22 results on '"Mentler B"'
Search Results
2. Fast peroxy radical isomerization and OH recycling in the reaction of OH radicals with dimethyl sulfide
- Author
-
Berndt, T. (T.), Scholz, W. (W.), Mentler, B. (B.), Fischer, L. (L.), Hoffmann, E. H. (E. H.), Tilgner, A. (A.), Hyttinen, N. (N.), Prisle, N. L. (N. L.), Hansel, A. (A.), Herrmann, H. (H.), Berndt, T. (T.), Scholz, W. (W.), Mentler, B. (B.), Fischer, L. (L.), Hoffmann, E. H. (E. H.), Tilgner, A. (A.), Hyttinen, N. (N.), Prisle, N. L. (N. L.), Hansel, A. (A.), and Herrmann, H. (H.)
- Abstract
Dimethyl sulfide (DMS), produced by marine organisms, represents the most abundant, biogenic sulfur emission into the Earth’s atmosphere. The gas-phase degradation of DMS is mainly initiated by the reaction with the OH radical forming first CH3SCH2O2 radicals from the dominant H-abstraction channel. It is experimentally shown that these peroxy radicals undergo a two-step isomerization process finally forming a product consistent with the formula HOOCH2SCHO. The isomerization process is accompanied by OH recycling. The rate-limiting first isomerization step, CH3SCH2O2 → CH2SCH2OOH, followed by O2 addition, proceeds with k = (0.23 ± 0.12) s–1 at 295 ± 2 K. Competing bimolecular CH3SCH2O2 reactions with NO, HO2, or RO2 radicals are less important for trace-gas conditions over the oceans. Results of atmospheric chemistry simulations demonstrate the predominance (≥95%) of CH3SCH2O2 isomerization. The rapid peroxy radical isomerization, not yet considered in models, substantially changes the understanding of DMS’s degradation processes in the atmosphere.
- Published
- 2019
3. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
- Author
-
Wang, M., Kong, W., Marten, R., He, X.-C., Chen, D., Pfeifer, J., Heitto, A., Kontkanen, J., Dada, L., Kürten, A., Yli-Juuti, T., Manninen, H. E., Amanatidis, S., Amorim, A., Baalbaki, R., Baccarini, A., Bell, D. M., Bertozzi, B., Bräkling, S., Brilke, S., Murillo, L. C., Chiu, R., Chu, B., De Menezes, L.-P., Duplissy, J., Finkenzeller, H., Carracedo, L. G., Granzin, M., Guida, R., Hansel, A., Hofbauer, V., Krechmer, J., Lehtipalo, K., Lamkaddam, H., Lampimäki, M., Lee, C. P., Makhmutov, V., Marie, G., Mathot, S., Mauldin, R. L., Mentler, B., Müller, T., Onnela, A., Partoll, E., Petäjä, T., Philippov, M., Pospisilova, V., Ranjithkumar, A., Rissanen, M., Rörup, B., Scholz, W., Shen, J., Simon, M., Sipilä, M., Steiner, G., Stolzenburg, D., Tham, Y. J., Tomé, A., Wagner, A. C., Wang, D. S., Wang, Y., Weber, S. K., Winkler, P. M., Wlasits, P. J., Wu, Y., Xiao, M., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Volkamer, R., Riipinen, I., Dommen, J., Curtius, J., Baltensperger, U., Kulmala, M., Worsnop, D. R., Kirkby, J., Seinfeld, J. H., El-Haddad, I., Flagan, R. C., and Donahue, N. M.
- Subjects
13. Climate action - Abstract
New-particle formation is a major contributor to urban smog$^{1,2}$, but how it occurs in cities is often puzzling$^{3}$. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms$^{4,5}$.
4. New particle formation from isoprene under upper-tropospheric conditions.
- Author
-
Shen J, Russell DM, DeVivo J, Kunkler F, Baalbaki R, Mentler B, Scholz W, Yu W, Caudillo-Plath L, Sommer E, Ahongshangbam E, Alfaouri D, Almeida J, Amorim A, Beck LJ, Beckmann H, Berntheusel M, Bhattacharyya N, Canagaratna MR, Chassaing A, Cruz-Simbron R, Dada L, Duplissy J, Gordon H, Granzin M, Große Schute L, Heinritzi M, Iyer S, Klebach H, Krüger T, Kürten A, Lampimäki M, Liu L, Lopez B, Martinez M, Morawiec A, Onnela A, Peltola M, Rato P, Reza M, Richter S, Rörup B, Sebastian MK, Simon M, Surdu M, Tamme K, Thakur RC, Tomé A, Tong Y, Top J, Umo NS, Unfer G, Vettikkat L, Weissbacher J, Xenofontos C, Yang B, Zauner-Wieczorek M, Zhang J, Zheng Z, Baltensperger U, Christoudias T, Flagan RC, El Haddad I, Junninen H, Möhler O, Riipinen I, Rohner U, Schobesberger S, Volkamer R, Winkler PM, Hansel A, Lehtipalo K, Donahue NM, Lelieveld J, Harder H, Kulmala M, Worsnop DR, Kirkby J, Curtius J, and He XC
- Abstract
Aircraft observations have revealed ubiquitous new particle formation in the tropical upper troposphere over the Amazon
1,2 and the Atlantic and Pacific oceans3,4 . Although the vapours involved remain unknown, recent satellite observations have revealed surprisingly high night-time isoprene mixing ratios of up to 1 part per billion by volume (ppbv) in the tropical upper troposphere5 . Here, in experiments performed with the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we report new particle formation initiated by the reaction of hydroxyl radicals with isoprene at upper-tropospheric temperatures of -30 °C and -50 °C. We find that isoprene-oxygenated organic molecules (IP-OOM) nucleate at concentrations found in the upper troposphere, without requiring any more vapours. Moreover, the nucleation rates are enhanced 100-fold by extremely low concentrations of sulfuric acid or iodine oxoacids above 105 cm-3 , reaching rates around 30 cm-3 s-1 at acid concentrations of 106 cm-3 . Our measurements show that nucleation involves sequential addition of IP-OOM, together with zero or one acid molecule in the embryonic molecular clusters. IP-OOM also drive rapid particle growth at 3-60 nm h-1 . We find that rapid nucleation and growth rates persist in the presence of NOx at upper-tropospheric concentrations from lightning. Our laboratory measurements show that isoprene emitted by rainforests may drive rapid new particle formation in extensive regions of the tropical upper troposphere1,2 , resulting in tens of thousands of particles per cubic centimetre., Competing Interests: Competing interests: The authors declare no competing interests., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
5. Interactions of peroxy radicals from monoterpene and isoprene oxidation simulated in the radical volatility basis set.
- Author
-
Schervish M, Heinritzi M, Stolzenburg D, Dada L, Wang M, Ye Q, Hofbauer V, DeVivo J, Bianchi F, Brilke S, Duplissy J, El Haddad I, Finkenzeller H, He XC, Kvashnin A, Kim C, Kirkby J, Kulmala M, Lehtipalo K, Lopez B, Makhmutov V, Mentler B, Molteni U, Nie W, Petäjä T, Quéléver L, Volkamer R, Wagner AC, Winkler P, Yan C, and Donahue NM
- Abstract
Isoprene affects new particle formation rates in environments and experiments also containing monoterpenes. For the most part, isoprene reduces particle formation rates, but the reason is debated. It is proposed that due to its fast reaction with OH, isoprene may compete with larger monoterpenes for oxidants. However, by forming a large amount of peroxy-radicals (RO
2 ), isoprene may also interfere with the formation of the nucleating species compared to a purely monoterpene system. We explore the RO2 cross reactions between monoterpene and isoprene oxidation products using the radical Volatility Basis Set (radical-VBS), a simplified reaction mechanism, comparing with observations from the CLOUD experiment at CERN. We find that isoprene interferes with covalently bound C20 dimers formed in the pure monoterpene system and consequently reduces the yields of the lowest volatility (Ultra Low Volatility Organic Carbon, ULVOC) VBS products. This in turn reduces nucleation rates, while having less of an effect on subsequent growth rates., Competing Interests: The authors declare no conflicts., (This journal is © The Royal Society of Chemistry.)- Published
- 2024
- Full Text
- View/download PDF
6. Temperature, humidity, and ionisation effect of iodine oxoacid nucleation.
- Author
-
Rörup B, He XC, Shen J, Baalbaki R, Dada L, Sipilä M, Kirkby J, Kulmala M, Amorim A, Baccarini A, Bell DM, Caudillo-Plath L, Duplissy J, Finkenzeller H, Kürten A, Lamkaddam H, Lee CP, Makhmutov V, Manninen HE, Marie G, Marten R, Mentler B, Onnela A, Philippov M, Scholz CW, Simon M, Stolzenburg D, Tham YJ, Tomé A, Wagner AC, Wang M, Wang D, Wang Y, Weber SK, Zauner-Wieczorek M, Baltensperger U, Curtius J, Donahue NM, El Haddad I, Flagan RC, Hansel A, Möhler O, Petäjä T, Volkamer R, Worsnop D, and Lehtipalo K
- Abstract
Iodine oxoacids are recognised for their significant contribution to the formation of new particles in marine and polar atmospheres. Nevertheless, to incorporate the iodine oxoacid nucleation mechanism into global simulations, it is essential to comprehend how this mechanism varies under various atmospheric conditions. In this study, we combined measurements from the CLOUD (Cosmic Leaving OUtdoor Droplets) chamber at CERN and simulations with a kinetic model to investigate the impact of temperature, ionisation, and humidity on iodine oxoacid nucleation. Our findings reveal that ion-induced particle formation rates remain largely unaffected by changes in temperature. However, neutral particle formation rates experience a significant increase when the temperature drops from +10 °C to -10 °C. Running the kinetic model with varying ionisation rates demonstrates that the particle formation rate only increases with a higher ionisation rate when the iodic acid concentration exceeds 1.5 × 10
7 cm-3 , a concentration rarely reached in pristine marine atmospheres. Consequently, our simulations suggest that, despite higher ionisation rates, the charged cluster nucleation pathway of iodic acid is unlikely to be enhanced in the upper troposphere by higher ionisation rates. Instead, the neutral nucleation channel is likely to be the dominant channel in that region. Notably, the iodine oxoacid nucleation mechanism remains unaffected by changes in relative humidity from 2% to 80%. However, under unrealistically dry conditions (below 0.008% RH at +10 °C), iodine oxides (I2 O4 and I2 O5 ) significantly enhance formation rates. Therefore, we conclude that iodine oxoacid nucleation is the dominant nucleation mechanism for iodine nucleation in the marine and polar boundary layer atmosphere., Competing Interests: There are no conflicts of interest to declare., (This journal is © The Royal Society of Chemistry.)- Published
- 2024
- Full Text
- View/download PDF
7. Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer.
- Author
-
Marten R, Xiao M, Wang M, Kong W, He XC, Stolzenburg D, Pfeifer J, Marie G, Wang DS, Elser M, Baccarini A, Lee CP, Amorim A, Baalbaki R, Bell DM, Bertozzi B, Caudillo L, Dada L, Duplissy J, Finkenzeller H, Heinritzi M, Lampimäki M, Lehtipalo K, Manninen HE, Mentler B, Onnela A, Petäjä T, Philippov M, Rörup B, Scholz W, Shen J, Tham YJ, Tomé A, Wagner AC, Weber SK, Zauner-Wieczorek M, Curtius J, Kulmala M, Volkamer R, Worsnop DR, Dommen J, Flagan RC, Kirkby J, McPherson Donahue N, Lamkaddam H, Baltensperger U, and El Haddad I
- Abstract
Aerosols formed and grown by gas-to-particle processes are a major contributor to smog and haze in megacities, despite the competition between growth and loss rates. Rapid growth rates from ammonium nitrate formation have the potential to sustain particle number in typical urban polluted conditions. This process requires supersaturation of gas-phase ammonia and nitric acid with respect to ammonium nitrate saturation ratios. Urban environments are inhomogeneous. In the troposphere, vertical mixing is fast, and aerosols may experience rapidly changing temperatures. In areas close to sources of pollution, gas-phase concentrations can also be highly variable. In this work we present results from nucleation experiments at -10 °C and 5 °C in the CLOUD chamber at CERN. We verify, using a kinetic model, how long supersaturation is likely to be sustained under urban conditions with temperature and concentration inhomogeneities, and the impact it may have on the particle size distribution. We show that rapid and strong temperature changes of 1 °C min
-1 are needed to cause rapid growth of nanoparticles through ammonium nitrate formation. Furthermore, inhomogeneous emissions of ammonia in cities may also cause rapid growth of particles., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)- Published
- 2024
- Full Text
- View/download PDF
8. Nitrate Radicals Suppress Biogenic New Particle Formation from Monoterpene Oxidation.
- Author
-
Li D, Huang W, Wang D, Wang M, Thornton JA, Caudillo L, Rörup B, Marten R, Scholz W, Finkenzeller H, Marie G, Baltensperger U, Bell DM, Brasseur Z, Curtius J, Dada L, Duplissy J, Gong X, Hansel A, He XC, Hofbauer V, Junninen H, Krechmer JE, Kürten A, Lamkaddam H, Lehtipalo K, Lopez B, Ma Y, Mahfouz NGA, Manninen HE, Mentler B, Perrier S, Petäjä T, Pfeifer J, Philippov M, Schervish M, Schobesberger S, Shen J, Surdu M, Tomaz S, Volkamer R, Wang X, Weber SK, Welti A, Worsnop DR, Wu Y, Yan C, Zauner-Wieczorek M, Kulmala M, Kirkby J, Donahue NM, George C, El-Haddad I, Bianchi F, and Riva M
- Subjects
- Monoterpenes chemistry, Nitrates chemistry, Aerosols analysis, Air Pollutants, Volatile Organic Compounds chemistry, Ozone, Bicyclic Monoterpenes
- Abstract
Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO
3 ), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2 ) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.- Published
- 2024
- Full Text
- View/download PDF
9. Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere.
- Author
-
He XC, Simon M, Iyer S, Xie HB, Rörup B, Shen J, Finkenzeller H, Stolzenburg D, Zhang R, Baccarini A, Tham YJ, Wang M, Amanatidis S, Piedehierro AA, Amorim A, Baalbaki R, Brasseur Z, Caudillo L, Chu B, Dada L, Duplissy J, El Haddad I, Flagan RC, Granzin M, Hansel A, Heinritzi M, Hofbauer V, Jokinen T, Kemppainen D, Kong W, Krechmer J, Kürten A, Lamkaddam H, Lopez B, Ma F, Mahfouz NGA, Makhmutov V, Manninen HE, Marie G, Marten R, Massabò D, Mauldin RL, Mentler B, Onnela A, Petäjä T, Pfeifer J, Philippov M, Ranjithkumar A, Rissanen MP, Schobesberger S, Scholz W, Schulze B, Surdu M, Thakur RC, Tomé A, Wagner AC, Wang D, Wang Y, Weber SK, Welti A, Winkler PM, Zauner-Wieczorek M, Baltensperger U, Curtius J, Kurtén T, Worsnop DR, Volkamer R, Lehtipalo K, Kirkby J, Donahue NM, Sipilä M, and Kulmala M
- Abstract
The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H
2 SO4 ), stabilized by ammonia (NH3 ). However, in marine and polar regions, NH3 is generally low, and H2 SO4 is frequently found together with iodine oxoacids [HIOx , i.e., iodic acid (HIO3 ) and iodous acid (HIO2 )]. In experiments performed with the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we investigated the interplay of H2 SO4 and HIOx during atmospheric particle nucleation. We found that HIOx greatly enhances H2 SO4 (-NH3 ) nucleation through two different interactions. First, HIO3 strongly binds with H2 SO4 in charged clusters so they drive particle nucleation synergistically. Second, HIO2 substitutes for NH3 , forming strongly bound H2 SO4 -HIO2 acid-base pairs in molecular clusters. Global observations imply that HIOx is enhancing H2 SO4 (-NH3 ) nucleation rates 10- to 10,000-fold in marine and polar regions.- Published
- 2023
- Full Text
- View/download PDF
10. Role of sesquiterpenes in biogenic new particle formation.
- Author
-
Dada L, Stolzenburg D, Simon M, Fischer L, Heinritzi M, Wang M, Xiao M, Vogel AL, Ahonen L, Amorim A, Baalbaki R, Baccarini A, Baltensperger U, Bianchi F, Daellenbach KR, DeVivo J, Dias A, Dommen J, Duplissy J, Finkenzeller H, Hansel A, He XC, Hofbauer V, Hoyle CR, Kangasluoma J, Kim C, Kürten A, Kvashnin A, Mauldin R, Makhmutov V, Marten R, Mentler B, Nie W, Petäjä T, Quéléver LLJ, Saathoff H, Tauber C, Tome A, Molteni U, Volkamer R, Wagner R, Wagner AC, Wimmer D, Winkler PM, Yan C, Zha Q, Rissanen M, Gordon H, Curtius J, Worsnop DR, Lehtipalo K, Donahue NM, Kirkby J, El Haddad I, and Kulmala M
- Abstract
Biogenic vapors form new particles in the atmosphere, affecting global climate. The contributions of monoterpenes and isoprene to new particle formation (NPF) have been extensively studied. However, sesquiterpenes have received little attention despite a potentially important role due to their high molecular weight. Via chamber experiments performed under atmospheric conditions, we report biogenic NPF resulting from the oxidation of pure mixtures of β-caryophyllene, α-pinene, and isoprene, which produces oxygenated compounds over a wide range of volatilities. We find that a class of vapors termed ultralow-volatility organic compounds (ULVOCs) are highly efficient nucleators and quantitatively determine NPF efficiency. When compared with a mixture of isoprene and monoterpene alone, adding only 2% sesquiterpene increases the ULVOC yield and doubles the formation rate. Thus, sesquiterpene emissions need to be included in assessments of global aerosol concentrations in pristine climates where biogenic NPF is expected to be a major source of cloud condensation nuclei.
- Published
- 2023
- Full Text
- View/download PDF
11. NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere.
- Author
-
Nie W, Yan C, Yang L, Roldin P, Liu Y, Vogel AL, Molteni U, Stolzenburg D, Finkenzeller H, Amorim A, Bianchi F, Curtius J, Dada L, Draper DC, Duplissy J, Hansel A, He XC, Hofbauer V, Jokinen T, Kim C, Lehtipalo K, Nichman L, Mauldin RL, Makhmutov V, Mentler B, Mizelli-Ojdanic A, Petäjä T, Quéléver LLJ, Schallhart S, Simon M, Tauber C, Tomé A, Volkamer R, Wagner AC, Wagner R, Wang M, Ye P, Li H, Huang W, Qi X, Lou S, Liu T, Chi X, Dommen J, Baltensperger U, El Haddad I, Kirkby J, Worsnop D, Kulmala M, Donahue NM, Ehn M, and Ding A
- Subjects
- Monoterpenes, Oxidation-Reduction, Aerosols, Nitric Oxide, Atmosphere
- Abstract
The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO
2 ) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 - 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization. These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO2 -NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the pre-industrial atmosphere, pristine areas, and the upper boundary layer., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
12. The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source.
- Author
-
Finkenzeller H, Iyer S, He XC, Simon M, Koenig TK, Lee CF, Valiev R, Hofbauer V, Amorim A, Baalbaki R, Baccarini A, Beck L, Bell DM, Caudillo L, Chen D, Chiu R, Chu B, Dada L, Duplissy J, Heinritzi M, Kemppainen D, Kim C, Krechmer J, Kürten A, Kvashnin A, Lamkaddam H, Lee CP, Lehtipalo K, Li Z, Makhmutov V, Manninen HE, Marie G, Marten R, Mauldin RL, Mentler B, Müller T, Petäjä T, Philippov M, Ranjithkumar A, Rörup B, Shen J, Stolzenburg D, Tauber C, Tham YJ, Tomé A, Vazquez-Pufleau M, Wagner AC, Wang DS, Wang M, Wang Y, Weber SK, Nie W, Wu Y, Xiao M, Ye Q, Zauner-Wieczorek M, Hansel A, Baltensperger U, Brioude J, Curtius J, Donahue NM, Haddad IE, Flagan RC, Kulmala M, Kirkby J, Sipilä M, Worsnop DR, Kurten T, Rissanen M, and Volkamer R
- Subjects
- Aerosols, Iodates, Iodine
- Abstract
Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O
3 surface concentrations. Although iodic acid (HIO3 ) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO3 via reactions (R1) IOIO + O3 → IOIO4 and (R2) IOIO4 + H2 O → HIO3 + HOI +(1) O2 . The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation., (© 2022. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
13. High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures.
- Author
-
Shen J, Scholz W, He XC, Zhou P, Marie G, Wang M, Marten R, Surdu M, Rörup B, Baalbaki R, Amorim A, Ataei F, Bell DM, Bertozzi B, Brasseur Z, Caudillo L, Chen D, Chu B, Dada L, Duplissy J, Finkenzeller H, Granzin M, Guida R, Heinritzi M, Hofbauer V, Iyer S, Kemppainen D, Kong W, Krechmer JE, Kürten A, Lamkaddam H, Lee CP, Lopez B, Mahfouz NGA, Manninen HE, Massabò D, Mauldin RL, Mentler B, Müller T, Pfeifer J, Philippov M, Piedehierro AA, Roldin P, Schobesberger S, Simon M, Stolzenburg D, Tham YJ, Tomé A, Umo NS, Wang D, Wang Y, Weber SK, Welti A, Wollesen de Jonge R, Wu Y, Zauner-Wieczorek M, Zust F, Baltensperger U, Curtius J, Flagan RC, Hansel A, Möhler O, Petäjä T, Volkamer R, Kulmala M, Lehtipalo K, Rissanen M, Kirkby J, El-Haddad I, Bianchi F, Sipilä M, Donahue NM, and Worsnop DR
- Abstract
Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H
2 SO4 ). Despite their importance, accurate prediction of MSA and H2 SO4 from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2 SO4 production is modestly affected. This leads to a gas-phase H2 SO4 -to-MSA ratio (H2 SO4 /MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3 S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOx effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2 SO4 /MSA measurements.- Published
- 2022
- Full Text
- View/download PDF
14. Synergistic HNO 3 -H 2 SO 4 -NH 3 upper tropospheric particle formation.
- Author
-
Wang M, Xiao M, Bertozzi B, Marie G, Rörup B, Schulze B, Bardakov R, He XC, Shen J, Scholz W, Marten R, Dada L, Baalbaki R, Lopez B, Lamkaddam H, Manninen HE, Amorim A, Ataei F, Bogert P, Brasseur Z, Caudillo L, De Menezes LP, Duplissy J, Ekman AML, Finkenzeller H, Carracedo LG, Granzin M, Guida R, Heinritzi M, Hofbauer V, Höhler K, Korhonen K, Krechmer JE, Kürten A, Lehtipalo K, Mahfouz NGA, Makhmutov V, Massabò D, Mathot S, Mauldin RL, Mentler B, Müller T, Onnela A, Petäjä T, Philippov M, Piedehierro AA, Pozzer A, Ranjithkumar A, Schervish M, Schobesberger S, Simon M, Stozhkov Y, Tomé A, Umo NS, Vogel F, Wagner R, Wang DS, Weber SK, Welti A, Wu Y, Zauner-Wieczorek M, Sipilä M, Winkler PM, Hansel A, Baltensperger U, Kulmala M, Flagan RC, Curtius J, Riipinen I, Gordon H, Lelieveld J, El-Haddad I, Volkamer R, Worsnop DR, Christoudias T, Kirkby J, Möhler O, and Donahue NM
- Abstract
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN)
1-4 . However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region5,6 . Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles-comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO3 -H2 SO4 -NH3 nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
15. Survival of newly formed particles in haze conditions.
- Author
-
Marten R, Xiao M, Rörup B, Wang M, Kong W, He XC, Stolzenburg D, Pfeifer J, Marie G, Wang DS, Scholz W, Baccarini A, Lee CP, Amorim A, Baalbaki R, Bell DM, Bertozzi B, Caudillo L, Chu B, Dada L, Duplissy J, Finkenzeller H, Carracedo LG, Granzin M, Hansel A, Heinritzi M, Hofbauer V, Kemppainen D, Kürten A, Lampimäki M, Lehtipalo K, Makhmutov V, Manninen HE, Mentler B, Petäjä T, Philippov M, Shen J, Simon M, Stozhkov Y, Tomé A, Wagner AC, Wang Y, Weber SK, Wu Y, Zauner-Wieczorek M, Curtius J, Kulmala M, Möhler O, Volkamer R, Winkler PM, Worsnop DR, Dommen J, Flagan RC, Kirkby J, Donahue NM, Lamkaddam H, Baltensperger U, and El Haddad I
- Abstract
Intense new particle formation events are regularly observed under highly polluted conditions, despite the high loss rates of nucleated clusters. Higher than expected cluster survival probability implies either ineffective scavenging by pre-existing particles or missing growth mechanisms. Here we present experiments performed in the CLOUD chamber at CERN showing particle formation from a mixture of anthropogenic vapours, under condensation sinks typical of haze conditions, up to 0.1 s
-1 . We find that new particle formation rates substantially decrease at higher concentrations of pre-existing particles, demonstrating experimentally for the first time that molecular clusters are efficiently scavenged by larger sized particles. Additionally, we demonstrate that in the presence of supersaturated gas-phase nitric acid (HNO3 ) and ammonia (NH3 ), freshly nucleated particles can grow extremely rapidly, maintaining a high particle number concentration, even in the presence of a high condensation sink. Such high growth rates may explain the high survival probability of freshly formed particles under haze conditions. We identify under what typical urban conditions HNO3 and NH3 can be expected to contribute to particle survival during haze., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)- Published
- 2022
- Full Text
- View/download PDF
16. Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry.
- Author
-
Surdu M, Pospisilova V, Xiao M, Wang M, Mentler B, Simon M, Stolzenburg D, Hoyle CR, Bell DM, Lee CP, Lamkaddam H, Lopez-Hilfiker F, Ahonen LR, Amorim A, Baccarini A, Chen D, Dada L, Duplissy J, Finkenzeller H, He XC, Hofbauer V, Kim C, Kürten A, Kvashnin A, Lehtipalo K, Makhmutov V, Molteni U, Nie W, Onnela A, Petäjä T, Quéléver LLJ, Tauber C, Tomé A, Wagner R, Yan C, Prevot ASH, Dommen J, Donahue NM, Hansel A, Curtius J, Winkler PM, Kulmala M, Volkamer R, Flagan RC, Kirkby J, Worsnop DR, Slowik JG, Wang DS, Baltensperger U, and El Haddad I
- Abstract
Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D
p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and β-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m-3 in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)- Published
- 2021
- Full Text
- View/download PDF
17. Role of iodine oxoacids in atmospheric aerosol nucleation.
- Author
-
He XC, Tham YJ, Dada L, Wang M, Finkenzeller H, Stolzenburg D, Iyer S, Simon M, Kürten A, Shen J, Rörup B, Rissanen M, Schobesberger S, Baalbaki R, Wang DS, Koenig TK, Jokinen T, Sarnela N, Beck LJ, Almeida J, Amanatidis S, Amorim A, Ataei F, Baccarini A, Bertozzi B, Bianchi F, Brilke S, Caudillo L, Chen D, Chiu R, Chu B, Dias A, Ding A, Dommen J, Duplissy J, El Haddad I, Gonzalez Carracedo L, Granzin M, Hansel A, Heinritzi M, Hofbauer V, Junninen H, Kangasluoma J, Kemppainen D, Kim C, Kong W, Krechmer JE, Kvashin A, Laitinen T, Lamkaddam H, Lee CP, Lehtipalo K, Leiminger M, Li Z, Makhmutov V, Manninen HE, Marie G, Marten R, Mathot S, Mauldin RL, Mentler B, Möhler O, Müller T, Nie W, Onnela A, Petäjä T, Pfeifer J, Philippov M, Ranjithkumar A, Saiz-Lopez A, Salma I, Scholz W, Schuchmann S, Schulze B, Steiner G, Stozhkov Y, Tauber C, Tomé A, Thakur RC, Väisänen O, Vazquez-Pufleau M, Wagner AC, Wang Y, Weber SK, Winkler PM, Wu Y, Xiao M, Yan C, Ye Q, Ylisirniö A, Zauner-Wieczorek M, Zha Q, Zhou P, Flagan RC, Curtius J, Baltensperger U, Kulmala M, Kerminen VM, Kurtén T, Donahue NM, Volkamer R, Kirkby J, Worsnop DR, and Sipilä M
- Abstract
Iodic acid (HIO
3 ) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO3 particles are rapid, even exceeding sulfuric acid-ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO3 - and the sequential addition of HIO3 and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO2 ) followed by HIO3 , showing that HIO2 plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO3 , which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)- Published
- 2021
- Full Text
- View/download PDF
18. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation.
- Author
-
Wang M, Kong W, Marten R, He XC, Chen D, Pfeifer J, Heitto A, Kontkanen J, Dada L, Kürten A, Yli-Juuti T, Manninen HE, Amanatidis S, Amorim A, Baalbaki R, Baccarini A, Bell DM, Bertozzi B, Bräkling S, Brilke S, Murillo LC, Chiu R, Chu B, De Menezes LP, Duplissy J, Finkenzeller H, Carracedo LG, Granzin M, Guida R, Hansel A, Hofbauer V, Krechmer J, Lehtipalo K, Lamkaddam H, Lampimäki M, Lee CP, Makhmutov V, Marie G, Mathot S, Mauldin RL, Mentler B, Müller T, Onnela A, Partoll E, Petäjä T, Philippov M, Pospisilova V, Ranjithkumar A, Rissanen M, Rörup B, Scholz W, Shen J, Simon M, Sipilä M, Steiner G, Stolzenburg D, Tham YJ, Tomé A, Wagner AC, Wang DS, Wang Y, Weber SK, Winkler PM, Wlasits PJ, Wu Y, Xiao M, Ye Q, Zauner-Wieczorek M, Zhou X, Volkamer R, Riipinen I, Dommen J, Curtius J, Baltensperger U, Kulmala M, Worsnop DR, Kirkby J, Seinfeld JH, El-Haddad I, Flagan RC, and Donahue NM
- Abstract
A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog
1,2 , but how it occurs in cities is often puzzling3 . If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms4,5 .- Published
- 2020
- Full Text
- View/download PDF
19. Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between -50 °C and +25 °C.
- Author
-
Ye Q, Wang M, Hofbauer V, Stolzenburg D, Chen D, Schervish M, Vogel A, Mauldin RL, Baalbaki R, Brilke S, Dada L, Dias A, Duplissy J, El Haddad I, Finkenzeller H, Fischer L, He X, Kim C, Kürten A, Lamkaddam H, Lee CP, Lehtipalo K, Leiminger M, Manninen HE, Marten R, Mentler B, Partoll E, Petäjä T, Rissanen M, Schobesberger S, Schuchmann S, Simon M, Tham YJ, Vazquez-Pufleau M, Wagner AC, Wang Y, Wu Y, Xiao M, Baltensperger U, Curtius J, Flagan R, Kirkby J, Kulmala M, Volkamer R, Winkler PM, Worsnop D, and Donahue NM
- Subjects
- Aerosols, Bicyclic Monoterpenes, Monoterpenes, Volatilization, Air Pollutants, Ozone
- Abstract
We use a real-time temperature-programmed desorption chemical-ionization mass spectrometer (FIGAERO-CIMS) to measure particle-phase composition and volatility of nucleated particles, studying pure α-pinene oxidation over a wide temperature range (-50 °C to +25 °C) in the CLOUD chamber at CERN. Highly oxygenated organic molecules are much more abundant in particles formed at higher temperatures, shifting the compounds toward higher O/C and lower intrinsic (300 K) volatility. We find that pure biogenic nucleation and growth depends only weakly on temperature. This is because the positive temperature dependence of degree of oxidation (and polarity) and the negative temperature dependence of volatility counteract each other. Unlike prior work that relied on estimated volatility, we directly measure volatility via calibrated temperature-programmed desorption. Our particle-phase measurements are consistent with gas-phase results and indicate that during new-particle formation from α-pinene oxidation, gas-phase chemistry directly determines the properties of materials in the condensed phase. We now have consistency between measured gas-phase product concentrations, product volatility, measured and modeled growth rates, and the particle composition over most temperatures found in the troposphere.
- Published
- 2019
- Full Text
- View/download PDF
20. Accretion Product Formation from Ozonolysis and OH Radical Reaction of α-Pinene: Mechanistic Insight and the Influence of Isoprene and Ethylene.
- Author
-
Berndt T, Mentler B, Scholz W, Fischer L, Herrmann H, Kulmala M, and Hansel A
- Subjects
- Aerosols, Bicyclic Monoterpenes, Butadienes, Ethylenes, Hemiterpenes, Monoterpenes, Air Pollutants, Ozone
- Abstract
α-Pinene (C
10 H16 ) represents one of the most important biogenic emissions in the atmosphere. Its oxidation products can significantly contribute to the secondary organic aerosol (SOA) formation. Here, we report on the formation mechanism of C19 and C20 accretion products from α-pinene oxidation, which are believed to be efficient SOA precursors. Measurements have been performed in a free-jet flow system. Detection of RO2 radicals and accretion products was carried out by recent mass spectrometric techniques using different ionization schemes. Observed C10 -RO2 radicals from α-pinene ozonolysis were O,O-C10 H15 (O2 )x O2 with x = 0, 1, 2, 3 and from the OH radical reaction HO-C10 H16 (O2 )α O2 with α = 0, 1, 2. All detected C20 accretion products can be explained via the accretion reaction RO2 + R'O2 → ROOR' + O2 starting from the measured C10 -RO2 radicals. We speculate that C19 accretion products are formed in an analogous way assuming CH2 O elimination. Addition of isoprene (C5 H8 ), producing C5 -RO2 radicals, leads to C15 accretion products formed via cross-reactions with C10 -RO2 radicals. This process is competing with the formation of C19 /C20 products from the pure α-pinene oxidation. A similar behavior has been observed for ethylene additives that form C12 accretion products. In the atmosphere, a complex accretion product spectrum from self- and cross-reactions of available RO2 radicals can be expected. Modeling atmospheric conditions revealed that C19 /C20 product formation is only reduced by a factor of 1.2 or 3.6 in isoprene-dominated environments assuming a 2- or 15-fold isoprene concentration over α-pinene, respectively, as present in different forested areas.- Published
- 2018
- Full Text
- View/download PDF
21. Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range.
- Author
-
Stolzenburg D, Fischer L, Vogel AL, Heinritzi M, Schervish M, Simon M, Wagner AC, Dada L, Ahonen LR, Amorim A, Baccarini A, Bauer PS, Baumgartner B, Bergen A, Bianchi F, Breitenlechner M, Brilke S, Buenrostro Mazon S, Chen D, Dias A, Draper DC, Duplissy J, El Haddad I, Finkenzeller H, Frege C, Fuchs C, Garmash O, Gordon H, He X, Helm J, Hofbauer V, Hoyle CR, Kim C, Kirkby J, Kontkanen J, Kürten A, Lampilahti J, Lawler M, Lehtipalo K, Leiminger M, Mai H, Mathot S, Mentler B, Molteni U, Nie W, Nieminen T, Nowak JB, Ojdanic A, Onnela A, Passananti M, Petäjä T, Quéléver LLJ, Rissanen MP, Sarnela N, Schallhart S, Tauber C, Tomé A, Wagner R, Wang M, Weitz L, Wimmer D, Xiao M, Yan C, Ye P, Zha Q, Baltensperger U, Curtius J, Dommen J, Flagan RC, Kulmala M, Smith JN, Worsnop DR, Hansel A, Donahue NM, and Winkler PM
- Abstract
Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from [Formula: see text]C to [Formula: see text]C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward., Competing Interests: The authors declare no conflict of interest., (Copyright © 2018 the Author(s). Published by PNAS.)
- Published
- 2018
- Full Text
- View/download PDF
22. Accretion Product Formation from Self- and Cross-Reactions of RO 2 Radicals in the Atmosphere.
- Author
-
Berndt T, Scholz W, Mentler B, Fischer L, Herrmann H, Kulmala M, and Hansel A
- Abstract
Hydrocarbons are emitted into the Earth's atmosphere in very large quantities by human and biogenic activities. Their atmospheric oxidation processes almost exclusively yield RO
2 radicals as reactive intermediates whose atmospheric fate is not yet fully unraveled. Herein, we show that gas-phase reactions of two RO2 radicals produce accretion products composed of the carbon backbone of both reactants. The rates for accretion product formation are very high for RO2 radicals bearing functional groups, competing with those of the corresponding reactions with NO and HO2 . This pathway, which has not yet been considered in the modelling of atmospheric processes, can be important, or even dominant, for the fate of RO2 radicals in all areas of the atmosphere. Moreover, the vapor pressure of the formed accretion products can be remarkably low, characterizing them as an effective source for the secondary organic aerosol., (© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.