29 results on '"Omar Anza Hafsa"'
Search Results
2. Stochastic homogenization of nonconvex integrals in the space of functions of bounded deformation
- Author
-
Omar Anza Hafsa and Jean-Philippe Mandallena
- Subjects
General Mathematics - Abstract
We study stochastic homogenization by Γ-convergence of nonconvex integrals of the calculus of variations in the space of functions of bounded deformation.
- Published
- 2023
- Full Text
- View/download PDF
3. Radial extension of $${\Gamma }$$-limits
- Author
-
Omar Anza Hafsa and Jean-Philippe Mandallena
- Subjects
General Mathematics - Published
- 2023
- Full Text
- View/download PDF
4. On a homogenization technique for singular integrals.
- Author
-
Omar Anza Hafsa, Mohamed Lamine Leghmizi, and Jean-Philippe Mandallena
- Published
- 2011
- Full Text
- View/download PDF
5. Variational Convergence and Stochastic Homogenization of Nonlinear Reaction-Diffusion Problems
- Author
-
Omar Anza Hafsa, Jean-Philippe Mandallena, and Gérard Michaille
- Published
- 2022
- Full Text
- View/download PDF
6. Stability of a class of nonlinear reaction–diffusion equations and stochastic homogenization
- Author
-
Jean Philippe Mandallena, Omar Anza Hafsa, and Gérard Michaille
- Subjects
State variable ,General Mathematics ,010102 general mathematics ,Regular polygon ,Subderivative ,Lipschitz continuity ,01 natural sciences ,Homogenization (chemistry) ,010101 applied mathematics ,Nonlinear system ,Bounded function ,Reaction–diffusion system ,Applied mathematics ,0101 mathematics ,Mathematics - Abstract
We establish a convergence theorem for a class of nonlinear reaction-diffusion equations when the diffusion term is the subdifferential of a convex functional in a class of functionals of the calculus of variations equipped with the Mosco-convergence. The reaction term, which is not globally Lipschitz with respect to the state variable, gives rise to bounded solutions, and cover a wide variety of models. As a consequence we prove a homogenization theorem for this class under a stochastic homogenization framework.
- Published
- 2019
- Full Text
- View/download PDF
7. Integral representation of unbounded variational functionals on Sobolev spaces
- Author
-
Omar Anza Hafsa, Jean-Philippe Mandallena, Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), and Université de Nîmes (UNIMES)
- Subjects
Pure mathematics ,Integral representation ,Applied Mathematics ,General Mathematics ,Numerical analysis ,010102 general mathematics ,Dimension (graph theory) ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,01 natural sciences ,Homogenization (chemistry) ,Sobolev space ,Nonlinear system ,0103 physical sciences ,Convergence (routing) ,010307 mathematical physics ,Relaxation (approximation) ,0101 mathematics ,[MATH]Mathematics [math] ,Mathematics - Abstract
In this paper we establish an unbounded version of the integral representation theorem by Buttazzo and Dal Maso [see Buttazzo Dal Maso (Nonlinear Anal 9(6):515–532, 1985) and also Bouchitte et al. (Arch Ration Mech Anal 165(3), 187–242, 2002)]. More precisely, we prove an integral representation theorem (with a formula for the integrand) for functionals defined on $$W^{1,p}$$ with $$p>N$$ (N being the dimension) that do not satisfy a standard p-growth condition from above and can take infinite values. Applications to $$\Gamma $$ -convergence, relaxation and homogenization are also developed.
- Published
- 2021
8. Gamma-convergence of nonconvex unbounded integrals in Cheeger-Sobolev spaces
- Author
-
Omar Anza Hafsa and Jean-Philippe Mandallena
- Subjects
Mathematics (miscellaneous) ,Theoretical Computer Science - Published
- 2022
- Full Text
- View/download PDF
9. Convergence and stochastic homogenization of a class of two components nonlinear reaction-diffusion systems
- Author
-
Omar Anza Hafsa, Jean Philippe Mandallena, Gérard Michaille, Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), and Université de Nîmes (UNIMES)
- Subjects
General Mathematics ,010102 general mathematics ,Regular polygon ,Stochastic homogenization ,Subderivative ,01 natural sciences ,Homogenization (chemistry) ,Convergence of two components reaction-diffusion equations ,010101 applied mathematics ,Nonlinear system ,Prey-predator models ,Bounded function ,Reaction–diffusion system ,Applied mathematics ,0101 mathematics ,[MATH]Mathematics [math] ,Mathematics - Abstract
International audience; We establish a convergence theorem for a class of two components nonlinear reaction-diffusion systems. Each diffusion term is the subdifferential of a convex functional of the calculus of variations whose class is equipped with the Mosco-convergence. The reaction terms are structured in such a way that the systems admit bounded solutions, which are positive in the modeling of ecosystems. As a consequence, under a stochastic homogenization framework, we prove two homogenization theorems for this class. We illustrate the results with the stochastic homogenization of a prey-predator model with saturation effect.
- Published
- 2021
- Full Text
- View/download PDF
10. Lower semicontinuity of integrals of the calculus of variations in Cheeger–Sobolev spaces
- Author
-
Omar Anza Hafsa and Jean Philippe Mandallena
- Subjects
Polynomial (hyperelastic model) ,Sobolev space ,Pure mathematics ,Applied Mathematics ,Convergence (routing) ,Mathematics::Analysis of PDEs ,Analysis ,Mathematics - Abstract
A necessary condition called $$H_\mu ^{1,p}$$-quasiconvexity on p-coercive integrands is introduced for the lower semicontinuity with respect to the strong convergence of $$L^p_\mu (X;\mathbb {R}^m)$$ of integral functionals defined on Cheeger–Sobolev spaces. Under polynomial growth conditions it turns out that this condition is necessary and sufficient.
- Published
- 2020
- Full Text
- View/download PDF
11. On subadditive theorems for group actions and homogenization
- Author
-
Jean-Philippe Mandallena, Omar Anza Hafsa, Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), and Université de Nîmes (UNIMES)
- Subjects
Pure mathematics ,Homogenization ,General Mathematics ,010102 general mathematics ,Amenable group ,01 natural sciences ,Homogenization (chemistry) ,Group action ,Subadditivity ,Subadditive theorem ,Cheeger-Sobolev space ,0101 mathematics ,[MATH]Mathematics [math] ,Mathematics - Abstract
International audience; We prove subadditive theorems à la Akcoglu-Krengel on measure spaces with acting groups. Applications to homogenization of nonconvex integrals in Cheeger-Sobolev spaces are also developed.
- Published
- 2020
- Full Text
- View/download PDF
12. Integral representation and relaxation of local functionals on Cheeger–Sobolev spaces
- Author
-
Omar Anza Hafsa and Jean-Philippe Mandallena
- Subjects
Applied Mathematics ,Analysis - Published
- 2022
- Full Text
- View/download PDF
13. Variational Convergence And Stochastic Homogenization Of Nonlinear Reaction-diffusion Problems
- Author
-
Omar Anza Hafsa, Jean-philippe Mandallena, Gerard Michaille, Omar Anza Hafsa, Jean-philippe Mandallena, and Gerard Michaille
- Subjects
- Calculus of variations, Convergence, Reaction-diffusion equations, Stochastic systems
- Abstract
A substantial number of problems in physics, chemical physics, and biology, are modeled through reaction-diffusion equations to describe temperature distribution or chemical substance concentration. For problems arising from ecology, sociology, or population dynamics, they describe the density of some populations or species. In this book the state variable is a concentration, or a density according to the cases. The reaction function may be complex and include time delays terms that model various situations involving maturation periods, resource regeneration times, or incubation periods. The dynamics may occur in heterogeneous media and may depend upon a small or large parameter, as well as the reaction term. From a purely formal perspective, these parameters are indexed by n. Therefore, reaction-diffusion equations give rise to sequences of Cauchy problems.The first part of the book is devoted to the convergence of these sequences in a sense made precise in the book. The second part is dedicated to the specific case when the reaction-diffusion problems depend on a small parameter ∊ₙ intended to tend towards 0. This parameter accounts for the size of small spatial and randomly distributed heterogeneities. The convergence results obtained in the first part, with additionally some probabilistic tools, are applied to this specific situation. The limit problems are illustrated through biological invasion, food-limited or prey-predator models where the interplay between environment heterogeneities in the individual evolution of propagation species plays an essential role. They provide a description in terms of deterministic and homogeneous reaction-diffusion equations, for which numerical schemes are possible.
- Published
- 2022
14. Continuity theorem for non-local functionals indexed by Young measures and stochastic homogenization
- Author
-
Gérard Michaille, Jean-Philippe Mandallena, Omar Anza Hafsa, and Mandallena, Jean-Philippe
- Subjects
Continuity theorem ,Differential equation ,Applied Mathematics ,General Mathematics ,010102 general mathematics ,Stochastic homogenization ,[MATH] Mathematics [math] ,Non local ,01 natural sciences ,Homogenization (chemistry) ,010101 applied mathematics ,Stochastic differential equation ,Young measures ,Applied mathematics ,Non-local functionals ,$\Gamma$-convergence ,0101 mathematics ,Mathematics ,Non-diffusive reaction differential equations ,Non-local effects - Abstract
We establish a continuity theorem for non-local functionals indexed by Young measures, that we use to deal with homogenization of stochastic non-diffusive reaction differential equations. Non-local effects induced by homogenization of such stochastic differential equations are studied.
- Published
- 2020
15. Convergence of a class of nonlinear time delays reaction-diffusion equations
- Author
-
Gérard Michaille, Omar Anza Hafsa, Jean Philippe Mandallena, Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), and Université de Nîmes (UNIMES)
- Subjects
education.field_of_study ,Time delays ,Mosco-convergence ,Applied Mathematics ,010102 general mathematics ,Population ,Stochastic homogenization ,Vector disease and logistic models ,Convergence of time delays reaction-diffusion equations ,01 natural sciences ,Homogenization (chemistry) ,010101 applied mathematics ,Nonlinear system ,Reaction–diffusion system ,Applied mathematics ,0101 mathematics ,[MATH]Mathematics [math] ,education ,Analysis ,Mathematics - Abstract
International audience; Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic homogenization theorem is established and applied to vector disease and logistic models. The results illustrate the interplay between the growth rates and the time delays which are mixed in the homogenized model.
- Published
- 2020
- Full Text
- View/download PDF
16. Γ-convergence of nonconvex integrals in Cheeger--Sobolev spaces and homogenization
- Author
-
Jean-Philippe Mandallena, Omar Anza Hafsa, Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), Université de Nîmes (UNIMES), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques et Modélisations en Mécanique (M3), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010101 applied mathematics ,Sobolev space ,Γ-convergence ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,[MATH]Mathematics [math] ,0101 mathematics ,01 natural sciences ,Homogenization (chemistry) ,Analysis ,Mathematics - Abstract
We study Γ-convergence of nonconvex variational integrals of the calculus of variations in the setting of Cheeger–Sobolev spaces. Applications to relaxation and homogenization are given.
- Published
- 2016
- Full Text
- View/download PDF
17. Relaxation of nonconvex unbounded integrals with general growth conditions in Cheeger–Sobolev spaces
- Author
-
Jean-Philippe Mandallena, Omar Anza Hafsa, Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), Université de Nîmes (UNIMES), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques et Modélisations en Mécanique (M3), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,Polynomial ,Relaxation ,Integral representation ,General growth conditions ,General Mathematics ,010102 general mathematics ,Unbounded nonconvex integral ,01 natural sciences ,Ru-usc ,010101 applied mathematics ,Sobolev space ,Relaxation (approximation) ,Cheeger-Sobolev space ,0101 mathematics ,[MATH]Mathematics [math] ,Computer Science::Databases ,Mathematics - Abstract
International audience; We study relaxation of nonconvex integrals of the calculus of variations in the setting of Cheeger–Sobolev spaces when the integrand does not have polynomial growth and can take infinite values.
- Published
- 2018
- Full Text
- View/download PDF
18. Homogenization of nonconvex unbounded singular integrals
- Author
-
Omar Anza Hafsa, Jean-Philippe Mandallena, Nicolas Clozeau, Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), Université de Nîmes (UNIMES), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques et Modélisations en Mécanique (M3), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure - Cachan (ENS Cachan)
- Subjects
Homogenization ,Algebra and Number Theory ,Applied Mathematics ,Mathematical analysis ,Hyperelasticity ,Regular polygon ,Disjoint sets ,Singular integral ,Singular growth ,Gamma-Convergence ,16. Peace & justice ,Homogenization (chemistry) ,Combinatorics ,Determinant constraint type ,Unbounded integrand ,Almost everywhere ,Geometry and Topology ,[MATH]Mathematics [math] ,Analysis ,Mathematics - Abstract
International audience; We study periodic homogenization by $\Gamma $-convergence of integral functionals with integrands $W(x,\xi )$ having no polynomial growth and which are both not necessarily continuous with respect to the space variable and not necessarily convex with respect to the matrix variable. This allows to deal with homogenization of composite hyperelastic materials consisting of two or more periodic components whose the energy densities tend to infinity as the volume of matter tends to zero, i.e., $W(x,\xi )=\sum _{j\in J}\mathbf{1}_{V_j}(x)H_j(\xi )$ where $\lbrace V_j\rbrace _{j\in J}$ is a finite family of open disjoint subsets of $\mathbb{R}^N$, with $|\partial V_j|=0$ for all $j\in J$ and $|\mathbb{R}^N\setminus \bigcup _{j\in J}V_j|=0$, and, for each $j\in J$, $H_j(\xi )\rightarrow \infty $ as $\det \xi \rightarrow 0$. In fact, our results apply to integrands of type $W(x,\xi )=a(x)H(\xi )$ when $H(\xi )\rightarrow \infty $ as $\det \xi \rightarrow 0$ and $a\in L^\infty (\mathbb{R}^N;[0,\infty [)$ is $1$-periodic and is either continuous almost everywhere or not continuous. When $a$ is not continuous, we obtain a density homogenization formula which is a priori different from the classical one by Braides–Müller. Although applications to hyperelasticity are limited due to the fact that our framework is not consistent with the constraint of noninterpenetration of the matter, our results can be of technical interest to analysis of homogenization of integral functionals.
- Published
- 2017
- Full Text
- View/download PDF
19. The nonlinear membrane energy: variational derivation under the constraint 'det∇u>0'
- Author
-
Jean-Philippe Mandallena and Omar Anza Hafsa
- Subjects
General Mathematics ,010102 general mathematics ,Constrained optimization ,Geometry ,01 natural sciences ,Quantitative Biology::Subcellular Processes ,010101 applied mathematics ,Constraint (information theory) ,Nonlinear system ,Membrane ,Dimensional reduction ,0101 mathematics ,Energy (signal processing) ,Mathematics ,Mathematical physics - Abstract
In [Anza Hafsa, O., Mandallena, J.-P., The nonlinear membrane energy: variational derivation under the constraint “ det ∇ u ≠ 0 ”, J. Math. Pures Appl. 86 (2006) 100–115] we gave a variational definition of the nonlinear membrane energy under the constraint “ det ∇ u ≠ 0 ”. In this paper we obtain the nonlinear membrane energy under the more realistic constraint “ det ∇ u > 0 ”.
- Published
- 2008
- Full Text
- View/download PDF
20. The nonlinear membrane energy: Variational derivation under the constraint 'det∇u≠0'
- Author
-
Omar Anza Hafsa and Jean-Philippe Mandallena
- Subjects
Applied Mathematics ,General Mathematics ,010102 general mathematics ,Mathematical analysis ,Relaxation (iterative method) ,Elasticity (physics) ,01 natural sciences ,String (physics) ,Strain energy ,010101 applied mathematics ,Constraint (information theory) ,Nonlinear system ,Γ-convergence ,Dimensional reduction ,0101 mathematics ,Mathematics - Abstract
Acerbi, Buttazzo and Percivale gave a variational definition of the nonlinear string energy under the constraint “ det ∇ u > 0 ” (see [E. Acerbi, G. Buttazzo, D. Percivale, A variational definition of the strain energy for an elastic string, J. Elasticity 25 (1991) 137–148]). In the same spirit, we obtain the nonlinear membrane energy under the simpler constraint “ det ∇ u ≠ 0 ” 1 .
- Published
- 2006
- Full Text
- View/download PDF
21. Interchange of infimum and integral
- Author
-
Omar Anza Hafsa and Jean-Philippe Mandallena
- Subjects
Algebra ,Applied Mathematics ,Feature (machine learning) ,Relaxation (approximation) ,Calculus of variations ,Link (knot theory) ,Infimum and supremum ,Analysis ,Mathematics - Abstract
We prove a new interchange theorem of infimum and integral. Its distinguishing feature is, on the one hand, to establish a general framework to deal with interchange problems for nonconvex integrands and nondecomposable sets, and, on the other hand, to link the theorems of Rockafellar and Hiai-Umegaki with the one of Bouchitte-Valadier. We give an application to relaxation of nonconvex geometric integrals of Calculus of Variations.
- Published
- 2003
- Full Text
- View/download PDF
22. Homogenization of unbounded integrals with quasiconvex growth
- Author
-
Hamdi Zorgati, Jean-Philippe Mandallena, Omar Anza Hafsa, Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques et Modélisations en Mécanique (M3), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), Université de Nîmes (UNIMES), Laboratoire Equations aux Dérivées Partielles (LEDP), and Université de Tunis El Manar (UTM)
- Subjects
Physics::Computational Physics ,Quasiconvex growth ,Homogenization ,Applied Mathematics ,010102 general mathematics ,Unbounded integrals ,Regular polygon ,49J45, 74Q05 ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,01 natural sciences ,Homogenization (chemistry) ,Ru-usc ,010101 applied mathematics ,Quasiconvex function ,Mathematics::Group Theory ,Effective domain ,Mathematics - Classical Analysis and ODEs ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,Applied mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,MSC : 49J45, 35B27, 74Q05 ,Mathematics - Abstract
We study homogenization by $\Gamma$-convergence of periodic nonconvex integrals when the integrand has quasiconvex growth with convex effective domain., Comment: 26 pages
- Published
- 2015
- Full Text
- View/download PDF
23. Homogenization of unbounded singular integrals in W1,∞
- Author
-
Omar Anza Hafsa, Jean-Philippe Mandallena, Modélisation Mathématique en Mécanique (M3), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), and Université de Nîmes (UNIMES)
- Subjects
Homogenization ,Applied Mathematics ,General Mathematics ,Numerical analysis ,Multiple integral ,010102 general mathematics ,Mathematical analysis ,Regular polygon ,Open set ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,Singular integral ,16. Peace & justice ,01 natural sciences ,Homogenization (chemistry) ,nonconvex singular integrands ,010101 applied mathematics ,Bounded function ,Hyperelastic material ,constraints on the gradient ,determinant type constraints ,0101 mathematics ,hyperelasticity ,Mathematics - Abstract
International audience; We study homogenization by Г-convergence, with respect to the L1-strong convergence, of periodic multiple integrals in W1,∞ when the integrand can take in finite values outside of a convex bounded open set of matrices.
- Published
- 2012
- Full Text
- View/download PDF
24. Radial representation of lower semicontinuous envelope
- Author
-
Jean-Philippe Mandallena, Omar Anza Hafsa, Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques et Modélisations en Mécanique (M3), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), and Université de Nîmes (UNIMES)
- Subjects
Extension on the boundary ,General Mathematics ,Multiple integral ,Relaxation with constraints ,Mathematical analysis ,Mathematics::Optimization and Control ,Boundary (topology) ,Radial representation ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,49J45, 26B15 ,Convexity ,Effective domain ,Mathematics - Classical Analysis and ODEs ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,Relaxation (approximation) ,Representation (mathematics) ,Convex function ,Star-shaped set ,Mathematics ,Envelope (waves) ,Ru-usc functions - Abstract
We give an extension to a nonconvex setting of the classical radial representation result for lower semicontinuous envelope of a convex function on the boundary of its effective domain. We introduce the concept of radial uniform upper semicontinuity which plays the role of convexity, and allows to prove a radial representation result for nonconvex functions. An application to the relaxation of multiple integrals with constraints on the gradient is given., Comment: 16 pages
- Published
- 2012
- Full Text
- View/download PDF
25. Homogenization of nonconvex integrals with convex growth
- Author
-
Jean-Philippe Mandallena, Omar Anza Hafsa, Modélisation Mathématique en Mécanique (M3), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), and Université de Nîmes (UNIMES)
- Subjects
Mathematics(all) ,General Mathematics ,Convex set ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,01 natural sciences ,Homogenization (chemistry) ,Mathematics - Analysis of PDEs ,0103 physical sciences ,convex growth ,determinant type constraints ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,Applied mathematics ,0101 mathematics ,hyperelasticity ,Computer Science::Databases ,Mathematics ,Homogenization ,nonconvex integrands ,Multiple integral ,Applied Mathematics ,010102 general mathematics ,Regular polygon ,Mathematics - Classical Analysis and ODEs ,010307 mathematical physics ,49J45, 35B27 ,Analysis of PDEs (math.AP) - Abstract
We study homogenization by Gamma-convergence of periodic multiple integrals of the calculus of variations when the integrand can take infinite values outside of a convex set of matrices., Comment: 24 pages, submitted
- Published
- 2011
- Full Text
- View/download PDF
26. On the integral representation of relaxed functionals with convex bounded constraints
- Author
-
Omar Anza Hafsa, Modélisation Mathématique en Mécanique (M3), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Université de Nîmes (UNIMES)
- Subjects
Convex analysis ,Convex hull ,Pure mathematics ,Relaxation ,Control and Optimization ,Bounded set (topological vector space) ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,010102 general mathematics ,Mathematical analysis ,Convex set ,Regular polygon ,Subderivative ,integral representation ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,01 natural sciences ,010101 applied mathematics ,Computational Mathematics ,Control and Systems Engineering ,Bounded function ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,Calculus of variations ,0101 mathematics ,convex constraints ,Mathematics - Abstract
International audience; We study the integral representation of relaxed functionals in the multi-dimensional calculus of variations, for integrands which are finite in a convex bounded set with nonempty interior and infinite elsewhere.
- Published
- 2010
- Full Text
- View/download PDF
27. Relaxation theorems in nonlinear elasticity
- Author
-
Omar Anza Hafsa, Jean-Philippe Mandallena, Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Modélisation Mathématique en Mécanique (M3), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), and Université de Nîmes (UNIMES)
- Subjects
Surface (mathematics) ,Finite volume method ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Zero (complex analysis) ,Geometry ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,01 natural sciences ,010101 applied mathematics ,Orientation (vector space) ,Relaxation Nonlinear elasticity Determinant condition ,Mathematics - Classical Analysis and ODEs ,Line (geometry) ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,49J45 ,Relaxation (approximation) ,0101 mathematics ,Elasticity (economics) ,Mathematical Physics ,Analysis ,Mathematics ,Volume (compression) - Abstract
Relaxation theorems which apply to one, two and three-dimensional nonlinear elasticity are proved. We take into account the fact an infinite amount of energy is required to compress a finite line, surface or volume into zero line, surface or volume. However, we do not prevent orientation reversal.
- Published
- 2008
- Full Text
- View/download PDF
28. Relaxation of variational problems in two dimensional nonlinear elasticity
- Author
-
Omar Anza Hafsa, Jean-Philippe Mandallena, Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), and Université de Nîmes (UNIMES)
- Subjects
010101 applied mathematics ,Combinatorics ,Applied Mathematics ,Quantum mechanics ,010102 general mathematics ,Nabla symbol ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,0101 mathematics ,Reference configuration ,01 natural sciences ,Nonlinear elasticity ,Omega ,Mathematics - Abstract
Consider a plate occupying in a reference configuration a bounded open set Ω ⊂ ℝ 2 , and let \(W:\mathcal{M}^{3\times 2}\to[0,+\infty]\) be its stored-energy function. In this paper we are concerned with relaxation of variational problems of type: $$\inf \left\{\int_{\Omega} W\big(\nabla u(x)\big)dx-\int_{\Omega} \big\langle f(x),u(x)\big\rangle dx:u\in W^{1,p}_{\ast}(\Omega;\mathcal{R}^3)\right\}$$ , where \(W^{1,p}_{\ast}(\Omega;\mathcal{R}^3):= \{u\in W^{1,p}(\Omega;\mathcal{R}^3):u(x)=(x,0)\hbox{ on }\partial \Omega\}\) with \(p >1,\langle\cdot,\cdot\rangle \) is the scalar product in ℝ 3 and\(f\in L^{q}(\Omega;\mathcal{R}^3), \hbox{ with } 1/p+1/q=1\)is the external loading per unit surface. We take into account the fact that an infinite amount of energy is required to compress a finite surface of the plate into zero surface, i.e., $$W\big(\xi_1\mid\xi_2\big)\to+\infty\ \hbox{ as }\ \big|\xi_1 \land \xi_2\big|\to 0.$$
- Published
- 2007
- Full Text
- View/download PDF
29. Homogenization of periodic nonconvex integral functionnals in terms of young measures
- Author
-
Jean-Philippe Mandallena, Gérard Michaille, Omar Anza Hafsa, Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA), Université de Nîmes (UNIMES), University of Zurich, and Anza Hafsa, O
- Subjects
2606 Control and Optimization ,Control and Optimization ,010102 general mathematics ,Mathematical analysis ,homogenization ,2207 Control and Systems Engineering ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,16. Peace & justice ,01 natural sciences ,Homogenization (chemistry) ,010101 applied mathematics ,10123 Institute of Mathematics ,Computational Mathematics ,510 Mathematics ,Control and Systems Engineering ,Young measures ,0101 mathematics ,2605 Computational Mathematics ,Mathematics - Abstract
Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ -limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.