1. Harnessing bio-based chelating agents for sustainable synthesis of AgNPs: Evaluating their inherent attributes and antimicrobial potency in conjunction with honey
- Author
-
Muneeb Irshad, Anum Mukhtar, Asif Nadeem Tabish, Muhammad Bilal Hanif, Mahshab Sheraz, Viktoriia Berezenko, Muhammad Zubair Khan, Farwa Batool, Muhammad Imran, Muhammad Rafique, Jacek Gurgul, Thamraa Alshahrani, Michał Mosiałek, Juran Kim, Richard T. Baker, and Martin Motola
- Subjects
AgNP ,Chelating agent ,Honey ,Escherichia coli ,Anti-bacterial applications ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
Greenly synthesized nanoparticles have garnered attention due to their low environmental footprint, but impurities limit their applications. A novel semi-organic method for synthesizing silver nanoparticles (AgNPs) using bio-based chelating fuels (Beta vulgaris subsp., Spinacia oleracea, and Ipomoea batatas) reduces the undesirable impurities. The study also showcases the impact of bio-based chelating fuel on various characteristics of AgNPs in comparison to synthetic chelating fuel. The antimicrobial efficacy of the synthesized AgNPs in conjunction with honey was also assessed against E. coli. The XRD analysis showed cubic structure of AgNPs. The FESEM and TEM analysis showed that the well-connected spherical-shaped AgNPs (∼3–120 nm diameter) while EDS confirmed the presence of Ag in all samples. The TEM analysis also revealed layers of carbonates in AgNPs synthesized using bio-based chelating fuels. XPS investigation confirmed the absence of any prominent impurities in prepared samples and AgNPs have not experienced oxidation on their surface. However, notable surface charging effects due to the uneven conductivity of the particles were observed. The broth dilution method showed that all mixtures containing AgNPs in combination with honey exhibited a significant bacterial growth reduction over a period of 120 h. The highest growth reduction of ∼75 % is obtained for the mixture having AgNPs (Ipomoea batatas) while the least growth reduction of ∼51 % is obtained for the mixture having AgNPs (Beta vulgaris subsp.). The findings affirm that AgNPs can be successfully synthesized using bio-based chelating fuels with negligible ecological consequences and devoid of contaminants. Moreover, the synthesized AgNPs can be employed in conjunction with honey for antibacterial purposes.
- Published
- 2024
- Full Text
- View/download PDF