1. Three-center molecular integrals and derivatives using solid harmonic Gaussian orbital and Kohn-Sham potential basis sets
- Author
-
Hu, Anguang and Dunlap, Brett I.
- Subjects
Molecular orbitals -- Research ,Harmonics (Electric waves) -- Research ,Density functionals -- Research ,Gaussian processes -- Research ,Chemistry - Abstract
Three-center integrals over Gaussian orbital and Kohn-Sham (KS) basis sets are reviewed. An orbital basis function carries angular momentum about its atomic center. That angular momentum is created by solid harmonic differentiation with respect to the center of an s-type basis function. That differentiation can be brought outside any purely s-type integral, even nonlocal pseudopotential integrals. Thus the angular factors associated with angular momentum and differentiation with respect to atom position can be pulled outside loops over orbital and KS Gaussian exponents. Key words: Gaussian orbital, solid harmonics, molecular integrals, pseudopotential. On examine les integrales a trois centres sur des bases d'orbitales gaussiennes et de Kohn-Sham (KS). Une fonction de base (orbitale) presente un moment angulaire autour de son centre atomique. Ce moment angulaire est cree par derivation des harmoniques solides par rapport au centre d'une fonction de base de type s. Cette derivation peut etre sortie de toute integrale purement de type s, meme d'integrales portant sur des pseudopotentiels non locaux. Donc, les facteurs angulaires associes au moment angulaire et la derivation par rapport a la position de l'atome peuvent etre sortis de la boucle sur les exposants orbitalaires et KS gaussiens. [Traduit par la Redaction] Mots-cles: orbitale gaussienne, harmoniques solides, integrales moleculaires, pseudopotentiel., Introduction Sambe and Felton (SF) started the process of bringing density functional theory (DFT) to chemistry. In quantum chemistry, the molecular orbitals are expanded in a finite number of Gaussian [...]
- Published
- 2013
- Full Text
- View/download PDF