1. 3D pressure-corrected ballistic extrapolation of solar wind speed in the inner heliosphere
- Author
-
Timar Aniko, Opitz Andrea, Nemeth Zoltan, Bebesi Zsofia, Biro Nikolett, Facskó Gábor, Koban Gergely, and Madar Akos
- Subjects
solar wind ,heliosphere ,3d ,pressure-correction ,Meteorology. Climatology ,QC851-999 - Abstract
Solar wind parameters at different locations in the inner heliosphere can be estimated using various solar wind extrapolation methods. The simple ballistic method extrapolates solar wind parameters from the point of measurement to a chosen heliospheric position by assuming that major solar wind structures are persistent and arrive relatively unaltered to the target position. The method considers the rotation period of the Sun while assuming a constant solar wind speed during radial propagation. We improve the simple ballistic model by considering the interaction between the slow and the fast solar wind with a pressure correction during the propagation. Instead of extrapolating from the position of a single spacecraft, we apply this pressure-corrected ballistic method to 2D speed maps of the solar source surface available from solar coronal models to determine the solar wind speed in the inner heliosphere in 3D, between latitudes of ±50°. We also take into account the effects of the solar differential rotation in our model. Our method is simple and fast, and it can be applied to different source surface datasets. The results of our model are validated with in situ data from the ACE spacecraft. We find that the pressure-corrected ballistic method can give accurate predictions of the solar wind in 3D.
- Published
- 2024
- Full Text
- View/download PDF