1. A hybrid pathway for self-sustained luminescence.
- Author
-
Palkina KA, Karataeva TA, Perfilov MM, Fakhranurova LI, Markina NM, Somermeyer LG, Garcia-Perez E, Vazquez-Vilar M, Rodriguez-Rodriguez M, Vazquez-Vilriales V, Shakhova ES, Mitiouchkina T, Belozerova OA, Kovalchuk SI, Alekberova A, Malyshevskaia AK, Bugaeva EN, Guglya EB, Balakireva A, Sytov N, Bezlikhotnova A, Boldyreva DI, Babenko VV, Kondrashov FA, Choob VV, Orzaez D, Yampolsky IV, Mishin AS, and Sarkisyan KS
- Subjects
- Animals, Mammals, Luminescence, Plants
- Abstract
The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis-a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors.
- Published
- 2024
- Full Text
- View/download PDF