxies [submillimeter] ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astronomy & Astrophysics ,01 natural sciences ,galaxies [infrared] ,Atomic ,Physical Chemistry ,Luminosity ,Particle and Plasma Physics ,Cosmic infrared background ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Nuclear ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,evolution [galaxies] ,Luminous infrared galaxy ,Physics ,large-scale structure of universe ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Molecular ,Astronomy and Astrophysics ,Galaxy ,Redshift ,observations [cosmology] ,Space and Planetary Science ,astro-ph.CO ,Astrophysics::Earth and Planetary Astrophysics ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Physical Chemistry (incl. Structural) - Abstract
We quantify the fraction of the cosmic infrared background (CIB) that originates from galaxies identified in the UV/optical/near-infrared by stacking 81,250 (~35.7 arcmin^2) K-selected sources (K_AB < 24.0), split according to their rest-frame U - V vs. V - J colors into 72,216 star-forming and 9,034 quiescent galaxies, on maps from Spitzer/MIPS (24um), Herschel/SPIRE (250, 350, 500um), Herschel/PACS (100, 160um), and AzTEC (1100um). The fraction of the CIB resolved by our catalog is (69 $\pm$ 15)% at 24um, (78 $\pm$ 17)% at 70um, (58 $\pm$ 13)% at 100um, (78 $\pm$ 18)% at 160um, (80 $\pm$ 17)% at 250um, (69 $\pm$ 14)% at 350um, (65 $\pm$ 12)% at 500um, and (45 $\pm$ 8)% at 1100um. Of that total, about 95% originates from star-forming galaxies, while the remaining 5% is from apparently quiescent galaxies. The CIB at $��$ < 200um is sourced predominantly from galaxies at z < 1, while at $��$ > 200um the bulk originates from 1 < z < 2. Galaxies with stellar masses log(M/ M_sun)=9.5-11 are responsible for the majority of the CIB, with those in the log(M/ M_sun)=9.5-10 contributing mostly at $��$ < 250um, and those in the log(M/ M_sun)=10.5-11 bin dominating at $��$ > 350um. The contribution from galaxies in the log(M/ M_sun)=9.0-9.5 and log(M/ M_sun)=11.0-12.0 stellar mass bins contribute the least, both of order 5%, although the highest stellar-mass bin is a significant contributor to the luminosity density at z > 2. The luminosities of the galaxies responsible for the CIB shifts from a combination of "normal" and luminous infrared galaxies (LIRGs) at $��$ < 160um, to LIRGs at 160um < $��$ < 500um, to finally LIRGs and ultra-luminous infrared galaxies (ULIRGs) at $��$ > 500um. Stacking analyses were performed with SIMSTACK (available at http://www.astro.caltech.edu/~viero/viero_homepage/toolbox.html) which accounts for possible biases due to clustering., 24 pages, 12 Figures, and 8 Tables. Accepted for publication in The Astrophysical Journal. Tabulated data and Software available at http://www.astro.caltech.edu/~viero/viero_homepage/toolbox.html
- Published
- 2013
- Full Text
- View/download PDF
11. Herschel reveals the obscured star formation in HiZELS H\xa0 emitters at z = 1.47
- Author
-
E. Ibar, D. Sobral, P. N. Best, R. J. Ivison, I. Smail, V. Arumugam, S. Berta, M. Bethermin, J. Bock, A. Cava, A. Conley, D. Farrah, J. Geach, S. Ikarashi, K. Kohno, E. Le Floc'h, D. Lutz, G. Magdis, B. Magnelli, G. Marsden, S. J. Oliver, M. J. Page, F. Pozzi, L. Riguccini, B. Schulz, N. Seymour, A. J. Smith, M. Symeonidis, L. Wang, J. Wardlow, and M. Zemcov
- Published
- 2013
12. The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3
- Author
-
Asantha Cooray, Andrew I. Harris, Ivan Valtchanov, R. Neri, Alain Omont, Lian-Tao Wang, Rob Ivison, Dominik Riechers, Mark Gurwell, Hai Fu, Scott Chapman, Antonio Cava, Herve Aussel, Marco P. Viero, J. Jia, P. Martinez-Navajas, Douglas Scott, S. J. Oliver, A. Conley, G. Marsden, Mattia Negrello, Bruno Altieri, Andrew Paul Smith, Ismael Perez-Fournon, Michael Boylan-Kolchin, J. A. Calanog, Mattia Vaccari, Mat Page, Julie Wardlow, Caitlin M. Casey, R. S. Bussmann, Duncan Farrah, Chiara Feruglio, David L. Clements, Benjamin L. Schulz, Georgios E. Magdis, Andrew J. Baker, J. J. Bock, R. Hopwood, Joaquin Vieira, Peter Timothy Cox, Carrie Bridge, Dave Frayer, M. Zemcov, Department of Physics and Astronomy [Irvine], University of California [Irvine] (UCI), University of California-University of California, Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), UK Astronomy Technology Centre (UK ATC), Science and Technology Facilities Council (STFC), Department of Astronomy [Ithaca], Cornell University, Harvard-Smithsonian Center for Astrophysics (CfA), Smithsonian Institution-Harvard University [Cambridge], Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, Herschel Science Centre, European Space Agency (ESA), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Computing and Mathematical Sciences [Pasadena]], California Institute of Technology (CALTECH), Center for Astrophysics and Space Astronomy [Boulder] (CASA), University of Colorado [Boulder], Astronomy Centre, University of Sussex, Department of Physics and Astronomy [Milton Keynes], The Open University [Milton Keynes] (OU), Department of Physics and Astronomy [Vancouver], University of British Columbia (UBC), Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Dipartimento di Astronomia, Universita degli Studi di Padova, Cornell University [New York], Dipartimento di Astronomia [Padova], Department of Physics and Astronomy [South Africa], University of the Western Cape, University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), Harvard University-Smithsonian Institution, Agence Spatiale Européenne = European Space Agency (ESA), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Padova = University of Padua (Unipd), and University of the Western Cape (UWC)
- Subjects
Physics ,Luminous infrared galaxy ,Multidisciplinary ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Radio galaxy ,Astronomy ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Galaxy merger ,01 natural sciences ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Galaxy group ,0103 physical sciences ,Elliptical galaxy ,Astrophysics::Solar and Stellar Astrophysics ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Astrophysics::Earth and Planetary Astrophysics ,Brightest cluster galaxy ,Interacting galaxy ,010303 astronomy & astrophysics ,Lenticular galaxy ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Stellar archeology shows that massive elliptical galaxies today formed rapidly about ten billion years ago with star formation rates above several hundreds solar masses per year (M_sun/yr). Their progenitors are likely the sub-millimeter-bright galaxies (SMGs) at redshifts (z) greater than 2. While SMGs' mean molecular gas mass of 5x10^10 M_sun can explain the formation of typical elliptical galaxies, it is inadequate to form ellipticals that already have stellar masses above 2x10^11 M_sun at z ~ 2. Here we report multi-wavelength high-resolution observations of a rare merger of two massive SMGs at z = 2.3. The system is currently forming stars at a tremendous rate of 2,000 M_sun/yr. With a star formation efficiency an order-of-magnitude greater than that of normal galaxies, it will quench the star formation by exhausting the gas reservoir in only ~200 million years. At a projected separation of 19 kiloparsecs, the two massive starbursts are about to merge and form a passive elliptical galaxy with a stellar mass of ~4x10^11 M_sun. Our observations show that gas-rich major galaxy mergers, concurrent with intense star formation, can form the most massive elliptical galaxies by z ~ 1.5., Comment: Appearing in Nature online on May 22 and in print on May 30. Submitted here is the accepted version (including the Supplementary Information), see nature.com for the final version
- Published
- 2013
- Full Text
- View/download PDF
13. HerMES: A Deficit in the Surface Brightness of the Cosmic Infrared Background due to Galaxy Cluster Gravitational Lensing
- Author
-
M. Zemcov, A. Blain, A. Cooray, M. Béthermin, J. Bock, D. L. Clements, A. Conley, L. Conversi, C. D. Dowell, D. Farrah, J. Glenn, M. Griffin, M. Halpern, E. Jullo, J.-P. Kneib, G. Marsden, H. T. Nguyen, S. J. Oliver, J. Richard, I. G. Roseboom, B. Schulz, Douglas Scott, D. L. Shupe, A. J. Smith, I. Valtchanov, M. Viero, L. Wang, J. Wardlow, California Institute of Technology (CALTECH), Department of Physics and Astronomy [Leicester], University of Leicester, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Computing and Mathematical Sciences [Pasadena]], Astrophysics Group, Blackett Laboratory, Imperial College London-Imperial College London, Center for Astrophysics and Space Astronomy [Boulder] (CASA), University of Colorado [Boulder], Herschel Science Center [Madrid], European Space Astronomy Centre (ESAC), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), Astronomy Centre, University of Sussex, School of Physics and Astronomy [Cardiff], Cardiff University, Department of Physics and Astronomy [Vancouver], University of British Columbia (UBC), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AUTRES, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Department of Astronomy, University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), European Space Agency (ESA)-European Space Agency (ESA), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), University of California [Irvine] (UCI), University of California-University of California, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,cosmic background radiation ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Wavelength ,Spire ,Amplitude ,Gravitational lens ,Space and Planetary Science ,Cosmic infrared background ,0103 physical sciences ,Angular resolution ,Surface brightness ,010303 astronomy & astrophysics ,Galaxy cluster ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after subtracting sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I(250 microns) > 0.69_(-0.03)^(+0.03) (stat.)_(-0.06)^(+0.11) (sys.) MJy/sr, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB., 5 pages, 3 figures, replacing with version matching published manuscript
- Published
- 2013
- Full Text
- View/download PDF
14. Connecting stellar mass and star-formation rate to dark matter halo mass out to z \xa0 2
- Author
-
L. Wang, D. Farrah, S. J. Oliver, A. Amblard, M. Bethermin, J. Bock, A. Conley, A. Cooray, M. Halpern, S. Heinis, E. Ibar, O. Ilbert, R. J. Ivison, G. Marsden, I. G. Roseboom, M. Rowan-Robinson, B. Schulz, A. J. Smith, M. Viero, and M. Zemcov
- Published
- 2013
15. FMOS near-IR spectroscopy of
- Author
-
I. G. Roseboom, A. Bunker, M. Sumiyoshi, L. Wang, G. Dalton, M. Akiyama, J. Bock, D. Bonfield, V. Buat, C. Casey, E. Chapin, D. L. Clements, A. Conley, E. Curtis-Lake, A. Cooray, J. S. Dunlop, D. Farrah, S. J. Ham, E. Ibar, F. Iwamuro, M. Kimura, I. Lewis, E. Macaulay, G. Magdis, T. Maihara, G. Marsden, T. Mauch, Y. Moritani, K. Ohta, S. J. Oliver, M. J. Page, B. Schulz, Douglas Scott, M. Symeonidis, N. Takato, N. Tamura, T. Totani, K. Yabe, and M. Zemcov
- Published
- 2012
16. The Herschel-SPIRE instrument and its in-flight performance
- Author
-
M. J. Griffin, A. Abergel, A. Abreu, P. A. R. Ade, P. André, J.-L. Augueres, T. Babbedge, Y. Bae, T. Baillie, J.-P. Baluteau, M. J. Barlow, G. Bendo, D. Benielli, J. J. Bock, P. Bonhomme, D. Brisbin, C. Brockley-Blatt, M. Caldwell, C. Cara, N. Castro-Rodriguez, R. Cerulli, P. Chanial, S. Chen, E. Clark, D. L. Clements, L. Clerc, J. Coker, D. Communal, L. Conversi, P. Cox, D. Crumb, C. Cunningham, F. Daly, G. R. Davis, P. De Antoni, J. Delderfield, N. Devin, A. Di Giorgio, I. Didschuns, K. Dohlen, M. Donati, A. Dowell, C. D. Dowell, L. Duband, L. Dumaye, R. J. Emery, M. Ferlet, D. Ferrand, J. Fontignie, M. Fox, A. Franceschini, M. Frerking, T. Fulton, J. Garcia, R. Gastaud, W. K. Gear, J. Glenn, A. Goizel, D. K. Griffin, T. Grundy, S. Guest, L. Guillemet, P. C. Hargrave, M. Harwit, P. Hastings, E. Hatziminaoglou, M. Herman, B. Hinde, V. Hristov, M. Huang, P. Imhof, K. J. Isaak, U. Israelsson, R. J. Ivison, D. Jennings, B. Kiernan, K. J. King, A. E. Lange, W. Latter, G. Laurent, P. Laurent, S. J. Leeks, E. Lellouch, L. Levenson, B. Li, J. Li, J. Lilienthal, T. Lim, S. J. Liu, N. Lu, S. Madden, G. Mainetti, P. Marliani, D. McKay, K. Mercier, S. Molinari, H. Morris, H. Moseley, J. Mulder, M. Mur, D. A. Naylor, H. Nguyen, B. O'Halloran, S. Oliver, G. Olofsson, H.-G. Olofsson, R. Orfei, M. J. Page, I. Pain, P. Panuzzo, A. Papageorgiou, G. Parks, P. Parr-Burman, A. Pearce, C. Pearson, I. Pérez-Fournon, F. Pinsard, G. Pisano, J. Podosek, M. Pohlen, E. T. Polehampton, D. Pouliquen, D. Rigopoulou, D. Rizzo, I. G. Roseboom, H. Roussel, M. Rowan-Robinson, B. Rownd, P. Saraceno, M. Sauvage, R. Savage, G. Savini, E. Sawyer, C. Scharmberg, D. Schmitt, N. Schneider, B. Schulz, A. Schwartz, R. Shafer, D. L. Shupe, B. Sibthorpe, S. Sidher, A. Smith, A. J. Smith, D. Smith, L. Spencer, B. Stobie, R. Sudiwala, K. Sukhatme, C. Surace, J. A. Stevens, B. M. Swinyard, M. Trichas, T. Tourette, H. Triou, S. Tseng, C. Tucker, A. Turner, M. Vaccari, I. Valtchanov, L. Vigroux, E. Virique, G. Voellmer, H. Walker, R. Ward, T. Waskett, M. Weilert, R. Wesson, G. J. White, N. Whitehouse, C. D. Wilson, B. Winter, A. L. Woodcraft, G. S. Wright, C. K. Xu, A. Zavagno, M. Zemcov, L. Zhang, E. Zonca, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Physical sciences ,Field of view ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,law.invention ,Telescope ,Optics ,law ,0103 physical sciences ,instrumentation: photometers ,instrumentation: spectrographs ,space vehicles: instruments ,submillimeter: general ,[INFO]Computer Science [cs] ,Spectral resolution ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,QB ,Physics ,Instrument control ,Spectrometer ,010308 nuclear & particles physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Spectral bands ,Photometer ,Spire ,Space and Planetary Science ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
The Spectral and Photometric Imaging Receiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 microns, and an imaging Fourier Transform Spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 microns (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2., Comment: Accepted for publication in Astronomy & Astrophyics (Herschel first results special issue)
- Published
- 2010
- Full Text
- View/download PDF
17. Erratum: “Constraining the Solar System's Debris Disk with In Situ New Horizons Measurements from the Edgeworth-Kuiper Belt” (2019, ApJL, 881, L12).
- Author
-
A. R. Poppe, C. M. Lisse, M. Piquette, M. Zemcov, M. Horányi, D. James, J. R. Szalay, E. Bernardoni, and S. A. Stern
- Published
- 2019
- Full Text
- View/download PDF
18. Constraining the Solar System's Debris Disk with In Situ New Horizons Measurements from the Edgeworth–Kuiper Belt.
- Author
-
A. R. Poppe, C. M. Lisse, M. Piquette, M. Zemcov, M. Horányi, D. James, J. R. Szalay, E. Bernardoni, and S. A. Stern
- Published
- 2019
- Full Text
- View/download PDF
19. Herschel unveils a puzzling uniformity of distant dusty galaxies
- Author
-
D. Elbaz, H. S. Hwang, B. Magnelli, E. Daddi, H. Aussel, B. Altieri, A. Amblard, P. Andreani, V. Arumugam, R. Auld, T. Babbedge, S. Berta, A. Blain, J. Bock, A. Bongiovanni, A. Boselli, V. Buat, D. Burgarella, N. Castro-Rodriguez, A. Cava, J. Cepa, P. Chanial, R.-R. Chary, A. Cimatti, D. L. Clements, A. Conley, L. Conversi, A. Cooray, M. Dickinson, H. Dominguez, C. D. Dowell, J. S. Dunlop, E. Dwek, S. Eales, D. Farrah, N. Förster Schreiber, M. Fox, A. Franceschini, W. Gear, R. Genzel, J. Glenn, M. Griffin, C. Gruppioni, M. Halpern, E. Hatziminaoglou, E. Ibar, K. Isaak, R. J. Ivison, G. Lagache, D. Le Borgne, E. Le Floc'h, L. Levenson, N. Lu, D. Lutz, S. Madden, B. Maffei, G. Magdis, G. Mainetti, R. Maiolino, L. Marchetti, A. M. J. Mortier, H. T. Nguyen, R. Nordon, B. O'Halloran, K. Okumura, S. J. Oliver, A. Omont, M. J. Page, P. Panuzzo, A. Papageorgiou, C. P. Pearson, I. Perez Fournon, A. M. Pérez García, A. Poglitsch, M. Pohlen, P. Popesso, F. Pozzi, J. I. Rawlings, D. Rigopoulou, L. Riguccini, D. Rizzo, G. Rodighiero, I. G. Roseboom, M. Rowan-Robinson, A. Saintonge, M. Sanchez Portal, P. Santini, M. Sauvage, B. Schulz, D. Scott, N. Seymour, L. Shao, D. L. Shupe, A. J. Smith, J. A. Stevens, E. Sturm, M. Symeonidis, L. Tacconi, M. Trichas, K. E. Tugwell, M. Vaccari, I. Valtchanov, J. Vieira, L. Vigroux, L. Wang, R. Ward, G. Wright, C. K. Xu, M. Zemcov, Observatoire Astronomique de Marseille Provence (OAMP), Université de Provence - Aix-Marseille 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Elbaz D., Hwang H. S., Magnelli B., Daddi E., Aussel H., Altieri B., Amblard A., Andreani P., Arumugam V., Auld R., Babbedge T., Berta S., Blain A., Bock J., Bongiovanni A., Boselli A., Buat V., Burgarella D., Castro-Rodriguez N., Cava A., Cepa J., Chanial P., Chary R.-R., Cimatti A., Clements D. L., Conley A., Conversi L., Cooray A., Dickinson M., Dominguez H., Dowell C. D., Dunlop J. S., Dwek E., Eales S., Farrah D., Förster Schreiber N., Fox M., Franceschini A., Gear W., Genzel R., Glenn J., Griffin M., Gruppioni C., Halpern M., Hatziminaoglou E., Ibar E., Isaak K., Ivison R. J., Lagache G., Le Borgne D., Le Floc'h E., Levenson L., Lu N., Lutz D., Madden S., Maffei B., Magdis G., Mainetti G., Maiolino R., Marchetti L., Mortier A. M. J., Nguyen H. T., Nordon R., O'Halloran B., Okumura K., Oliver S. J., Omont A., Page M. J., Panuzzo P., Papageorgiou A., Pearson C. P., Perez Fournon I., Pérez García A. M., Poglitsch A., Pohlen M., Popesso P., Pozzi F., Rawlings J. I., Rigopoulou D., Riguccini L., Rizzo D., Rodighiero G., Roseboom I. G., Rowan-Robinson M., Saintonge A., Sanchez Portal M., Santini P., Sauvage M., Schulz B., Scott D., Seymour N., Shao L., Shupe D. L., Smith A. J., Stevens J. A., Sturm E., Symeonidis M., Tacconi L., Trichas M., Tugwell K. E., Vaccari M., Valtchanov I., Vieira J., Vigroux L., Wang L., Ward R., Wright G., Xu C. K., and Zemcov M.
- Subjects
Active galactic nucleus ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics::High Energy Astrophysical Phenomena ,galaxies: active ,FOS: Physical sciences ,galaxies: starburst ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,infrared: galaxies ,law ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Emission spectrum ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Star formation ,Bolometer ,Astronomy and Astrophysics ,Redshift ,Space observatory ,Galaxy ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Spectral energy distribution ,Astrophysics::Earth and Planetary Astrophysics ,galaxies: evolution ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Herschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature of galaxies have strongly evolved since z~2.5. We use Herschel deep extragalactic surveys from 100 to 500um to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and HerMES key programs). We show that measurements in the SPIRE bands can be used below the statistical confusion limit if information at higher spatial resolution is used to identify isolated galaxies whose flux is not boosted by bright neighbors. Below z~1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40% (0.15dex), therefore similar to z~0 galaxies. This narrow distribution is puzzling when considering the range of physical processes that could have affected the SED of these galaxies. Extrapolations from only one of the 160um, 250um or 350um bands alone tend to overestimate the total IR luminosity. This may be explained by the lack of far-IR constraints around and above ~150um (rest-frame) on local templates. We also note that the dust temperature of luminous IR galaxies around z~1 is mildly colder by 10-15% than their local analogs and up to 20% for ULIRGs at z~1.6. Above z=1.5, distant galaxies are found to exhibit a substantially larger mid- over far-IR ratio, which could either result from stronger broad emission lines or warm dust continuum heated by a hidden AGN. Two thirds of the AGNs identified in the field with a measured redshift exhibit the same behavior as purely star-forming galaxies. Hence a large fraction of AGNs harbor star formation at very high SFR and in conditions similar to purely star-forming galaxies., Astronomy and Astrophysics, Herschel Special Issue, in press as a Letter; 5 pages
- Full Text
- View/download PDF
20. A Foreground Masking Strategy for [C ii] Intensity Mapping Experiments Using Galaxies Selected by Stellar Mass and Redshift.
- Author
-
G. Sun, L. Moncelsi, M. P. Viero, M. B. Silva, J. Bock, C. M. Bradford, T.-C. Chang, Y.-T. Cheng, A. R. Cooray, A. Crites, S. Hailey-Dunsheath, B. Uzgil, J. R. Hunacek, and M. Zemcov
- Subjects
GALAXIES ,STAR formation ,PHOTOMETRY ,REDSHIFT ,GALACTIC evolution - Abstract
Intensity mapping provides a unique means to probe the epoch of reionization (EoR), when the neutral intergalactic medium was ionized by energetic photons emitted from the first galaxies. The [C ii] 158 μm fine-structure line is typically one of the brightest emission lines of star-forming galaxies and thus a promising tracer of the global EoR star formation activity. However, [C ii] intensity maps at 6 ≲ z ≲ 8 are contaminated by interloping CO rotational line emission (3 ≤ J
upp ≤ 6) from lower-redshift galaxies. Here we present a strategy to remove the foreground contamination in upcoming [C ii] intensity mapping experiments, guided by a model of CO emission from foreground galaxies. The model is based on empirical measurements of the mean and scatter of the total infrared luminosities of galaxies at z < 3 and with stellar masses selected in the K-band from the COSMOS/UltraVISTA survey, which can be converted to CO line strengths. For a mock field of the Tomographic Ionized-carbon Mapping Experiment, we find that masking out the “voxels” (spectral–spatial elements) containing foreground galaxies identified using an optimized CO flux threshold results in a z-dependent criterion (or ) at z < 1 and makes a [C ii]/COtot power ratio of ≳10 at k = 0.1 h/Mpc achievable, at the cost of a moderate ≲8% loss of total survey volume. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
21. MEASUREMENTS OF THE MEAN DIFFUSE GALACTIC LIGHT SPECTRUM IN THE 0.95–1.65 μm BAND FROM CIBER.
- Author
-
T. Arai, S. Matsuura, J. Bock, A. Cooray, M. G. Kim, A. Lanz, D. H. Lee, H. M. Lee, K. Sano, J. Smidt, T. Matsumoto, T. Nakagawa, Y. Onishi, P. Korngut, M. Shirahata, K. Tsumura, and M. Zemcov
- Subjects
WAVELENGTH measurement ,SPACE flight ,SPECTRAL imaging ,MOLECULAR clouds - Abstract
We report measurements of the diffuse galactic light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95–1.65 μm by the Cosmic Infrared Background ExpeRiment. Using the low-resolution spectrometer calibrated for absolute spectro-photometry, we acquired long-slit spectral images of the total diffuse sky brightness toward six high-latitude fields spread over four sounding rocket flights. To separate the DGL spectrum from the total sky brightness, we correlated the spectral images with a 100 μm intensity map, which traces the dust column density in optically thin regions. The measured DGL spectrum shows no resolved features and is consistent with other DGL measurements in the optical and at near-infrared wavelengths longer than 1.8 μm. Our result implies that the continuum is consistently reproduced by models of scattered starlight in the Rayleigh scattering regime with a few large grains. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
22. The Herschel PEP/HerMES Luminosity Function. I: Probing the Evolution of PACS selected Galaxies to z~4
- Author
-
V. Arumugam, Ismael Perez-Fournon, M. Bethermin, Andreas Papageorgiou, Alberto Franceschini, Mattia Vaccari, A. M. Pérez García, Lucia Pozzetti, G. Wright, B. O'Halloran, P. Chanial, Giulia Rodighiero, Pierluigi Monaco, P. Popesso, E. Zucca, Michael Pohlen, Benjamin Magnelli, K. G. Isaak, Lucia Marchetti, Eckhard Sturm, Bruno Maffei, Michael Rowan-Robinson, Matthew Joseph Griffin, Michael Zemcov, Marco Scodeggio, C. K. Xu, Lian-Tao Wang, Antonio Cava, O. Le Fevre, K. E. Tugwell, M. Magliocchetti, Dimitra Rigopoulou, Albrecht Poglitsch, S. C. Madden, Bruno Altieri, Raanan Nordon, M. Carollo, Rob Ivison, Alexandre Amblard, N. Castro-Rodríguez, R. Genzel, James J. Bock, Vincenzo Mainieri, Linda J. Tacconi, Alvio Renzini, Anthony J. Smith, Francesca Pozzi, David J. Rosario, Chris Pearson, Mark Sargent, A. Boselli, Denis Burgarella, G. Mainetti, Edo Ibar, C. D. Dowell, Ivan Delvecchio, H. Aussel, A. Conley, Benjamin L. Schulz, Simon J. Lilly, Jamie Stevens, H. T. Nguyen, V. Buat, Guilaine Lagache, D. Elbaz, Nick Seymour, Asantha Cooray, Alessandro Cimatti, Douglas Scott, M. J. Page, Louis Levenson, M. Sánchez-Portal, Evanthia Hatziminaoglou, David L. Clements, Nanyao Y. Lu, M. Symeonidis, S. Berta, L. Riguccini, L. Vigroux, Ivan Valtchanov, Emanuele Daddi, Roberto Maiolino, Eli Dwek, J. Cepa, Stephen Anthony Eales, H. Dominguez-Sanchez, G. Zamorani, Dieter Lutz, P. Panuzzo, S. Bardelli, D. L. Shupe, Carlotta Gruppioni, E. Le Floc'h, Isaac Roseboom, Seb Oliver, Ángel Bongiovanni, P. Andreani, Alvaro Iribarrem, Thierry Contini, N. M. Foerster Schreiber, Jason Glenn, Markos Trichas, O. Ilbert, C., Gruppioni, F., Pozzi, G., Rodighiero, I., Delvecchio, S., Berta, L., Pozzetti, G., Zamorani, P., Andreani, A., Cimatti, O., Ilbert, E., Le Floc'h, D., Lutz, B., Magnelli, L., Marchetti, Monaco, Pierluigi, R., Nordon, S., Oliver, P., Popesso, L., Riguccini, I., Roseboom, D. J., Rosario, M., Sargent, M., Vaccari, B., Altieri, H., Aussel, A., Bongiovanni, J., Cepa, E., Daddi, H., Dominguez Sanchez, D., Elbaz, N., Forster Schreiber, R., Genzel, A., Iribarrem, M., Magliocchetti, R., Maiolino, A., Poglitsch, A., Perez Garcia, M., Sanchez Portal, E., Sturm, L., Tacconi, I., Valtchanov, A., Amblard, V., Arumugam, M., Bethermin, J., Bock, A., Boselli, V., Buat, D., Burgarella, N., Castro Rodriguez, A., Cava, P., Chanial, D. L., Clement, A., Conley, A., Cooray, C. D., Dowell, E., Dwek, S., Eale, A., Franceschini, J., Glenn, M., Griffin, E., Hatziminaoglou, E., Ibar, K., Isaak, R. J., Ivison, G., Lagache, L., Levenson, N., Lu, S., Madden, B., Maffei, G., Mainetti, H. T., Nguyen, B., O'Halloran, M. J., Page, P., Panuzzo, A., Papageorgiou, C. P., Pearson, I., Perez Fournon, M., Pohlen, D., Rigopoulou, M., Rowan Robinson, B., Schulz, D., Scott, N., Seymour, D. L., Shupe, A. J., Smith, J. A., Steven, M., Symeonidi, M., Tricha, K. E., Tugwell, L., Vigroux, L., Wang, G., Wright, C. K., Xu, M., Zemcov, S., Bardelli, M., Carollo, T., Contini, O., Le Fevre, S., Lilly, V., Mainieri, A., Renzini, M., Scodeggio, E., Zucca, C. Gruppioni, F. Pozzi, G. Rodighiero, I. Delvecchio, S. Berta, L. Pozzetti, G. Zamorani, P. Andreani, A. Cimatti, O. Ilbert, E. Le Floc'h, D. Lutz, B. Magnelli, L. Marchetti, P. Monaco, R. Nordon, S. Oliver, P. Popesso, L. Riguccini, I. Roseboom, D. J. Rosario, M. Sargent, M. Vaccari, B. Altieri, H. Aussel, A. Bongiovanni, J. Cepa, E. Daddi, H. Dominguez-Sanchez, D. Elbaz, N. Forster Schreiber, R. Genzel, A. Iribarrem, M. Magliocchetti, R. Maiolino, A. Poglitsch, A. Perez Garcia, M. Sanchez-Portal, E. Sturm, L. Tacconi, I. Valtchanov, A. Amblard, V. Arumugam, M. Bethermin, J. Bock, A. Boselli, V. Buat, D. Burgarella, N. Castro-Rodriguez, A. Cava, P. Chanial, D. L. Clement, A. Conley, A. Cooray, C. D. Dowell, E. Dwek, S. Eale, A. Franceschini, J. Glenn, M. Griffin, E. Hatziminaoglou, E. Ibar, K. Isaak, R. J. Ivison, G. Lagache, L. Levenson, N. Lu, S. Madden, B. Maffei, G. Mainetti, H. T. Nguyen, B. O'Halloran, M. J. Page, P. Panuzzo, A. Papageorgiou, C. P. Pearson, I. Perez-Fournon, M. Pohlen, D. Rigopoulou, M. Rowan-Robinson, B. Schulz, D. Scott, N. Seymour, D. L. Shupe, A. J. Smith, J. A. Steven, M. Symeonidi, M. Tricha, K. E. Tugwell, L. Vigroux, L. Wang, G. Wright, C. K. Xu, M. Zemcov, S. Bardelli, M. Carollo, T. Contini, O. Le Fevre, S. Lilly, V. Mainieri, A. Renzini, M. Scodeggio, and E. Zucca
- Subjects
Astrofísica ,Active galactic nucleus ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,galaxies: active ,FOS: Physical sciences ,galaxies: starburst ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,galaxies: evolution ,galaxies: luminosity function ,mass function ,cosmology: observations ,infrared: galaxies ,01 natural sciences ,galaxies [infrared] ,Luminosity ,0103 physical sciences ,Galaxy formation and evolution ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,evolution [galaxies] ,QB ,Luminosity function (astronomy) ,luminosity function [galaxies] ,Physics ,Luminous infrared galaxy ,Supermassive black hole ,cosmology: observation ,Spiral galaxy ,010308 nuclear & particles physics ,starburst [galaxies] ,Astronomy ,Astronomy and Astrophysics ,Galaxy ,Astronomía ,Space and Planetary Science ,active [galaxies] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,observation [cosmology] - Abstract
We exploit the deep and extended far infrared data sets (at 70, 100 and 160 um) of the Herschel GTO PACS Evolutionary Probe (PEP) Survey, in combination with the HERschel Multi tiered Extragalactic Survey (HerMES) data at 250, 350 and 500 um, to derive the evolution of the restframe 35 um, 60 um, 90 um, and total infrared (IR) luminosity functions (LFs) up to z~4. We detect very strong luminosity evolution for the total IR LF combined with a density evolution. In agreement with previous findings, the IR luminosity density increases steeply to z~1, then flattens between z~1 and z~3 to decrease at z greater than 3. Galaxies with different SEDs, masses and sSFRs evolve in very different ways and this large and deep statistical sample is the first one allowing us to separately study the different evolutionary behaviours of the individual IR populations contributing to the IR luminosity density. Galaxies occupying the well established SFR/stellar mass main sequence (MS) are found to dominate both the total IR LF and luminosity density at all redshifts, with the contribution from off MS sources (0.6 dex above MS) being nearly constant (~20% of the total IR luminosity density) and showing no significant signs of increase with increasing z over the whole 0.8, Comment: 32 pages, 20 figures, 9 tables. Published in MNRAS. Replaced Fig. 8 (small scaling bug in the previous version)
- Published
- 2013
- Full Text
- View/download PDF
23. The Herschel census of infrared SEDs through cosmic time
- Author
-
B. O'Halloran, Mat Page, Michael Pohlen, P. Popesso, David J. Rosario, C. K. Xu, S. J. Lilly, Chris Pearson, Peter Capak, E. Le Floc'h, Matthew Joseph Griffin, E. Giovannoli, Duncan Farrah, D. Rigopoulou, Georgios E. Magdis, Jason Glenn, L. Riguccini, V. Arumugam, Ho Seong Hwang, Ismael Perez-Fournon, Evanthia Hatziminaoglou, Alberto Franceschini, S. Berta, Edo Ibar, Mattia Vaccari, Stijn Wuyts, Lucia Marchetti, Michael Rowan-Robinson, Dieter Lutz, David L. Clements, Lian-Tao Wang, Asantha Cooray, Andreas Papageorgiou, O. Ilbert, Seb Oliver, Benjamin Magnelli, Anthony J. Smith, Benjamin L. Schulz, D. L. Shupe, L. Conversi, Isaac Roseboom, A. Boselli, C. D. Dowell, Douglas Scott, A. Conley, Nick Seymour, Francesca Pozzi, Mara Salvato, Rob Ivison, H. Patel, Herve Aussel, Alain Omont, H. T. Nguyen, Ivan Valtchanov, M. Symeonidis, Michael Zemcov, Raanan Nordon, V. Buat, J. Kartaltepe, James J. Bock, M. Symeonidi, M. Vaccari, S. Berta, M. J. Page, D. Lutz, V. Arumugam, H. Aussel, J. Bock, A. Boselli, V. Buat, P. L. Capak, D. L. Clement, A. Conley, L. Conversi, A. Cooray, C. D. Dowell, D. Farrah, A. Franceschini, E. Giovannoli, J. Glenn, M. Griffin, E. Hatziminaoglou, H.- S. Hwang, E. Ibar, O. Ilbert, R. J. Ivison, E. L. Floc'h, S. Lilly, J. S. Kartaltepe, B. Magnelli, G. Magdi, L. Marchetti, H. T. Nguyen, R. Nordon, B. O'Halloran, S. J. Oliver, A. Omont, A. Papageorgiou, H. Patel, C. P. Pearson, I. Perez-Fournon, M. Pohlen, P. Popesso, F. Pozzi, D. Rigopoulou, L. Riguccini, D. Rosario, I. G. Roseboom, M. Rowan-Robinson, M. Salvato, B. Schulz, D. Scott, N. Seymour, D. L. Shupe, A. J. Smith, I. Valtchanov, L. Wang, C. K. Xu, M. Zemcov, S. Wuyts, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Active galactic nucleus ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Hubble Deep Field ,Astrophysics::High Energy Astrophysical Phenomena ,Population ,FOS: Physical sciences ,galaxies: starburst ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,galaxies [infrared] ,Luminosity ,Spitzer Space Telescope ,galaxies: high-redshift ,0103 physical sciences ,galaxies [submillimetre] ,Astrophysics::Solar and Stellar Astrophysics ,education ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,evolution [galaxies] ,QB ,Physics ,Luminous infrared galaxy ,education.field_of_study ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,starburst [galaxies] ,infrared: galaxie ,Astronomy ,Astronomy and Astrophysics ,high redshift [galaxies] ,Galaxy ,Redshift ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,galaxies: evolution ,submillimetre: galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Using Herschel data from the deepest SPIRE and PACS surveys (HerMES and PEP) in COSMOS and GOODS (N+S), we examine the dust properties of IR-luminous (L_IR>10^10 L_sun) galaxies at 0.145K) SEDs and cold (T, Comment: 27 pages, 23 figures, 2 tables, accepted for publication in MNRAS
- Published
- 2016
- Full Text
- View/download PDF
24. Herschel reveals the obscured star formation in HiZELS H\alpha\ emitters at z=1.47
- Author
-
M. J. Page, V. Arumugam, S. J. Oliver, Francesca Pozzi, Benjamin Magnelli, Kotaro Kohno, Ian Smail, M. Symeonidis, Duncan Farrah, Dieter Lutz, Nick Seymour, A. Conley, Georgios E. Magdis, James E. Geach, Michael Zemcov, Lingyu Wang, L. Riguccini, Julie Wardlow, S. Berta, Antonio Cava, Rob Ivison, Austin Smith, E. Le Floc'h, J. J. Bock, G. Marsden, David Sobral, Philip Best, Edo Ibar, Matthieu Béthermin, Benjamin L. Schulz, Soh Ikarashi, E. Ibar, D. Sobral, P. N. Best, R. J. Ivison, I. Smail, V. Arumugam, S. Berta, M. Bethermin, J. Bock, A. Cava, A. Conley, D. Farrah, J. Geach, S. Ikarashi, K. Kohno, E. Le Floc'h, D. Lutz, G. Magdi, B. Magnelli, G. Marsden, S. J. Oliver, M. J. Page, F. Pozzi, L. Riguccini, B. Schulz, N. Seymour, A. J. Smith, M. Symeonidi, L. Wang, J. Wardlow, and M. Zemcov
- Subjects
Stellar mass ,galaxies: starburst ,Astrophysics ,01 natural sciences ,star formation [Galaxies] ,Physical cosmology ,high-redshift [Galaxies] ,statistics [Galaxies] ,galaxies [Infrared] ,galaxies: high-redshift ,0103 physical sciences ,Emission spectrum ,010303 astronomy & astrophysics ,Luminous infrared galaxy ,Physics ,010308 nuclear & particles physics ,Star formation ,infrared: galaxie ,Astronomy ,Astronomy and Astrophysics ,Galaxy ,Redshift ,Stars ,starburst [Galaxies] ,Space and Planetary Science ,galaxies: star formation ,galaxies: statistic ,submillimetre: galaxies ,galaxies. [Submillimetre] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We describe the far-infrared (FIR; rest-frame 8--1000\mu m) properties of a sample of 443 H\alpha-selected star-forming galaxies in the COSMOS and UDS fields detected by the HiZELS imaging survey. Sources are identified using narrow-band filters in combination with broad-band photometry to uniformly select H\alpha\ (and [OII] if available) emitters in a narrow redshift slice at z = 1.47+/-0.02. We use a stacking approach in Spitzer, Herschel (from PEP and HerMES surveys) and AzTEC images to describe their typical FIR properties. We find that HiZELS galaxies with observed H\alpha\ luminosities of ~ 10^{8.1-9.1} Lo have bolometric FIR luminosities of typical LIRGs, L_FIR ~ 10^{11.48+/-0.05} Lo. Combining the H\alpha\ and FIR luminosities, we derive median SFR = 32+/-5 Mo/yr and H\alpha\ extinctions of A(H\alpha) = 1.0+/-0.2 mag. Perhaps surprisingly, little difference is seen in typical HiZELS extinction levels compared to local star-forming galaxies. We confirm previous empirical stellar mass (M*) to A(H\alpha) relations and the little or no evolution up to z = 1.47. For HiZELS galaxies, we provide an empirical parametrisation of the SFR as a function of (u-z)_rest colours and 3.6\mu m photometry. We find that the observed H\alpha\ luminosity is a dominant SFR tracer when (u-z)_rest ~< 0.9 mag or when 3.6\mu m photometry > 22 mag (Vega) or when M* < 10^9.7 Mo. We do not find any correlation between the [OII]/H\alpha\ and FIR luminosity, suggesting that this emission line ratio does not trace the extinction of the most obscured star-forming regions. The luminosity-limited HiZELS sample tends to lie above of the so-called `main sequence' for star-forming galaxies, especially at low M*. This work suggests that obscured star formation is linked to the assembly of M*, with deeper potential wells in massive galaxies providing dense, heavily obscured environments in which stars can form rapidly., Comment: abridged abstract
- Published
- 2013
25. Cosmic Evolution of Star Formation Enhancement in Close Major-merger Galaxy Pairs Since z = 1
- Author
-
L. Riguccini, James J. Bock, Alberto Franceschini, Gaelen Marsden, David Elbaz, Carrie Bridge, C. K. Xu, Lian-Tao Wang, Francesca Pozzi, Bernhard Schulz, N. Z. Scoville, A. Cooray, Dieter Lutz, Matthieu Béthermin, Benjamin Magnelli, Seb Oliver, Michael Zemcov, E. Le Floc'h, David L. Shupe, Herve Aussel, Nanyao Y. Lu, A. Conley, S. Berta, Joaquin Vieira, Mattia Vaccari, C. K. Xu, D. L. Shupe, M. Béthermin, H. Aussel, S. Berta, J. Bock, C. Bridge, A. Conley, A. Cooray, D. Elbaz, A. Franceschini, E. Le Floc'h, N. Lu, D. Lutz, B. Magnelli, G. Marsden, S. J. Oliver, F. Pozzi, L. Riguccini, B. Schulz, N. Scoville, M. Vaccari, J. D. Vieira, L. Wang, and M. Zemcov
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,Infrared ,Dark matter ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Physical cosmology ,Luminosity ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,galaxies: evolution – galaxies: general – galaxies: interactions – galaxies: starburst ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,QB ,0105 earth and related environmental sciences ,Physics ,Star formation ,Astronomy and Astrophysics ,Galaxy ,Redshift ,Space and Planetary Science ,Halo ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The infrared (IR) emission of M_* galaxies (10^{10.4} < M_{star} < 10^{11.0} M_\sun) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single disk galaxies in well matched control samples to study the cosmic evolution of the star-formation enhancement induced by galaxy-galaxy interaction. Both the mean IR SED and mean IR luminosity of star-forming galaxies (SFGs) in SFG+SFG (S+S) pairs in the redshift bin of 0.6 < z < 1 are consistent with no star-formation enhancement. SFGs in S+S pairs in a lower redshift bin of 0.2 < z < 0.6 show marginal evidence for a weak star-formation enhancement. Together with the significant and strong sSFR enhancement shown by SFGs in a local sample of S+S pairs (obtained using previously published Spitzer observations), our results reveal a trend for the star-formation enhancement in S+S pairs to decrease with increasing redshift. Between z=0 and z=1, this decline of interaction-induced star-formation enhancement occurs in parallel with the dramatic increase (by a factor of ~10) of the sSFR of single SFGs, both can be explained by the higher gas fraction in higher z disks. SFGs in mixed pairs (S+E pairs) do not show any significant star-formation enhancement at any redshift. The difference between SFGs in S+S pairs and in S+E pairs suggests a modulation of the sSFR by the inter-galactic medium IGM in the dark matter halos (DMH) hosting these pairs., 7 pages, 4 figures; accepted by ApJ
- Published
- 2012
26. Evolution of dust temperature of galaxies through cosmic time as seen by Herschel
- Author
-
Cava, A., Cepa, J., Chanial, P., Chapin, E., Chary, R. -R., Cimatti, Alessandro, Clements, D. L., Conley, A., Conversi, L., Cooray, A., Dannerbauer, H., Dickinson, M., Dominguez, H., Dowell, C. D., Dunlop, J. S., Dwek, E., Eales, S., Farrah, D., Schreiber, N. Foerster, Fox, M., Franceschini, A., Gear, W., Genzel, R., Glenn, J., Griffin, M., Gruppioni, C., Halpern, M., Hatziminaoglou, E., Ibar, E., Isaak, K., Ivison, R. J., Jeong, W. -S., Lagache, Guilaine, Le Borgne, Damien, Le Floc'H, E., Lee, H. M., Lee, J. C., Lee, M. G., Levenson, L., Lu, N., Lutz, D., Madden, S., Maffei, B., Magnelli, B., Mainetti, G., Maiolino, R., Marchetti, L., Mortier, A. M. J., Nguyen, H. T., Nordon, R., O'Halloran, B., Okumura, K., Oliver, S. J., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Perez-Fournon, I., Perez Garcia, A. M., Poglitsch, A., Pohlen, M., Popesso, P., Pozzi, F., Rawlings, J. I., Rigopoulou, D., Riguccini, L., Rizzo, D., Rodighiero, G., Roseboom, I. G., Rowan-Robinson, M., Saintonge, A., Sanchez Portal, M., Santini, P., Sauvage, M., Schulz, B., Scott, D., Seymour, N., Shao, L., Shupe, D. L., Smith, A. J., Stevens, J. A., Sturm, E., Tacconi, L., Trichas, M., Tugwell, K. E., Vaccari, M., Valtchanov, I., Vieira, J. D., Vigroux, L., Wang, L., Ward, R., Wright, Gavin, Xu, C. K., Zemcov, M., Hwang, H. S., Elbaz, D., Magdis, G., Daddi, Emanuele, Symeonidis, M., Altieri, B., Amblard, A., Andreani, P., Arumugam, V., Auld, R., Aussel, H., Babbedge, T., Berta, S., Blain, A., Bock, J., Bongiovanni, A., Boselli, A., Buat, V., Burgarella, D., Castro-Rodriguez, N., H.S. Hwang, D. Elbaz, G. E. Magdi, E. Daddi, M. Symeonidi, B. Altieri, A. Amblard, P. Andreani, V. Arumugam, R. Auld, H. Aussel, T. Babbedge, S. Berta, A. Blain, J. Bock, A. Bongiovanni, A. Boselli, V. Buat, D. Burgarella, N. Castro-Rodriguez, A. Cava, J. Cepa, P. Chanial, E. Chapin, R.-R. Chary, A. Cimatti, D.L. Clement, A. Conley, L. Conversi, A. Cooray, H. Dannerbauer, M. Dickinson, H. Dominguez, C.D. Dowell, J.S. Dunlop, E. Dwek, S. Eale, D. Farrah, N. Forster Schreiber, M. Fox, A. Franceschini, W. Gear, R. Genzel, J. Glenn, M. Griffin, C. Gruppioni, M. Halpern, E. Hatziminaoglou, E. Ibar, K. Isaak, R.J. Ivison, W.-S. Jeong, G. Lagache, D. Le Borgne, E. Le Floc'h, H.M. Lee, J.C. Lee, M.G. Lee, L. Levenson, N. Lu, D. Lutz, S. Madden, B. Maffei, B. Magnelli, G. Mainetti, R. Maiolino, L. Marchetti, A.M.J. Mortier, H.T. Nguyen, R. Nordon, B. O'Halloran, K. Okumura, S.J. Oliver, A. Omont, M.J. Page, P. Panuzzo, A. Papageorgiou, C.P. Pearson, I. Perez-Fournon, A.M. Perez Garcia, A. Poglitsch, M. Pohlen, P. Popesso, F. Pozzi, J.I. Rawling, D. Rigopoulou, L. Riguccini, D. Rizzo, G. Rodighiero, I.G. Roseboom, M. Rowan-Robinson, A. Saintonge, M. Sanchez Portal, P. Santini, M. Sauvage, B. Schulz, Douglas Scott, N. Seymour, L. Shao, D.L. Shupe, A.J. Smith, J.A. Steven, E. Sturm, L. Tacconi, M. Tricha, K.E. Tugwell, M. Vaccari, I. Valtchanov, J.D. Vieira, L. Vigroux, L.Wang, R. Ward, G. Wright, C.K. Xu, M. Zemcov, Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the dust properties of galaxies in the redshift range 0.10.5 with L_IR>5x10^{10} L_\odot, appears to be 2-5 K colder than that of AKARI-selected local galaxies with similar luminosities; and the dispersion in T_dust for high-z galaxies increases with L_IR due to the existence of cold galaxies that are not seen among local galaxies. We show that this large dispersion of the L_IR-T_dust relation can bridge the gap between local star-forming galaxies and high-z submillimeter galaxies (SMGs). We also find that three SMGs with very low T_dust (, Comment: 9 pages, 6 figures, To appear in MNRAS
- Published
- 2010
- Full Text
- View/download PDF
27. First Constraints on the Epoch of Reionization Using the Non-Gaussianity of the Kinematic Sunyaev-Zel'dovich Effect from the South Pole Telescope and Herschel-SPIRE Observations.
- Author
-
Raghunathan S, Ade PAR, Anderson AJ, Ansarinejad B, Archipley M, Austermann JE, Balkenhol L, Beall JA, Benabed K, Bender AN, Benson BA, Bianchini F, Bleem LE, Bock J, Bouchet FR, Bryant L, Camphuis E, Carlstrom JE, Cecil TW, Chang CL, Chaubal P, Chiang HC, Chichura PM, Chou TL, Citron R, Coerver A, Crawford TM, Crites AT, Cukierman A, Daley C, Dibert KR, Dobbs MA, Doussot A, Dutcher D, Everett W, Feng C, Ferguson KR, Fichman K, Foster A, Galli S, Gallicchio J, Gambrel AE, Gardner RW, Ge F, George EM, Goeckner-Wald N, Gualtieri R, Guidi F, Guns S, Gupta N, de Haan T, Halverson NW, Hivon E, Holder GP, Holzapfel WL, Hood JC, Hrubes JD, Hryciuk A, Huang N, Hubmayr J, Irwin KD, Kéruzoré F, Khalife AR, Knox L, Korman M, Kornoelje K, Kuo CL, Lee AT, Levy K, Li D, Lowitz AE, Lu C, Maniyar A, Martsen ES, McMahon JJ, Menanteau F, Millea M, Montgomery J, Corbett Moran C, Nakato Y, Natoli T, Nibarger JP, Noble GI, Novosad V, Omori Y, Padin S, Pan Z, Paschos P, Patil S, Phadke KA, Prabhu K, Pryke C, Quan W, Rahimi M, Rahlin A, Reichardt CL, Rouble M, Ruhl JE, Saliwanchik BR, Schaffer KK, Schiappucci E, Sievers C, Smecher G, Sobrin JA, Stark AA, Stephen J, Suzuki A, Tandoi C, Thompson KL, Thorne B, Trendafilova C, Tucker C, Umilta C, Veach T, Vieira JD, Viero MP, Wan Y, Wang G, Whitehorn N, Wu WLK, Yefremenko V, Young MR, Zebrowski JA, and Zemcov M
- Abstract
We report results from an analysis aimed at detecting the trispectrum of the kinematic Sunyaev-Zel'dovich (kSZ) effect by combining data from the South Pole Telescope (SPT) and Herschel-SPIRE experiments over a 100 deg^{2} field. The SPT observations combine data from the previous and current surveys, namely SPTpol and SPT-3G, to achieve depths of 4.5, 3, and 16 μK-arcmin in bands centered at 95, 150, and 220 GHz. For SPIRE, we include data from the 600 and 857 GHz bands. We reconstruct the velocity-induced large-scale correlation of the small-scale kSZ signal with a quadratic estimator that uses two cosmic microwave background (CMB) temperature maps, constructed by optimally combining data from all the frequency bands. We reject the null hypothesis of a zero trispectrum at 10.3σ level. However, the measured trispectrum contains contributions from both the kSZ and other undesired components, such as CMB lensing and astrophysical foregrounds, with kSZ being sub-dominant. We use the agora simulations to estimate the expected signal from CMB lensing and astrophysical foregrounds. After accounting for the contributions from CMB lensing and foreground signals, we do not detect an excess kSZ-only trispectrum and use this nondetection to set constraints on reionization. By applying a prior based on observations of the Gunn-Peterson trough, we obtain an upper limit on the duration of reionization of Δz_{re,50}<4.5 (95% confidence level). We find these constraints are fairly robust to foregrounds assumptions. This trispectrum measurement is independent of, but consistent with, Planck's optical depth measurement. This result is the first constraint on the epoch of reionization using the non-Gaussian nature of the kSZ signal.
- Published
- 2024
- Full Text
- View/download PDF
28. A Vacuum Waveguide Filter Bank Spectrometer for Far-Infrared Astrophysics.
- Author
-
Nie R, Filippini J, Brooks E, Barry P, Connors J, Gradziel M, Mercado D, Razavimaleki V, Shirokoff E, Spencer L, Tramm S, Trappe N, and Zemcov M
- Abstract
Traditional technologies for far-infrared (FIR) spectroscopy generally involve bulky dispersive optics. Integrated filter bank spectrometers promise more compact designs, but implementations using superconducting transmission line networks become lossy at terahertz frequencies. We describe a novel on-chip spectrometer architecture designed to extend this range. A filter bank spectrometer is implemented using vacuum waveguide etched into a silicon wafer stack. A single trunk line feeds an array of resonant cavities, each coupled to a kinetic inductance detector fabricated on an adjacent wafer. We discuss the design and fabrication of a prototype implementation, initial test results at ambient temperature, and prospects for future development., Competing Interests: Conflict of interestThe authors declare no conflict of interest., (© The Author(s) 2024.)
- Published
- 2024
- Full Text
- View/download PDF
29. Measurement of the cosmic optical background using the long range reconnaissance imager on New Horizons.
- Author
-
Zemcov M, Immel P, Nguyen C, Cooray A, Lisse CM, and Poppe AR
- Abstract
The cosmic optical background is an important observable that constrains energy production in stars and more exotic physical processes in the universe, and provides a crucial cosmological benchmark against which to judge theories of structure formation. Measurement of the absolute brightness of this background is complicated by local foregrounds like the Earth's atmosphere and sunlight reflected from local interplanetary dust, and large discrepancies in the inferred brightness of the optical background have resulted. Observations from probes far from the Earth are not affected by these bright foregrounds. Here we analyse the data from the Long Range Reconnaissance Imager (LORRI) instrument on NASA's New Horizons mission acquired during cruise phase outside the orbit of Jupiter, and find a statistical upper limit on the optical background's brightness similar to the integrated light from galaxies. We conclude that a carefully performed survey with LORRI could yield uncertainties comparable to those from galaxy counting measurements.
- Published
- 2017
- Full Text
- View/download PDF
30. On the redshift distribution and physical properties of ACT-selected DSFGs.
- Author
-
Su T, Marriage TA, Asboth V, Baker AJ, Bond JR, Crichton D, Devlin MJ, Dünner R, Farrah D, Frayer DT, Gralla MB, Hall K, Halpern M, Harris AI, Hilton M, Hincks AD, Hughes JP, Niemack MD, Page LA, Partridge B, Rivera J, Scott D, Sievers JL, Thornton RJ, Viero MP, Wang L, Wollack EJ, and Zemcov M
- Abstract
We present multi-wavelength detections of nine candidate gravitationally-lensed dusty star-forming galaxies (DSFGs) selected at 218GHz (1.4mm) from the ACT equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of z = 4.1 - 1.0 + 1.1 (68 per cent confidence interval), as expected for 218GHz selection, and an apparent total infrared luminosity of log 10 ( μ L IR / L ⊙ ) = 13.86 - 0.30 + 0.33 , which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is μ d = 4.2 - 1.0 + 1.7 kpc , further evidence of strong lensing or multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modelling without the assumption of optically thin dust (as opposed to image morphology). We find that the sources have substantial optical depth. ( τ = 4.2 - 1.9 + 3.7 ) to dust around the peak in the modified blackbody spectrum ( λ
obs m), a result that is robust to model choice.μ m), a result that is robust to model choice.- Published
- 2017
- Full Text
- View/download PDF
31. On the origin of near-infrared extragalactic background light anisotropy.
- Author
-
Zemcov M, Smidt J, Arai T, Bock J, Cooray A, Gong Y, Kim MG, Korngut P, Lam A, Lee DH, Matsumoto T, Matsuura S, Nam UW, Roudier G, Tsumura K, and Wada T
- Abstract
Extragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history and may contain faint, extended components missed in galaxy point-source surveys. Infrared EBL fluctuations have been attributed to primordial galaxies and black holes at the epoch of reionization (EOR) or, alternately, intrahalo light (IHL) from stars tidally stripped from their parent galaxies at low redshift. We report new EBL anisotropy measurements from a specialized sounding rocket experiment at 1.1 and 1.6 micrometers. The observed fluctuations exceed the amplitude from known galaxy populations, are inconsistent with EOR galaxies and black holes, and are largely explained by IHL emission. The measured fluctuations are associated with an EBL intensity that is comparable to the background from known galaxies measured through number counts and therefore a substantial contribution to the energy contained in photons in the cosmos., (Copyright © 2014, American Association for the Advancement of Science.)
- Published
- 2014
- Full Text
- View/download PDF
32. Detection of B-mode polarization in the cosmic microwave background with data from the South Pole Telescope.
- Author
-
Hanson D, Hoover S, Crites A, Ade PA, Aird KA, Austermann JE, Beall JA, Bender AN, Benson BA, Bleem LE, Bock JJ, Carlstrom JE, Chang CL, Chiang HC, Cho HM, Conley A, Crawford TM, de Haan T, Dobbs MA, Everett W, Gallicchio J, Gao J, George EM, Halverson NW, Harrington N, Henning JW, Hilton GC, Holder GP, Holzapfel WL, Hrubes JD, Huang N, Hubmayr J, Irwin KD, Keisler R, Knox L, Lee AT, Leitch E, Li D, Liang C, Luong-Van D, Marsden G, McMahon JJ, Mehl J, Meyer SS, Mocanu L, Montroy TE, Natoli T, Nibarger JP, Novosad V, Padin S, Pryke C, Reichardt CL, Ruhl JE, Saliwanchik BR, Sayre JT, Schaffer KK, Schulz B, Smecher G, Stark AA, Story KT, Tucker C, Vanderlinde K, Vieira JD, Viero MP, Wang G, Yefremenko V, Zahn O, and Zemcov M
- Abstract
Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a nonzero correlation at 7.7σ significance. The correlation has an amplitude and scale dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.
- Published
- 2013
- Full Text
- View/download PDF
33. The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3.
- Author
-
Fu H, Cooray A, Feruglio C, Ivison RJ, Riechers DA, Gurwell M, Bussmann RS, Harris AI, Altieri B, Aussel H, Baker AJ, Bock J, Boylan-Kolchin M, Bridge C, Calanog JA, Casey CM, Cava A, Chapman SC, Clements DL, Conley A, Cox P, Farrah D, Frayer D, Hopwood R, Jia J, Magdis G, Marsden G, Martínez-Navajas P, Negrello M, Neri R, Oliver SJ, Omont A, Page MJ, Pérez-Fournon I, Schulz B, Scott D, Smith A, Vaccari M, Valtchanov I, Vieira JD, Viero M, Wang L, Wardlow JL, and Zemcov M
- Abstract
Stellar archaeology shows that massive elliptical galaxies formed rapidly about ten billion years ago with star-formation rates of above several hundred solar masses per year. Their progenitors are probably the submillimetre bright galaxies at redshifts z greater than 2. Although the mean molecular gas mass (5 × 10(10) solar masses) of the submillimetre bright galaxies can explain the formation of typical elliptical galaxies, it is inadequate to form elliptical galaxies that already have stellar masses above 2 × 10(11) solar masses at z ≈ 2. Here we report multi-wavelength high-resolution observations of a rare merger of two massive submillimetre bright galaxies at z = 2.3. The system is seen to be forming stars at a rate of 2,000 solar masses per year. The star-formation efficiency is an order of magnitude greater than that of normal galaxies, so the gas reservoir will be exhausted and star formation will be quenched in only around 200 million years. At a projected separation of 19 kiloparsecs, the two massive starbursts are about to merge and form a passive elliptical galaxy with a stellar mass of about 4 × 10(11) solar masses. We conclude that gas-rich major galaxy mergers with intense star formation can form the most massive elliptical galaxies by z ≈ 1.5.
- Published
- 2013
- Full Text
- View/download PDF
34. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.
- Author
-
Riechers DA, Bradford CM, Clements DL, Dowell CD, Pérez-Fournon I, Ivison RJ, Bridge C, Conley A, Fu H, Vieira JD, Wardlow J, Calanog J, Cooray A, Hurley P, Neri R, Kamenetzky J, Aguirre JE, Altieri B, Arumugam V, Benford DJ, Béthermin M, Bock J, Burgarella D, Cabrera-Lavers A, Chapman SC, Cox P, Dunlop JS, Earle L, Farrah D, Ferrero P, Franceschini A, Gavazzi R, Glenn J, Solares EA, Gurwell MA, Halpern M, Hatziminaoglou E, Hyde A, Ibar E, Kovács A, Krips M, Lupu RE, Maloney PR, Martinez-Navajas P, Matsuhara H, Murphy EJ, Naylor BJ, Nguyen HT, Oliver SJ, Omont A, Page MJ, Petitpas G, Rangwala N, Roseboom IG, Scott D, Smith AJ, Staguhn JG, Streblyanska A, Thomson AP, Valtchanov I, Viero M, Wang L, Zemcov M, and Zmuidzinas J
- Abstract
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
- Published
- 2013
- Full Text
- View/download PDF
35. The suppression of star formation by powerful active galactic nuclei.
- Author
-
Page MJ, Symeonidis M, Vieira JD, Altieri B, Amblard A, Arumugam V, Aussel H, Babbedge T, Blain A, Bock J, Boselli A, Buat V, Castro-Rodríguez N, Cava A, Chanial P, Clements DL, Conley A, Conversi L, Cooray A, Dowell CD, Dubois EN, Dunlop JS, Dwek E, Dye S, Eales S, Elbaz D, Farrah D, Fox M, Franceschini A, Gear W, Glenn J, Griffin M, Halpern M, Hatziminaoglou E, Ibar E, Isaak K, Ivison RJ, Lagache G, Levenson L, Lu N, Madden S, Maffei B, Mainetti G, Marchetti L, Nguyen HT, O'Halloran B, Oliver SJ, Omont A, Panuzzo P, Papageorgiou A, Pearson CP, Pérez-Fournon I, Pohlen M, Rawlings JI, Rigopoulou D, Riguccini L, Rizzo D, Rodighiero G, Roseboom IG, Rowan-Robinson M, Sánchez Portal M, Schulz B, Scott D, Seymour N, Shupe DL, Smith AJ, Stevens JA, Trichas M, Tugwell KE, Vaccari M, Valtchanov I, Viero M, Vigroux L, Wang L, Ward R, Wright G, Xu CK, and Zemcov M
- Abstract
The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.
- Published
- 2012
- Full Text
- View/download PDF
36. Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 10(11) solar masses.
- Author
-
Amblard A, Cooray A, Serra P, Altieri B, Arumugam V, Aussel H, Blain A, Bock J, Boselli A, Buat V, Castro-Rodríguez N, Cava A, Chanial P, Chapin E, Clements DL, Conley A, Conversi L, Dowell CD, Dwek E, Eales S, Elbaz D, Farrah D, Franceschini A, Gear W, Glenn J, Griffin M, Halpern M, Hatziminaoglou E, Ibar E, Isaak K, Ivison RJ, Khostovan AA, Lagache G, Levenson L, Lu N, Madden S, Maffei B, Mainetti G, Marchetti L, Marsden G, Mitchell-Wynne K, Nguyen HT, O'Halloran B, Oliver SJ, Omont A, Page MJ, Panuzzo P, Papageorgiou A, Pearson CP, Pérez-Fournon I, Pohlen M, Rangwala N, Roseboom IG, Rowan-Robinson M, Portal MS, Schulz B, Scott D, Seymour N, Shupe DL, Smith AJ, Stevens JA, Symeonidis M, Trichas M, Tugwell K, Vaccari M, Valiante E, Valtchanov I, Vieira JD, Vigroux L, Wang L, Ward R, Wright G, Xu CK, and Zemcov M
- Abstract
The extragalactic background light at far-infrared wavelengths comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations. A previous attempt at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model. Here we report excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350 and 500 μm. From this excess, we find that submillimetre galaxies are located in dark matter haloes with a minimum mass, M(min), such that log(10)[M(min)/M(⊙)] = 11.5(+0.7)(-0.2) at 350 μm, where M(⊙) is the solar mass. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the Universe, and is lower than that predicted by semi-analytical models for galaxy formation.
- Published
- 2011
- Full Text
- View/download PDF
37. Parity violation constraints using cosmic microwave background polarization spectra from 2006 and 2007 observations by the QUaD polarimeter.
- Author
-
Wu EY, Ade P, Bock J, Bowden M, Brown ML, Cahill G, Castro PG, Church S, Culverhouse T, Friedman RB, Ganga K, Gear WK, Gupta S, Hinderks J, Kovac J, Lange AE, Leitch E, Melhuish SJ, Memari Y, Murphy JA, Orlando A, Piccirillo L, Pryke C, Rajguru N, Rusholme B, Schwarz R, O'Sullivan C, Taylor AN, Thompson KL, Turner AH, and Zemcov M
- Abstract
We constrain parity-violating interactions to the surface of last scattering using spectra from the QUaD experiment's second and third seasons of observations by searching for a possible systematic rotation of the polarization directions of cosmic microwave background photons. We measure the rotation angle due to such a possible "cosmological birefringence" to be 0.55 degrees +/-0.82 degrees (random) +/-0.5 degrees (systematic) using QUaD's 100 and 150 GHz temperature-curl and gradient-curl spectra over the spectra over the multipole range 200
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.