1. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease
- Author
-
Motwani, M. (Manish), Dey, D. (Damini), Berman, D.S. (Daniel), Germano, G. (Guido), Achenbach, S. (Stephan), Al-Mallah, M. (Mouaz), Andreini, D. (Daniele), Budoff, M.J. (Matthew), Cademartiri, F. (Filippo), Callister, T.Q. (Tracy), Chang, H.-J. (Hyuk-Jae), Chinnaiyan, K. (Kavitha), Chow, B.J.W. (Benjamin), Cury, R.C. (Ricardo), Delago, A. (Augustin), Gomez, M. (Millie), Gransar, H. (Heidi), Hadamitzky, M. (Martin), Hausleiter, J. (Jörg), Hindoyan, N. (Niree), Feuchtner, G.M. (Gudrun), Kaufmann, P.A. (Philipp), Kim, Y.-J. (Yong-Jin), Leipsic, J. (Jonathon), Lin, F.Y. (Fay), Maffei, E. (Erica), Marques, H. (Hugo), Pontone, G. (Gianluca), Raff, G.L. (Gilbert), Rubinshtein, R. (Ronen), Shaw, L.J. (Leslee), Stehli, J. (Julia), Villines, T.C. (Todd), Dunning, A.M. (Alison), Min, J.K. (James), Slomka, P.J. (Piotr J.), Motwani, M. (Manish), Dey, D. (Damini), Berman, D.S. (Daniel), Germano, G. (Guido), Achenbach, S. (Stephan), Al-Mallah, M. (Mouaz), Andreini, D. (Daniele), Budoff, M.J. (Matthew), Cademartiri, F. (Filippo), Callister, T.Q. (Tracy), Chang, H.-J. (Hyuk-Jae), Chinnaiyan, K. (Kavitha), Chow, B.J.W. (Benjamin), Cury, R.C. (Ricardo), Delago, A. (Augustin), Gomez, M. (Millie), Gransar, H. (Heidi), Hadamitzky, M. (Martin), Hausleiter, J. (Jörg), Hindoyan, N. (Niree), Feuchtner, G.M. (Gudrun), Kaufmann, P.A. (Philipp), Kim, Y.-J. (Yong-Jin), Leipsic, J. (Jonathon), Lin, F.Y. (Fay), Maffei, E. (Erica), Marques, H. (Hugo), Pontone, G. (Gianluca), Raff, G.L. (Gilbert), Rubinshtein, R. (Ronen), Shaw, L.J. (Leslee), Stehli, J. (Julia), Villines, T.C. (Todd), Dunning, A.M. (Alison), Min, J.K. (James), and Slomka, P.J. (Piotr J.)
- Abstract
__Aims__ Traditional prognostic risk assessment in patients undergoing non-invasive imaging is based upon a limited selection of clinical and imaging findings. Machine learning (ML) can consider a greater number and complexity of variables. Therefore, we investigated the feasibility and accuracy of ML to predict 5-year all-cause mortality (ACM) in patients undergoing coronary computed tomographic angiography (CCTA), and compared the performance to existing clinical or CCTA metrics. __Methods and results__ The analysis included 10 030 patients with suspected coronary artery disease and 5-year follow-up from the COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter registry. All patients underwent CCTA as their standard of care. Twenty-five clinical and 44 CCTA parameters were evaluated, including segment stenosis score (SSS), segment involvement score (SIS), modified Duke index (DI), number of segments with non-calcified, mixed or calcified plaques, age, sex, gender, standard cardiovascular risk factors, and Framingham risk score (FRS). Machine learning involved automated feature selection by information gain ranking, model building with a boosted ensemble algorithm, and 10-fold stratified cross-validation. Seven hundred and forty-five patients died during 5-year follow-up. Machine learning exhibited a higher area-under-curve compared with the FRS or CCTA severity scores alone (SSS, SIS, DI) for predicting all-cause mortality (ML: 0.79 vs. FRS: 0.61, SSS: 0.64, SIS: 0.64, DI: 0.62; P , 0.001). __Conclusions__ Machine learning combining clinical and CCTA data was found to predict 5-year ACM significantly better than existing clinical or CCTA metrics alone.
- Published
- 2017
- Full Text
- View/download PDF