1. Shortcut Learning Susceptibility in Vision Classifiers
- Author
-
Suhail, Pirzada and Sethi, Amit
- Subjects
Computer Science - Machine Learning ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Shortcut learning, where machine learning models exploit spurious correlations in data instead of capturing meaningful features, poses a significant challenge to building robust and generalizable models. This phenomenon is prevalent across various machine learning applications, including vision, natural language processing, and speech recognition, where models may find unintended cues that minimize training loss but fail to capture the underlying structure of the data. Vision classifiers such as Convolutional Neural Networks (CNNs), Multi-Layer Perceptrons (MLPs), and Vision Transformers (ViTs) leverage distinct architectural principles to process spatial and structural information, making them differently susceptible to shortcut learning. In this study, we systematically evaluate these architectures by introducing deliberate shortcuts into the dataset that are positionally correlated with class labels, creating a controlled setup to assess whether models rely on these artificial cues or learn actual distinguishing features. We perform both quantitative evaluation by training on the shortcut-modified dataset and testing them on two different test sets -- one containing the same shortcuts and another without them -- to determine the extent of reliance on shortcuts. Additionally, qualitative evaluation is performed by using network inversion-based reconstruction techniques to analyze what the models internalize in their weights, aiming to reconstruct the training data as perceived by the classifiers. We evaluate shortcut learning behavior across multiple benchmark datasets, including MNIST, Fashion-MNIST, SVHN, and CIFAR-10, to compare the susceptibility of different vision classifier architectures to shortcut reliance and assess their varying degrees of sensitivity to spurious correlations.
- Published
- 2025