1. The Therapeutic Potential of 4-Methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC) Derived from Ricinine on Macrophage Cell Lines Infected with Methicillin-Resistant Strains of Staphylococcus aureus.
- Author
-
Suthi, Subbarayudu, Gopi, Deepika, Chaudhary, Abhijit, and Sarma, Potukuchi Venkata Gurunadha Krishna
- Abstract
The incidences of methicillin-resistant strains of Staphylococcus aureus (MRSA) and their survival inside the macrophages are the major attributes of the relapsed infections after antimicrobial therapy, and it is a global problem. In this context, we have previously demonstrated 4-methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC), a Ricinine derivative exhibiting anti-S. aureus and anti-biofilm characteristics by competitively inhibiting uridine monophosphate kinase (UMPK), UDP-N-acetyl muramyl pentapeptide ligase (Mur-F), and peptidyl deformylase, (PDF). In the present study, the stability of this competitive inhibitor MMOXC was evaluated by showing its ability to remain bound to the active sites of UMPK, Mur-F, and PDF even after increasing the incubation time, temperature, pH, and substrate concentration. On growing MRSA in fewer concentrations of MMOXC, these strains could not attain resistance to MMOXC and at the same time distinct reductions in the expression of UMPK, Mur-F, and PDF genes were noted. In vitro, infective models were generated by infecting MRSA to RAW 264.7 and human monocyte-derived macrophage (hMDM) cell lines. In these infected cell lines, in spite of increased nitric oxide synthase (NOS), NADPH–P450 reductase, superoxide dismutase, catalase, and peroxidase activities, the MRSA survived. At 640 µM/ml, the concentration of MMOXC penetrated into these infected cells and obliterated MRSA. While treating uninfected macrophage cell lines with MMOXC, no appreciable effect was observed indicating that MMOXC is the most suitable drug for the treatment of infections caused by MRSA. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF