70 results on '"Mondher, Maddouri"'
Search Results
2. Un algorithme distribué pour le clustering de grands graphes.
3. Catégorisation des méthodes de classification fondées sur l'Analyse de Concepts Formels.
4. Cloud Implementation of Classier Nominal Concepts using DistributedWekaSpark.
5. A Structure Based Multiple Instance Learning Approach for Bacterial Ionizing Radiation Resistance Prediction.
6. A Comparative Study on Streaming Frameworks for Big Data.
7. ABClass : Une approche d'apprentissage multi-instances pour les séquences(ABClass: A multiple instance learning approach for sequence data).
8. A New Feature Selection Method for Nominal Classifier based on Formal Concept Analysis.
9. New Taxonomy of Classification Methods Based on Formal Concepts Analysis.
10. A distributed and incremental algorithm for large-scale graph clustering
11. Cost Models for Distributed Pattern Mining in the Cloud.
12. Parallel Learning and Classification for Rules based on Formal Concepts.
13. Computational phenotype prediction of ionizing-radiation-resistant bacteria with a multiple-instance learning model.
14. Diversity Analysis on Boosting Nominal Concepts.
15. Feature extraction in protein sequences classification: a new stability measure.
16. Vers un critère d'arrêt de Boosting basé sur la diversité des classifieurs.
17. Adaptive Learning of Nominal Concepts for Supervised Classification.
18. Générer des règles de classification par dopage de concepts formels.
19. Boosting Formal Concepts to Discover Classification Rules.
20. Comparing graph-based representations of protein for mining purposes.
21. A Hybrid Approach of Boosting Against Noisy Data.
22. A Hybrid Approach of Boosting Against Noisy Data
23. Une nouvelle approche du Boosting face aux données réelles.
24. DFC
25. Classification supervisée de séquences biologiques basée sur les motifs et les matrices de substitution.
26. Improving Boosting by Exploiting Former Assumptions.
27. Biological Sequences Encoding for Supervised Classification.
28. On Semantic Properties of Interestingness Measures for Extracting Rules from Data.
29. Construction d'attributs pour l'extraction de connaissances à partir de séquences biologiques.
30. On Statistical Measures for Selecting Pertinent Formal Concepts to Discover Production Rules from Data.
31. Incremental Rule Production: Towards a Uniform Approach for Knowledge Organisation
32. Efficient Closure Operators for FCA-Based Classification
33. Incremental Rule Production: Towards a Uniform Approach for Knowledge Organization.
34. Efficiently Mining Recurrent Substructures from Protein Three-Dimensional Structure Graphs
35. A Formal Concept Analysis Approach to Discover Association Rules from Data.
36. Développement de méthodes de classification basées sur l'analyse de concepts formels sous la plateforme WEKA.
37. Apprentissage supervisé adaptatif de Concepts Formels à partir des données nominales.
38. Etude de stabilité de méthodes d'extraction de motifs à partir des séquences protéiques.
39. Survey on Formal Concept Analysis based supervised classification techniques
40. Comparative Evaluation of the Discovered Knowledge
41. A New Feature Selection Method for Nominal Classifier based on Formal Concept Analysis
42. A Distributed Algorithm for Large-Scale Graph Clustering
43. Multiple instance learning for sequence data with across bag dependencies
44. An experimental survey on big data frameworks
45. Density-based data partitioning strategy to approximate large-scale subgraph mining
46. Un partitionnement basé sur la densité de graphe pour approcher la fouille distribuée de sous-graphes fréquents
47. Parallel Learning and Classification for Rules based on Formal Concepts
48. New voting strategies designed for the classification of nucleic sequences
49. Towards a machine learning approach based on incremental concept formation
50. Encoding of primary structures of biological macromolecules within a data mining perspective
Catalog
Books, media, physical & digital resources
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.