4,665 results on '"Paul Scherrer Institute"'
Search Results
2. Combined Beta- Plus Auger Electron Therapy Using a Novel Somatostatin Receptor Subtype 2 Antagonist Labelled With Terbium-161 (161Tb-DOTA-LM3) (Beta plus)
- Author
-
Swiss National Science Foundation and Paul Scherrer Institute (PSI)
- Published
- 2024
3. 177Lu-PP-F11N for Receptor Targeted Therapy and Imaging of Metastatic Thyroid Cancer. (Lumed)
- Author
-
Krebsforschung Schweiz, Bern, Switzerland, Center for Proton Therapy, Paul Scherrer Institute, Villigen,Switzerland, University Hospital, Zürich, and University Hospital Freiburg
- Published
- 2023
4. 177Lu-PP-F11N in Combination With Sacubitril for Receptor Targeted Therapy and Imaging of Metastatic Thyroid Cancer
- Author
-
Krebsforschung Schweiz, Bern, Switzerland, Center for Proton Therapy, Paul Scherrer Institute, Villigen,Switzerland, University Hospital, Zürich, and University Hospital Freiburg
- Published
- 2022
5. Hyperthermia and Proton Therapy in Unresectable Soft Tissue Sarcoma (HYPROSAR)
- Author
-
Center for Proton Therapy, Paul Scherrer Institute, Villigen,Switzerland, University Hospital, Zürich, and Prof. Dr. med. Niloy Ranjan Datta, Senior Consultant, Department of Radiation Oncology, KSA
- Published
- 2015
6. Chemical modulation of microtubule structure through the laulimalide/peloruside site
- Author
-
Ministerio de Ciencia e Innovación (España), Consejo Superior de Investigaciones Científicas (España), European Commission, Fundación Tatiana Pérez de Guzmán el Bueno, Swiss National Science Foundation, Ministerio de Universidades (España), Paul Scherrer Institute (Switzerland), European Synchrotron Radiation Facility, Club Escola Hungaresa de Esgrima de Pontevedra, Estévez-Gallego, Juan [0000-0003-3889-8488], Álvarez-Bernad, Beatriz [0000-0002-2492-9215], Menche, Dirk [0000-0002-4724-8383], Lucena-Agell, Daniel [0000-0001-7198-2900], Prota, Andrea E. [0000-0003-0875-5339], Bonato, Francesca [0000-0002-0579-2874], Giménez-Abián, Juan F. [0000-0002-9220-286X], Northcote, Peter [0000-0002-2086-9972], Steinmetz, Michel O. [0000-0001-6157-3687], Kamimura, Shinji [0000-0003-4359-0859], Altmann, Karl-Heinz [0000-0002-0747-9734], Paterson, Ian [0000-0002-8861-9136], Gago, Federico [0000-0002-3071-4878], Van der Eycken, Johan [0000-0002-1623-6750], Díaz, José Fernando [0000-0003-2743-3319], Oliva, María A. [0000-0002-2215-4639], Estévez-Gallego, Juan, Álvarez-Bernad, Beatriz, Benet, Pera, Wullschleger, Christoph, Raes, Olivier, Menche, Dirk, Martínez, Juan Carlos, Lucena-Agell, Daniel, Prota, Andrea E., Bonato, Francesca, Bargsten, Katja, Cornelus, Jelle, Giménez-Abián, Juan F., Northcote, Peter, Steinmetz, Michel O., Kamimura, Shinji, Altmann, Karl-Heinz, Paterson, Ian, Gago, Federico, Van der Eycken, Johan, Díaz, José Fernando, Oliva, María A., Ministerio de Ciencia e Innovación (España), Consejo Superior de Investigaciones Científicas (España), European Commission, Fundación Tatiana Pérez de Guzmán el Bueno, Swiss National Science Foundation, Ministerio de Universidades (España), Paul Scherrer Institute (Switzerland), European Synchrotron Radiation Facility, Club Escola Hungaresa de Esgrima de Pontevedra, Estévez-Gallego, Juan [0000-0003-3889-8488], Álvarez-Bernad, Beatriz [0000-0002-2492-9215], Menche, Dirk [0000-0002-4724-8383], Lucena-Agell, Daniel [0000-0001-7198-2900], Prota, Andrea E. [0000-0003-0875-5339], Bonato, Francesca [0000-0002-0579-2874], Giménez-Abián, Juan F. [0000-0002-9220-286X], Northcote, Peter [0000-0002-2086-9972], Steinmetz, Michel O. [0000-0001-6157-3687], Kamimura, Shinji [0000-0003-4359-0859], Altmann, Karl-Heinz [0000-0002-0747-9734], Paterson, Ian [0000-0002-8861-9136], Gago, Federico [0000-0002-3071-4878], Van der Eycken, Johan [0000-0002-1623-6750], Díaz, José Fernando [0000-0003-2743-3319], Oliva, María A. [0000-0002-2215-4639], Estévez-Gallego, Juan, Álvarez-Bernad, Beatriz, Benet, Pera, Wullschleger, Christoph, Raes, Olivier, Menche, Dirk, Martínez, Juan Carlos, Lucena-Agell, Daniel, Prota, Andrea E., Bonato, Francesca, Bargsten, Katja, Cornelus, Jelle, Giménez-Abián, Juan F., Northcote, Peter, Steinmetz, Michel O., Kamimura, Shinji, Altmann, Karl-Heinz, Paterson, Ian, Gago, Federico, Van der Eycken, Johan, Díaz, José Fernando, and Oliva, María A.
- Abstract
Taxanes are microtubule-stabilizing agents used in the treatment of many solid tumors, but they often involve side effects affecting the peripheral nervous system. It has been proposed that this could be related to structural modifications on the filament upon drug binding. Alternatively, laulimalide and peloruside bind to a different site also inducing stabilization, but they have not been exploited in clinics. Here, we use a combination of the parental natural compounds and derived analogs to unravel the stabilization mechanism through this site. These drugs settle lateral interactions without engaging the M loop, which is part of the key and lock involved in the inter-protofilament contacts. Importantly, these drugs can modulate the angle between protofilaments, producing microtubules of different diameters. Among the compounds studied, we have found some showing low cytotoxicity and able to induce stabilization without compromising microtubule native structure. This opens the window of new applications for microtubule-stabilizing agents beyond cancer treatment.
- Published
- 2023
7. Bulk-Processed Plasmonic Plastic Nanocomposite Materials for Optical Hydrogen Detection
- Author
-
Swedish Foundation for Strategic Research, Knut and Alice Wallenberg Foundation, Paul Scherrer Institute (Switzerland), Agencia Estatal de Investigación (España), Darmadi, Iwan [0000-0002-5921-9336], Lerch, Sarah [0000-0001-5968-8178], Moth-Poulsen, Kasper [0000-0003-4018-4927], Langhammer, Christoph [0000-0003-2180-1379], Darmadi, Iwan, Östergren, Ida, Lerch, Sarah, Lund, Anja, Moth-Poulsen, Kasper, Müller, Christian, Langhammer, Christoph, Swedish Foundation for Strategic Research, Knut and Alice Wallenberg Foundation, Paul Scherrer Institute (Switzerland), Agencia Estatal de Investigación (España), Darmadi, Iwan [0000-0002-5921-9336], Lerch, Sarah [0000-0001-5968-8178], Moth-Poulsen, Kasper [0000-0003-4018-4927], Langhammer, Christoph [0000-0003-2180-1379], Darmadi, Iwan, Östergren, Ida, Lerch, Sarah, Lund, Anja, Moth-Poulsen, Kasper, Müller, Christian, and Langhammer, Christoph
- Abstract
ConspectusSensors are ubiquitous, and their importance is only going to increase across many areas of modern technology. In this respect, hydrogen gas (H2) sensors are no exception since they allow mitigation of the inherent safety risks associated with mixtures of H2 and air. The deployment of H2 technologies is rapidly accelerating in emerging energy, transport, and green steel-making sectors, where not only safety but also process monitoring sensors are in high demand. To meet this demand, cost-effective and scalable routes for mass production of sensing materials are required. Here, the state-of-the-art often resorts to processes derived from the microelectronics industry where surface-based micro- and nanofabrication are the methods of choice and where (H2) sensor manufacturing is no exception.In this Account, we discuss how our recent efforts to develop sensors based on plasmonic plastics may complement the current state-of-the-art. We explore a new H2 sensor paradigm, established through a series of recent publications, that combines (i) the plasmonic optical H2 detection principle and (ii) bulk-processed nanocomposite materials. In particular, plasmonic plastic nanocomposite sensing materials are described that comprise plasmonic H2-sensitive colloidally synthesized nanoparticles dispersed in a polymer matrix and enable the additive manufacturing of H2 sensors in a cost-effective and scalable way. We first discuss the concept of plasmonic plastic nanocomposite materials for the additive manufacturing of an active plasmonic sensing material on the basis of the three key components that require individual and concerted optimization: (i) the plasmonic sensing metal nanoparticles, (ii) the surfactant/stabilizer molecules on the nanoparticle surface from colloidal synthesis, and (iii) the polymer matrix. We then introduce the working principle of plasmonic H2 detection, which relies on the selective absorption of H species into hydride-forming metal nanoparticles
- Published
- 2023
8. Towards ductilization of high strength 7XXX aluminium alloys via microstructural modifications obtained by friction stir processing and heat treatments
- Author
-
UCL - SST/IMMC/IMAP - Materials and process engineering, Huazhong University of Science and Technology - Department of Mechanics, School of Aerospace Engineering, University of Antwerp - Electron Microscopy for Materials Science (EMAT), University of Antwerp - NANOlab Center of Excellence, INSA de Lyon - MATEIS Lab, University and ETH Zurich - Institute for Biomedical Engineering, Paul Scherrer Institute - Swiss Light Source, Lezaack, Matthieu, Hannard, Florent, Zhao, Lv, Orekhov, Andrey, Adrien, Jérôme, Miettinen, Arttu, Idrissi, Hosni, Simar, Aude, UCL - SST/IMMC/IMAP - Materials and process engineering, Huazhong University of Science and Technology - Department of Mechanics, School of Aerospace Engineering, University of Antwerp - Electron Microscopy for Materials Science (EMAT), University of Antwerp - NANOlab Center of Excellence, INSA de Lyon - MATEIS Lab, University and ETH Zurich - Institute for Biomedical Engineering, Paul Scherrer Institute - Swiss Light Source, Lezaack, Matthieu, Hannard, Florent, Zhao, Lv, Orekhov, Andrey, Adrien, Jérôme, Miettinen, Arttu, Idrissi, Hosni, and Simar, Aude
- Abstract
High strength 7XXX aluminium series reach exceptional strength, higher than all other industrial aluminium alloys. However, they suffer from a lack of ductility compared to softer series. This work presents a procedure to improve the ductility of 7475 Al alloy in high strength condition, reaching a true fracture strain of 70% at full 500 MPa T6 yield strength. Using friction stir processing (FSP) and post-FSP heat treatments, 100% of industrial rolled material T6 yield stress is maintained but a 180% increase in fracture strain is measured for the processed material. This ductility improvement is studied by in-situ synchrotron X-ray tomography and is explained by the reduction of intermetallic particles size and the homogenization of their spatial distribution. Furthermore, the microstructure after FSP shows equiaxed refined grains which favour crack deviation as opposed to large cracks parallel to the elongated coarse grains in rolled plate. These results are paving the way to better formability and crashworthiness of 7XXX alloys.
- Published
- 2021
9. Arabidopsis thaliana Zn2+-efflux ATPases HMA2 and HMA4 are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina BMM
- Author
-
Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Paul Scherrer Institute (Switzerland), European Commission, Escudero, Viviana [0000-0002-3506-9054], Abreu, Isidro [0000-0002-1647-9883], Sopeña-Torres, Sara [0000-0002-4164-0667], Makarovsky-Saavedra, Natalia [0000-0003-4498-1851], González-Guerrero, Manuel[0000-0001-7334-5286], Jorda, Lucia [0000-0002-1660-3469], Sanchez, Dario Ferreira [0000-0003-2825-2886], Bernal, Maria [0000-0001-9585-4268], Kramer, Ute [0000-0001-7870-4508], Grolimund, Daniel [0000-0001-9721-7940], Escudero, Viviana, Abreu, Isidro, Sopeña-Torres, Sara, Makarovsky-Saavedra, Natalia, González-Guerrero, Manuel, Jordá, Lucía, Sanchez, Dario Ferreira, Bernal, Maria, Kramer, Ute, Grolimund, Daniel, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Paul Scherrer Institute (Switzerland), European Commission, Escudero, Viviana [0000-0002-3506-9054], Abreu, Isidro [0000-0002-1647-9883], Sopeña-Torres, Sara [0000-0002-4164-0667], Makarovsky-Saavedra, Natalia [0000-0003-4498-1851], González-Guerrero, Manuel[0000-0001-7334-5286], Jorda, Lucia [0000-0002-1660-3469], Sanchez, Dario Ferreira [0000-0003-2825-2886], Bernal, Maria [0000-0001-9585-4268], Kramer, Ute [0000-0001-7870-4508], Grolimund, Daniel [0000-0001-9721-7940], Escudero, Viviana, Abreu, Isidro, Sopeña-Torres, Sara, Makarovsky-Saavedra, Natalia, González-Guerrero, Manuel, Jordá, Lucía, Sanchez, Dario Ferreira, Bernal, Maria, Kramer, Ute, and Grolimund, Daniel
- Abstract
Zinc is an essential nutrient at low concentrations, but toxic at slightly higher ones. It has been proposed that hyperaccumulator plants may use the excess zinc to fend off pathogens and herbivores. However, there is little evidence of a similar response in other plants. Here we show that Arabidopsis thaliana leaves inoculated with the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM) accumulate zinc and manganese at the infection site. Zinc accumulation did not occur in a double mutant in the zinc transporters HEAVY METAL ATPASE2 and HEAVY METAL ATPASE4 (HMA2 and HMA4), which has reduced zinc translocation from roots to shoots. Consistent with a role in plant immunity, expression of HMA2 and HMA4 was up-regulated upon PcBMM inoculation, and hma2hma4 mutants were more susceptible to PcBMM infection. This phenotype was rescued upon zinc supplementation. The increased susceptibility to PcBMM infection was not due to the diminished expression of genes involved in the salicylic acid, ethylene, or jasmonate pathways since they were constitutively up-regulated in hma2hma4 plants. Our data indicate a role of zinc in resistance to PcBMM in plants containing ordinary levels of zinc. This layer of immunity runs in parallel to the already characterized defence pathways, and its removal has a direct effect on resistance to pathogens.
- Published
- 2021
10. 3D assessment of intervertebral disc degeneration in zebrafish identifies changes in bone density that prime disc disease
- Author
-
European Commission, University of Bristol, Paul Scherrer Institute (Switzerland), Kague, Erika, Turci, Francesco, Newman, Elis, Yang, Yushi, Robson Brown, Kate, Aglan, Mona, Otaify, Ghada A., Temtamy, Samia, Ruiz-Pérez, Victor L., Cross, Stephen, Royall, C. Patrick, Witten, P. Eckhard, Hammond, Chrissy L., European Commission, University of Bristol, Paul Scherrer Institute (Switzerland), Kague, Erika, Turci, Francesco, Newman, Elis, Yang, Yushi, Robson Brown, Kate, Aglan, Mona, Otaify, Ghada A., Temtamy, Samia, Ruiz-Pérez, Victor L., Cross, Stephen, Royall, C. Patrick, Witten, P. Eckhard, and Hammond, Chrissy L.
- Abstract
Back pain is a common condition with a high social impact and represents a global health burden. Intervertebral disc disease (IVDD) is one of the major causes of back pain; no therapeutics are currently available to reverse this disease. The impact of bone mineral density (BMD) on IVDD has been controversial, with some studies suggesting osteoporosis as causative for IVDD and others suggesting it as protective for IVDD. Functional studies to evaluate the influence of genetic components of BMD in IVDD could highlight opportunities for drug development and repurposing. By taking a holistic 3D approach, we established an aging zebrafish model for spontaneous IVDD. Increased BMD in aging, detected by automated computational analysis, is caused by bone deformities at the endplates. However, aged zebrafish spines showed changes in bone morphology, microstructure, mineral heterogeneity, and increased fragility that resembled osteoporosis. Elements of the discs recapitulated IVDD symptoms found in humans: the intervertebral ligament (equivalent to the annulus fibrosus) showed disorganized collagen fibers and herniation, while the disc center (nucleus pulposus equivalent) showed dehydration and cellular abnormalities. We manipulated BMD in young zebrafish by mutating sp7 and cathepsin K, leading to low and high BMD, respectively. Remarkably, we detected IVDD in both groups, demonstrating that low BMD does not protect against IVDD, and we found a strong correlation between high BMD and IVDD. Deep learning was applied to high-resolution synchrotron µCT image data to analyze osteocyte 3D lacunar distribution and morphology, revealing a role of sp7 in controlling the osteocyte lacunar 3D profile. Our findings suggest potential avenues through which bone quality can be targeted to identify beneficial therapeutics for IVDD.
- Published
- 2021
11. Intermediate magnetic phase of the magnetoelectric compound (Ca, Sr) BaCo4O7 described with the superspace formalism
- Author
-
Agencia Nacional de Promoción Científica y Tecnológica (Argentina), Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Universidad Nacional de Cuyo, Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), Secretaría de Ciencia y Técnica de la Nación (Argentina), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Consejo Superior de Investigaciones Científicas (España), Paul Scherrer Institute (Switzerland), Diputación General de Aragón, International Union of Pure and Applied Chemistry, Lohr, J., Larralde, A. L., Curiale, J., Sánchez, R., Campo, Javier, Cuello, G. J., Sheptyakov, D., Keller, L., Kenzelmann, M., Aurelio, G., Agencia Nacional de Promoción Científica y Tecnológica (Argentina), Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Universidad Nacional de Cuyo, Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), Secretaría de Ciencia y Técnica de la Nación (Argentina), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Consejo Superior de Investigaciones Científicas (España), Paul Scherrer Institute (Switzerland), Diputación General de Aragón, International Union of Pure and Applied Chemistry, Lohr, J., Larralde, A. L., Curiale, J., Sánchez, R., Campo, Javier, Cuello, G. J., Sheptyakov, D., Keller, L., Kenzelmann, M., and Aurelio, G.
- Abstract
In this work we report the temperature and doping-level evolution of the crystallographic and magnetic properties of the Sr-doped cobaltates Ca1−xSrxBaCo4O7. The noncollinear ferrimagnetic phase known for the magnetoelectric parent compound is found to persist only for a small amount of Sr doping (x=0.02) and is accompanied by a strong unit cell distortion. In turn, further Sr doping blurs this distortion of lattice parameters and favors other magnetic arrangements. In particular, this work focuses on an intermediate temperature region 62K
- Published
- 2020
12. Effective determination of surface potential landscapes from metal-organic nanoporous network overlayers
- Author
-
Ministerio de Economía y Competitividad (España), European Commission, Eusko Jaurlaritza, Gobierno de Aragón, German Research Foundation, Paul Scherrer Institute (Switzerland), University of Basel, Swiss Nanoscience Institute, Swiss National Science Foundation, Commission for Technology and Innovation (Switzerland), Piquero-Zulaica, Ignacio [0000-0002-4296-0961], Abd El-Fattah, Z. M. [0000-0003-2385-7704], Tejeda, A. [0000-0003-0125-4603], Piquero-Zulaica, Ignacio, Abd El-Fattah, Z. M., Popova, Olha, Kawai, Shigeki, Nowakowska, Sylwia, Matena, Manfred, Enache, M., Stöhr, Meike, Tejeda, A., Taleb, Amina, Meyer, Ernst, Ortega, J. Enrique, Gade, Lutz H., Jung, Thomas A., Lobo-Checa, Jorge, Ministerio de Economía y Competitividad (España), European Commission, Eusko Jaurlaritza, Gobierno de Aragón, German Research Foundation, Paul Scherrer Institute (Switzerland), University of Basel, Swiss Nanoscience Institute, Swiss National Science Foundation, Commission for Technology and Innovation (Switzerland), Piquero-Zulaica, Ignacio [0000-0002-4296-0961], Abd El-Fattah, Z. M. [0000-0003-2385-7704], Tejeda, A. [0000-0003-0125-4603], Piquero-Zulaica, Ignacio, Abd El-Fattah, Z. M., Popova, Olha, Kawai, Shigeki, Nowakowska, Sylwia, Matena, Manfred, Enache, M., Stöhr, Meike, Tejeda, A., Taleb, Amina, Meyer, Ernst, Ortega, J. Enrique, Gade, Lutz H., Jung, Thomas A., and Lobo-Checa, Jorge
- Abstract
Determining the scattering potential landscape for two-dimensional superlattices provides key insight into fundamental quantum electron phenomena. Theoretical and semiempirical methods have been extensively used to simulate confinement effects of the two-dimensional electron gas (2DEG) on superlattices with a single scatterer in the form of vicinal surfaces and dislocation networks or isolated structures such as quantum corrals and vacancy islands. However, the complexity of the problem increases when the building blocks (or scatterers) are heterogeneous, as in metal-organic nanoporous networks (MONNs), since additional potentials may come into play. Therefore, the parametrization of the surface potential landscape is often inaccurate, leading to incorrect scattering potentials. Here, we address this issue with a combination of scanning tunneling microscopy/spectroscopy, angle resolved photoemission spectroscopy and Kelvin probe force microscopy measurements together with electron plane-wave expansion simulations on a MONN grown on Cu(111). This experimental-Theory approach, enables us to capture the 2DEG response to the intricate scattering potential landscape, and reveals systematic modeling procedures. Starting from a realistic geometry of the system, we determine the repulsive scattering potentials for both molecules and coordinated metal adatoms, the latter contradicting the established simulation framework. Moreover, we reveal local asymmetries and subtle renormalization effects of the 2DEG that relate to the interaction of the MONN and the underlying substrate.
- Published
- 2019
13. Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation
- Author
-
Degueldre, Claude, Fahy, James, Kolosov, Oleg, Wilbraham, Richard J., Döbeli, Max, Renevier, Nathalie, Ball, Jonathan, Ritter, Stefan, Engineering Department, Lancaster University, Lancaster LA1 4YW, UK, Physics Department, Lancaster University, Lancaster LA1 4BA, UK, Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland, Jost Institute, University of Central Lancashire, Preston PR1 2HE, UK, EDF-Energy, Fuel Group CTO, Barnwood, Gloucester GL4 3RS, UK, and Laboratory of Nuclear Materials, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Subjects
Materials science ,Scanning electron microscope ,F320 ,F200 ,chemistry.chemical_element ,02 engineering and technology ,H821 ,01 natural sciences ,Fluence ,Flexural strength ,0103 physical sciences ,General Materials Science ,Irradiation ,Composite material ,Nanoscopic scale ,Helium ,F180 ,010302 applied physics ,J511 ,F311 ,Mechanical Engineering ,F310 ,Nanoindentation ,021001 nanoscience & nanotechnology ,Cladding (fiber optics) ,chemistry ,Mechanics of Materials ,0210 nano-technology ,F370 ,F170 - Abstract
The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would\ud occur for in-reactor AGR clad in layers of the order of 10 lm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (
- Published
- 2018
14. Origin of the Spin-Orbital Liquid State in a Nearly J=0 Iridate Ba3ZnIr2O9
- Author
-
Nag, A, Middey, S, Bhowal, S, Panda, SK, Mathieu, R, Orain, JC, Bert, F, Mendels, P, Freeman, Paul Gregory, Mansson, M, Ronnow, HM, Telling, M, Biswas, PK, Sheptyakov, D, Kaushik, SD, Siruguri, V, Meneghini, C, Sarma, DD, Dasgupta, I, Ray, S, Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India, Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India, Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India, Department of Engineering Sciences, Uppsala University, P.O. Box 534, SE-751 21 Uppsala, Sweden, Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, 91405 Orsay, France, Laboratory for Quantum Magnetism (LQM), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland, Jeremiah Horrocks Institute for Mathematics, Physics and Astrophysics, University of Central Lancashire, Preston PR1 2HE, United Kingdom, Department of Materials and Nanophysics, KTH Royal Institute of Technology, Electrum 229, SE-16440 Kista, Sweden, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX110QX, United Kingdom, Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland, Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland, UGC-DAE-Consortium for Scientific Research Mumbai Centre, R5 Shed, Bhabha Atomic Research Centre, Mumbai 400085, India, Dipartimento di Scienze, Universitá Roma Tre, Via della Vasca Navale, 84 I-00146 Roma, Italy, and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
- Subjects
F300 ,Condensed Matter::Strongly Correlated Electrons - Abstract
We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba3ZnIr2O9 is a realization of a novel spin-orbital liquid state. Our results reveal that Ba3ZnIr2O9 with Ir5+ (5d(4)) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J = 0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir2O9 dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK.
- Published
- 2016
15. Magnetic anisotropy switch: Easy axis to easy plane conversion and vice versa
- Author
-
Paul Scherrer Institute (Switzerland), Agencia Estatal de Investigación (España), Danish Agency for Science, Technology and Innovation, German Research Foundation, Oticon Foundation, Augustinus Foundation, University of Stuttgart, Ministerio de Economía y Competitividad (España), European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Perfetti, Mauro, Sørensen, Mikkel A., Hansen, Ursula B., Bamberger, Heiko, Lenz, Samuel, Hallmen, Philipp P., Fennell, Tom, Simeoni, Giovanna G., Arauzo, Ana B., Bartolomé, Juan, Bartolomé, Elena, Lefmann, Kim, Weihe, Høgni, Slageren, Joris van, Bendix, Jesper, Paul Scherrer Institute (Switzerland), Agencia Estatal de Investigación (España), Danish Agency for Science, Technology and Innovation, German Research Foundation, Oticon Foundation, Augustinus Foundation, University of Stuttgart, Ministerio de Economía y Competitividad (España), European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Perfetti, Mauro, Sørensen, Mikkel A., Hansen, Ursula B., Bamberger, Heiko, Lenz, Samuel, Hallmen, Philipp P., Fennell, Tom, Simeoni, Giovanna G., Arauzo, Ana B., Bartolomé, Juan, Bartolomé, Elena, Lefmann, Kim, Weihe, Høgni, Slageren, Joris van, and Bendix, Jesper
- Abstract
The rational design of the magnetic anisotropy of molecular materials constitutes a goal of primary importance in molecular magnetism. Indeed, the applications of molecular nanomagnets, such as single-molecule magnets and molecular magnetic refrigerants, depend on the full control over this property. Axially anisotropic magnetic systems are frequently classified as easy axis or easy plane, depending on whether the lowest energy is obtained by application of a magnetic field parallelly or perpendicularly to the unique axis. Here, the magnetic aniso-tropy of three lanthanide complexes is studied as a function of magnetic field and temperature. It is found that for two of these the type of magnetic aniso-tropy switches as a function of these parameters. Thus, this paper experimen-tally demonstrates that the magnetic anisotropy is not uniquely defined by the intrinsic electronic structure of the systems in question but can also be reversibly switched using external stimuli: temperature and magnetic field.
- Published
- 2018
16. Ductilization of aluminium alloy 6056 by friction stir processing
- Author
-
UCL - SST/IMMC/IMAP - Materials and process engineering, INSA-Lyon - MATEIS UMR5510, Paul Scherrer Institute - Swiss Light Source, MAX-lab, Sweden, Hannard, Florent, Castin, Sidney, Maire, Eric, Mokso, Rajmund, Pardoen, Thomas, Simar, Aude, UCL - SST/IMMC/IMAP - Materials and process engineering, INSA-Lyon - MATEIS UMR5510, Paul Scherrer Institute - Swiss Light Source, MAX-lab, Sweden, Hannard, Florent, Castin, Sidney, Maire, Eric, Mokso, Rajmund, Pardoen, Thomas, and Simar, Aude
- Abstract
The ductility of Al alloys is dictated by the nucleation, growth and coalescence of small internal voids originating from intermetallic particle fracture and from the presence of pre-existing porosity. The ductility is degraded when intermetallic particles are large and clustered. A low ductility adversely impacts both forming operations and the integrity of structural components. Local stirring using a friction stir processing (FSP) tool is shown here to very significantly increase the fracture strain of the Al alloy 6056 sometimes by more than a factor of two while making it more isotropic. Three reasons for the ductilization are unravelled based on 3D microtomography: (i) FSP breaks the large intermetallic particles into smaller, and thus stronger, fragments, (ii) FSP closes the pre-existing porosity; (iii) FSP randomizes the particle distribution. Hence, FSP positively impacts three of the main causes of ductility loss in metallic alloys. From an applicability viewpoint, this method has the potential to locally improve ductility of sheets at locations where forming involves large strains or of structural components at stress concentration points.
- Published
- 2017
17. Temperature dependence of the partially localized state in a 2D molecular nanoporous network
- Author
-
Ministerio de Economía y Competitividad (España), Consejo Superior de Investigaciones Científicas (España), Swiss National Science Foundation, Netherlands Organization for Scientific Research, European Research Council, Paul Scherrer Institute (Switzerland), University of Basel, Piquero-Zulaica, Ignacio, Nowakowska, Sylwia, Ortega, J. Enrique, Stöhr, Meike, Gade, Lutz H., Jung, Thomas A., Lobo-Checa, Jorge, Ministerio de Economía y Competitividad (España), Consejo Superior de Investigaciones Científicas (España), Swiss National Science Foundation, Netherlands Organization for Scientific Research, European Research Council, Paul Scherrer Institute (Switzerland), University of Basel, Piquero-Zulaica, Ignacio, Nowakowska, Sylwia, Ortega, J. Enrique, Stöhr, Meike, Gade, Lutz H., Jung, Thomas A., and Lobo-Checa, Jorge
- Abstract
Two-dimensional organic and metal-organic nanoporous networks can scatter surface electrons, leading to their partial localization. Such quantum states are related to intrinsic surface states of the substrate material. We further corroborate this relation by studying the thermally induced energy shifts of the electronic band stemming from coupled quantum states hosted in a metal-organic array formed by a perylene derivative on Cu(111). We observe by angle-resolved photoemission spectroscopy (ARPES), that both, the Shockley and the partially localized states, shift by the same amount to higher binding energies upon decreasing the sample temperature, providing evidence of their common origin. Our experimental approach and results further support the use of surface states for modelling these systems, which are expected to provide new insight into the physics concerning partially confined electronic states: scattering processes, potential barrier strengths, excited state lifetimes or the influence of guest molecules.
- Published
- 2017
18. Single chain dynamic structure factor of linear polymers in an all-polymer nano-composite
- Author
-
Ministerio de Ciencia e Innovación (España), Ministerio de Economía y Competitividad (España), Heinz Maier-Leibnitz Zentrum, Paul Scherrer Institute (Switzerland), European Commission, Arbe, Arantxa, Pomposo, José A., Asenjo-Sanz, Isabel, Bhowmik, D., Ivanova, Oxana, Kohlbrecher, Joachim, Colmenero de León, Juan, Ministerio de Ciencia e Innovación (España), Ministerio de Economía y Competitividad (España), Heinz Maier-Leibnitz Zentrum, Paul Scherrer Institute (Switzerland), European Commission, Arbe, Arantxa, Pomposo, José A., Asenjo-Sanz, Isabel, Bhowmik, D., Ivanova, Oxana, Kohlbrecher, Joachim, and Colmenero de León, Juan
- Abstract
We present neutron spin echo (NSE) experiments on the single chain dynamic structure factor of long poly(ethylene oxide) (PEO) linear chains in the presence of poly(methyl methacrylate)-based single-chain nanoparticles (SCNPs). A complementary structural characterization of the system discards a significant interpenetration of the components and reveals a close to globular conformation of the SCNPs when surrounded by PEO chains. Analogous NSE measurements on blends of PEO with the linear precursor chains of the SCNPs are taken as a reference for the dynamics study. For short times (below approximately 5 ns) PEO in both mixtures exhibits slowed down Rouse dynamics with respect to bulk PEO behavior. The similar deceleration observed in both environments suggests this effect to be due to the large dynamic asymmetry in the mixtures as evidenced by DSC experiments. More interestingly, the NSE results at longer times reveal a spectacular increase of the explored volume of PEO chains in the all-polymer nanocomposite that is absent in the blend with linear precursor chains: assuming the reptation model, the apparent tube diameter confining PEO chain motions in the nanocomposite is about 80% larger than in bulk PEO. This can be considered as the first NSE direct observation of disentanglement in a nanocomposite.
- Published
- 2016
19. Configuring electronic states in an atomically precise array of quantum boxes
- Author
-
Linköping University, University of Heidelberg, University of Basel, European Research Council, Netherlands Organization for Scientific Research, Sao Paulo Research Foundation, Eusko Jaurlaritza, Ministerio de Economía y Competitividad (España), Swiss Nanoscience Institute, Swiss National Science Foundation, University of Groningen, Paul Scherrer Institute (Switzerland), Japan Science and Technology Agency, Nowakowska, Sylwia, Piquero-Zulaica, Ignacio, Ortega, J. Enrique, Gade, Lutz H., Lobo-Checa, Jorge, Jung, Thomas A., Linköping University, University of Heidelberg, University of Basel, European Research Council, Netherlands Organization for Scientific Research, Sao Paulo Research Foundation, Eusko Jaurlaritza, Ministerio de Economía y Competitividad (España), Swiss Nanoscience Institute, Swiss National Science Foundation, University of Groningen, Paul Scherrer Institute (Switzerland), Japan Science and Technology Agency, Nowakowska, Sylwia, Piquero-Zulaica, Ignacio, Ortega, J. Enrique, Gade, Lutz H., Lobo-Checa, Jorge, and Jung, Thomas A.
- Abstract
A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.
- Published
- 2016
20. Neutron activation as an independent indicator of expected total yield in the production of 82Sr and 68Ge with 66 MeV protons
- Author
-
Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland, Vermeulen, C., Steyn, G. F., van der Meulen, N. P., Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland, Vermeulen, C., Steyn, G. F., and van der Meulen, N. P.
- Abstract
Introduction A method based on neutron activation is being developed to assist in resolving discrepancies between the expected yield and actual yield of radionuclides produced with the vertical-beam target station (VBTS) at iThemba LABS. The VBTS is routinely employed for multi-Ci batch productions of the radionuclide pairs 22Na/68Ga and 82Sr/68Ga using standardized natMg/natGa and natRb/natGa tandem targets, respectively [1]. The metal-clad target discs are bombarded with a primary beam of 66 MeV protons at an intensity of nominally 250 µA. The encapsulation materials are either Nb (for Mg and Ga) or stainless steel (for Rb) which serve to contain the molten target materials during bombardment and act as a barrier to the high-velocity cooling water which surrounds the targets in a 4π geometry. The natRb/natGa targets are typically bombarded according to a two-week cycle while natMg/natGa targets are bombarded on an ad-hoc basis, depending on a somewhat unpredictable 22Na demand. A too-large deviation between expected yield and actual yield has at times plagued this programme. These deviations can manifest both as an apparent loss or an apparent gain (relative to the expected yield) by up to about 15% in either direction. The resulting uncertainty of up to 30% (in the worst case) from one production batch to another can be costly and is unacceptable in a large-scale production regimen. This phenomenon is believed to be brought about by two types of problems: (1) Production losses, e.g. during the radio-chemical separation process or incomplete recovery of activated target material during the decapsulation step. (2) Incorrect values obtained for the accumulated proton charge. A problem of type (1) will always result in a loss of yield. A problem of type (2) can manifest as an apparent loss or gain. In an effort to get a handle on this second type of problem, neutron activation of suitable material samples, embedded in a target holder, is being investigated as an inde
- Published
- 2015
21. Synthesis of Gelatin Nanoparticles via Simple Coacervation
- Author
-
Mohanty, Biswaranjan; School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, Aswal, V. K.; Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, Kohlbrecher, J.; Paul Scherrer Institute, CH-5232 Villigen, Bohidar, H. B.; School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, Mohanty, Biswaranjan; School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, Aswal, V. K.; Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, Kohlbrecher, J.; Paul Scherrer Institute, CH-5232 Villigen, and Bohidar, H. B.; School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067
- Abstract
Dynamic light scattering (DLS), Transmission electron microscopy (TEM) and Small Angle Neutron Scattering (SANS) experiments are performed on biodegradable gelatin nanoparticles for size measurements and stability analysis. Though gelatin nanoparticles were previously prepared by the desolvation method [1], the simple coacervation [2] process is being proposed as a new and simple method to prepare very small and stable nanoparticles. Gelatin nanoparticles were found to have spherical conformation by transmission electron microscopy having a typical diameter 45±5nm, which was supported by dynamic light scattering data. This is very small compared to the same reported earlier for this polypeptide (∼200nm). Electrophoresis measurement showed that the nanoparticles present in the supernatant are negatively charged.
- Published
- 2015
22. Neutron Reflectometry – a tool to study self-diffusion on the (Sub)Nanometer scale in metastable materials
- Author
-
Technische Universität Clausthal, ETH Zürich, Paul Scherrer Institute, GKKS Research Center, Universität Leipzig, Schmidt, Harald, Hüger, Erwin, Geue, Thomas, Stahn, Jochen, Tietze, Ursula, Lott, Dieter, Technische Universität Clausthal, ETH Zürich, Paul Scherrer Institute, GKKS Research Center, Universität Leipzig, Schmidt, Harald, Hüger, Erwin, Geue, Thomas, Stahn, Jochen, Tietze, Ursula, and Lott, Dieter
- Published
- 2015
23. Saturation conditions in elongated single-cavity boiling water targets
- Author
-
iThemba LABS, Somerset West, South Africa, Paul Scherrer Institute, Villigen-PSI, Switzerland, Steyn, G. F., Vermeulen, C., iThemba LABS, Somerset West, South Africa, Paul Scherrer Institute, Villigen-PSI, Switzerland, Steyn, G. F., and Vermeulen, C.
- Abstract
Introduction It is shown that a very simple model reproduces the pressure versus beam current characteristics of elongated single-cavity boiling water targets for 18F production surprisingly well. By fitting the model calculations to measured data, values for a single free parameter, namely an overall heat-transfer coefficient, have been extracted for several IBA Nirta H218O targets. IBA recently released details on their new Nirta targets that have a conical shape, which constitutes an improvement over the original Nirta targets that have a cylindrical shape [1,2]. These shapes are shown schematically in FIGURE 1. A study by Alvord et al. [3] pointed out that elevated pressures and temperatures in excess of the saturation conditions may exist in a water target during bombardment. However, as long as the rate of condensation matches the rate of vaporization, the bulk of the system should remain at saturation conditions. Superheated regions are therefore likely to form but also likely to disappear rapidly, typically on the scale of a few milliseconds. Even though the boiling process is generally quite complex, enhanced by radiation-induced nucleation, the presence of fast mixing mechanisms in the water volume justifies some simplifications to be made. Materials and Methods The simplified model assumes that the bulk of the target water has a constant temperature, which is the same as the inner wall temperature of the cavity, Tw. A second simplification is to neglect the temperature difference across the target chamber wall, which is only justified if the wall is thin. The boiling is not explicitly taken into consideration, including the rather complex boiling behaviour at the Havar window, except to acknowledge that it is the main mixing mechanism. Large temperature gradients can briefly exist in the water medium but they also rapidly disappear. A further assumption is that a single, overall convective heat-transfer coefficient can be applied, which is constant over t
- Published
- 2015
24. Quantitative sampling and analysis of trace elements in atmospheric aerosols: impactor characterization and Synchrotron-XRF mass calibration.
- Author
-
Federal Roads Office (Switzerland), Federal Office for the Environment (Switzerland), Ministerio de Ciencia e Innovación (España), Paul Scherrer Institute (Switzerland), Richard, A., Bukowiecki, N., Lienemann, P., Furger, M., Fierz, M., Minguillón, María Cruz, Weideli, B., Figi, R., Flechsig, U., Appel, K., Prévôt, André S.H., Baltensperger, U., Federal Roads Office (Switzerland), Federal Office for the Environment (Switzerland), Ministerio de Ciencia e Innovación (España), Paul Scherrer Institute (Switzerland), Richard, A., Bukowiecki, N., Lienemann, P., Furger, M., Fierz, M., Minguillón, María Cruz, Weideli, B., Figi, R., Flechsig, U., Appel, K., Prévôt, André S.H., and Baltensperger, U.
- Published
- 2010
25. Microscopic dynamics in some engineering thermoplastics and a polymer membrane
- Author
-
Donostia International Physics Center, Eusko Jaurlaritza, Universidad del País Vasco, Paul Scherrer Institute (Switzerland), Arrese-Igor, Silvia, Quintana, I., Arbe, Arantxa, Colmenero de León, Juan, Alegría, Ángel, Frick, Bernhard, Janssen, S., Donostia International Physics Center, Eusko Jaurlaritza, Universidad del País Vasco, Paul Scherrer Institute (Switzerland), Arrese-Igor, Silvia, Quintana, I., Arbe, Arantxa, Colmenero de León, Juan, Alegría, Ángel, Frick, Bernhard, and Janssen, S.
- Abstract
Time-of-flight measurements on three engineering thermoplastics and a polymer membrane have been carried out below their glass-transition temperatures. The vibrational properties as well as the non-harmonic contributions to the scattering functions of these systems are discussed in a comparative way.
- Published
- 2004
26. Suppression of aqueous surface hydrolysis by monolayers of short chain organic amphiphiles.
- Author
-
Daniel Clifford, Thorsten Bartels-RauschPresent address: Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland., and D. J. Donaldson
- Abstract
Aqueous aerosols and other water surfaces in the environment may be coated with organic films, which can give rise to significant effects on gas–solution transport and surface reactivity. We have used acridine as a molecular fluorescent pH probe to examine the hydration of nitric acid and ammonia at both the uncoated and the organic-coated air–water interface. For uncoated samples, a transient decrease in pH is observed at the interface upon introduction of nitric acid vapour, followed by a relaxation to a final pH which is lower than the initial value. This long-time final change in pH is also measured in bulk pH measurements. Solutions having monolayer and sub-monolayer films of 1-octanol do not display the transient, but do show the same long-time change in pH. The degree of suppression of the surface pH transient depends directly on the amount of octanol present at the surface. Hydrolysis of ammonia at the water surface is also indicated by a surface pH transient which is also suppressed when a monolayer of octanol is present at the surface. Monolayers of butanol and of uncompressed stearic acid at the surface show little difference from the clean interface. The results are related to the concentration of available water at the interface. [ABSTRACT FROM AUTHOR]
- Published
- 2007
27. Locked into Copenhagen pledges -- Implications of short-term emission targets for the cost and feasibility of long-term climate goals
- Author
-
International Institute for Applied Systems Analysis (IIASA) ; International Institute for Applied Systems Analysis, Postdam Institute for Climate Impact Research ; Postdam Institute, Netherlands National Institute for Public Health and the Environment (RIVM) ; RIVM, Joint Global Change Research Institute ; Joint Global Change Research Institute, Wageningen University ; wageningen University, PBL Netherlands Environmental Assessment Agency ; PBL Netherlands Environmental Assessment Agency, Fondazione Eni Enrico Mattei (FEEM) ; Fondazione Eni Enrico Mattei, Potsdam Institute for Climate Impact Research (PIK) ; Potsdam Institute for Climate Impact Research, Centre International de Recherche sur l'Environnement et le Développement (CIRED) ; École des hautes études en sciences sociales (EHESS) - AgroParisTech - Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] - École des Ponts ParisTech (ENPC) - CNRS, équipe EDDEN ; Politiques publiques, ACtion politique, TErritoires (PACTE) ; CNRS - Université Pierre Mendès France (Grenoble 2 UPMF) - Sciences Po Grenoble - Institut d'études politiques de Grenoble (IEPG) - Université Joseph Fourier (Grenoble 1 UJF) - CNRS - Université Pierre Mendès France (Grenoble 2 UPMF) - Sciences Po Grenoble - Institut d'études politiques de Grenoble (IEPG) - Université Joseph Fourier (Grenoble 1 UJF), Paul Scherrer Institute ; Paul Scherrer Institute, Research Institute of Innovative Technology for the Earth ; Research Institute of Innovative Technology for the Earth, Bocconi University ; Bocconi University, National Technical University of Athens (NTUA) ; National Technical University of Athens, National Institute for Environmental Studies (NIES) ; National Institute for Environmental Studies, Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam ; affiliation inconnue, Chaire MPDD, European Project : 265139, ENV, FP7-ENV-2010, AMPERE(2011), Riahi, Keywan, Kriegler, Elmar, Johnson, Nils, Bertram, Christoph, Den Elzen, Michel, Eom, Jiyong, Schaeffer, Michiel, Edmonds, Jae, Isaac, Morna, Krey, Volker, Longden, Thomas, Luderer, Gunnar, Méjean, Aurélie, L Mccollum, David, Mima, Silvana, Turton, Hal, Van Vuuren, Detlef, Wada, Kenichi, Bosetti, Valentina, Capros, Pantelis, Criqui, Patrick, Hamdi-Cherif, Meriem, Kainuma, Mikiko, Edenhofer, Ottmar, International Institute for Applied Systems Analysis (IIASA) ; International Institute for Applied Systems Analysis, Postdam Institute for Climate Impact Research ; Postdam Institute, Netherlands National Institute for Public Health and the Environment (RIVM) ; RIVM, Joint Global Change Research Institute ; Joint Global Change Research Institute, Wageningen University ; wageningen University, PBL Netherlands Environmental Assessment Agency ; PBL Netherlands Environmental Assessment Agency, Fondazione Eni Enrico Mattei (FEEM) ; Fondazione Eni Enrico Mattei, Potsdam Institute for Climate Impact Research (PIK) ; Potsdam Institute for Climate Impact Research, Centre International de Recherche sur l'Environnement et le Développement (CIRED) ; École des hautes études en sciences sociales (EHESS) - AgroParisTech - Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] - École des Ponts ParisTech (ENPC) - CNRS, équipe EDDEN ; Politiques publiques, ACtion politique, TErritoires (PACTE) ; CNRS - Université Pierre Mendès France (Grenoble 2 UPMF) - Sciences Po Grenoble - Institut d'études politiques de Grenoble (IEPG) - Université Joseph Fourier (Grenoble 1 UJF) - CNRS - Université Pierre Mendès France (Grenoble 2 UPMF) - Sciences Po Grenoble - Institut d'études politiques de Grenoble (IEPG) - Université Joseph Fourier (Grenoble 1 UJF), Paul Scherrer Institute ; Paul Scherrer Institute, Research Institute of Innovative Technology for the Earth ; Research Institute of Innovative Technology for the Earth, Bocconi University ; Bocconi University, National Technical University of Athens (NTUA) ; National Technical University of Athens, National Institute for Environmental Studies (NIES) ; National Institute for Environmental Studies, Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam ; affiliation inconnue, Chaire MPDD, European Project : 265139, ENV, FP7-ENV-2010, AMPERE(2011), Riahi, Keywan, Kriegler, Elmar, Johnson, Nils, Bertram, Christoph, Den Elzen, Michel, Eom, Jiyong, Schaeffer, Michiel, Edmonds, Jae, Isaac, Morna, Krey, Volker, Longden, Thomas, Luderer, Gunnar, Méjean, Aurélie, L Mccollum, David, Mima, Silvana, Turton, Hal, Van Vuuren, Detlef, Wada, Kenichi, Bosetti, Valentina, Capros, Pantelis, Criqui, Patrick, Hamdi-Cherif, Meriem, Kainuma, Mikiko, and Edenhofer, Ottmar
- Abstract
International audience, This paper provides an overview of the AMPERE modeling comparison project with focus on the implications of near-term policies for the costs and attainability of long-term climate objectives. Nine modeling teams participated in the project to explore the consequences of global emissions following the proposed policy stringency of the national pledges from the Copenhagen Accord and Cancún Agreements to 2030. Specific features compared to earlier assessments are the explicit consideration of near-term 2030 emission targets as well as the systematic sensitivity analysis for the availability and potential of mitigation technologies. Our estimates show that a 2030 mitigation effort comparable to the pledges would result in a further "lock-in" of the energy system into fossil fuels and thus impede the required energy transformation to reach low greenhouse-gas stabilization levels (450 ppm CO2e). Major implications include significant increases in mitigation costs, increased risk that low stabilization targets become unattainable, and reduced chances of staying below the proposed temperature change target of 2 °C in case of overshoot. With respect to technologies, we find that following the pledge pathways to 2030 would narrow policy choices, and increases the risks that some currently optional technologies, such as carbon capture and storage (CCS) or the large-scale deployment of bioenergy, will become "a must" by 2030.
28. In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor
- Author
-
Walker, S M, Schwyn, D A, Mokso, R, Wicklein, M, Muller, T, Doube, M, Stampanoni, M, Krapp, H G, Taylor, G K, Imperial College London, Oxford, Paul Scherrer Institute, Swiss Fed Inst of Tech, and Zurich
- Subjects
animal structures - Abstract
Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for
29. Concentrations and Sources of VOCs during wintertime urban pollution at Fairbanks, Alaska
- Author
-
Temime-Roussel, Brice, Cesler‐maloney, Meeta, Chazeau, Benjamin, Ijaz, Amna, Brett, Natalie, Law, Kathy S., Bekki, Slimane, Mao, Jingqiu, Ketcherside, Damien, Selimovic, Vanessa, Hu, Lu, Simpson, William, d'Anna, B., Laboratoire Chimie de l'environnement (LCE), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry and Biochemistry [Fairbanks], University of Alaska [Fairbanks] (UAF), Geophysical Institute [Fairbanks], Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), STRATO - LATMOS, University of Montana, Laboratoire Chimie et Environnement (LCE), and Université Jean Monnet - Saint-Étienne (UJM)
- Subjects
[SDE]Environmental Sciences - Abstract
International audience; Fairbanks, Alaska is an urban area that has multiple local emission sources including power plants, domestic heating, and mobile sources, leading to severe wintertime pollution events during cold stable episodes where strong temperature inversions limit pollutant dispersion. In order to evaluate the individual contribution of these sources on Volatile Organic Compounds (VOCs) concentrations, ground-based measurements were carried out at high temporal resolution (2 minutes) using on-line instrumentation (Proton Transfer Reaction Time of Flight Mass Spectrometer: PTR-ToF-MS) during the winter 2022 in downtown Fairbanks as part of the Alaskan Layered Pollution and Chemical Analysis (ALPACA) 2022 field experiment. These measurements are recorded in the urban business district, which probably enhances the traffic component compared to domestic heating. From the detailed analysis of the mass spectra acquired in the 0-500 amu range, more than 330 ions were found of interest for further investigation.Source apportionment analysis was performed using Positive Matrix Factorization (PMF) resolved with the multilinear engine (ME-2) approach. Based on their mass spectral profiles, diurnal cycles and correlation with external collocated measurements (gaseous pollutants: CO, CO2, NOx, SO2, ozone, and specific particulate matter markers), the factors identified could be related to mobile sources (gasoline-like and diesel-like traffic), to heating (residential, diesel-like heating in addition to a couple of specific biomass burning, and to non-combustion sources attributed to secondary processes. This study contributes to the Air Pollution in the Arctic: Climate, Environment and Societies - Alaskan Layered Pollution And Chemical Analysis (PACES-ALPACA) initiative. The French contribution is part of the CASPA (Climate-relevant Aerosol Sources and Processes in the Arctic)/IPEV project.
- Published
- 2022
30. Mesoscopic fluctuating domains in strontium titanate
- Author
-
Benoît Fauqué, Philippe Bourges, Alaska Subedi, Kamran Behnia, Benoît Baptiste, Bertrand Roessli, Tom Fennell, Stéphane Raymond, Paul Steffens, Jeunes Équipes de l'Institut de Physique du Collège de France (JEIPCdF), Collège de France (CdF (institution))-Centre National de la Recherche Scientifique (CNRS), LLB - Nouvelles frontières dans les matériaux quantiques (NFMQ), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Paul Scherrer Institute (PSI), Laboratory for Neutron Scattering and Imaging [Paul Scherrer Institute] (LNS), Magnétisme et Diffusion Neutronique (MDN ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Institut Laue-Langevin (ILL), ANR-19-CE30-0014,CP-Insulators,Localisation à N corps dans les isolants à paires de Cooper(2019), and ANR-18-CE92-0020,IFAS,Interaction entre ferroélctricité et la supraconductivité(2018)
- Subjects
[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
International audience; Spatial correlations between atoms can generate a depletion in the energy dispersion of acoustic phonons. Two well-known examples are rotons in superfluid helium and the Kohn anomaly in metals. Here we report on the observation of a large softening of the transverse acoustic mode in quantum paraelectric SrTiO3 by means of inelastic neutron scattering. In contrast to other known cases, this softening occurs at a tiny wave vector implying spatial correlation extending over a distance as long as 40 lattice parameters. We attribute this to the formation of mesoscopic fluctuating domains due to the coupling between local strain and ferroelectric fluctuations. Thus, a hallmark of the ground state of insulating SrTiO3 is the emergence of hybridized optical-acoustic phonons. Mesoscopic fluctuating domains may play a role in quantum tunneling, which impedes the emergence of a finite macroscopic polarization.
- Published
- 2022
31. Retrieval of Aged Biomass-Burning Aerosol Properties by Using GRASP Code in Synergy with Polarized Micro-Pulse Lidar and Sun/Sky Photometer
- Author
-
Moallemi, Alireza, Modini, Rob, Lapyonok, Tatyana, Lopatin, Anton, Fuertes, David, Dubovik, Oleg, Giaccari, Philippe, Gysel-Beer, Martin, Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), and Paul Scherrer Institute (PSI)
- Subjects
[SDE]Environmental Sciences ,aged biomass-burning ,GRASP ,micro-pulse lidar ,smoke ,sun/sky photometer ,General Earth and Planetary Sciences - Abstract
Published by Copernicus Publications on behalf of the European Geosciences Union; International audience; The aim of this study was to analyze the potential of the GRASP code to retrieve optical and microphysical properties vertically-resolved using a synergy of polarized Micro-Pulse Lidar and Sun/sky photometer observations. The focus was on the long-range transport of Canadian aged-smoke plumes observed at El Arenosillo/Huelva (Spain) from 7 to 8 September 2017. Both the columnar and height-resolved microphysical and optical properties were assessed in comparison with AERONET data and vertical lidar-retrieved profiles, respectively. In particular, the vertical properties were also derived using the POLIPHON approach, which serves as a comparison for GRASP retrievals. The retrieved columnar aerosol microphysical properties (volume concentration and effective radius) showed an excellent agreement, with negligible differences, and were within the uncertainties. Nevertheless, for the retrieved columnar optical properties, we could only perform an individual comparison, due to the strong AERONET limitations, and although the agreements were generally good, no conclusions were obtained, due to differences in the real refractive index and due to the large uncertainties obtained in the retrievals. For the vertical profiles, however, we present a large advance that permits obtaining aerosol backscatter and extinction coefficients, plus volume concentrations, without the need for internal assumptions (extinction-to-backscatter ratios and depolarization measurements), due to the very good agreement observed between GRASP and the lidar-derived methodologies. However, the separation of the properties into their fine and coarse modes was not feasible using the one-wavelength elastic lidar measurements with the GRASP retrieval configuration used in this work. Therefore, current studies are being addressed to assessing the introduction of lidar depolarization in the GRASP code as an encouraged added-value, for the improvement of the retrieval of vertical aerosol properties.
- Published
- 2022
- Full Text
- View/download PDF
32. Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50
- Author
-
André S. H. Prévôt, Jean-Eudes Petit, Stefania Gilardoni, Giulia Stefenelli, Nicolas Marchand, Francesco Canonaco, Sebnem Aksoyoglu, Jianhui Jiang, Imad El Haddad, Urs Baltensperger, Olivier Favez, Amelie Bertrand, Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), Laboratoire Chimie de l'environnement (LCE), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC), Institut National de l'Environnement Industriel et des Risques (INERIS), Institute of Polar Sciences [Venezia-Mestre] (CNR-ISP), Consiglio Nazionale delle Ricerche [Roma] (CNR), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)
- Subjects
Box model ,010504 meteorology & atmospheric sciences ,Chemical speciation ,lcsh:QE1-996.5 ,Enthalpy of vaporization ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,CAMX ,Aerosol ,lcsh:Geology ,13. Climate action ,[SDE]Environmental Sciences ,Environmental science ,Biomass burning ,Volatility (chemistry) ,Air quality index ,0105 earth and related environmental sciences - Abstract
Increasing evidence from experimental studies suggests that the losses of semi-volatile vapors to chamber walls could be responsible for the underestimation of organic aerosol (OA) in air quality models that use parameters obtained from chamber experiments. In this study, a box model with a volatility basis set (VBS) scheme was developed, and the secondary organic aerosol (SOA) yields with vapor wall loss correction were optimized by a genetic algorithm based on advanced chamber experimental data for biomass burning. The vapor wall loss correction increases the SOA yields by a factor of 1.9–4.9 and leads to better agreement with measured OA for 14 chamber experiments under different temperatures and emission loads. To investigate the influence of vapor wall loss correction on regional OA simulations, the optimized parameterizations (SOA yields, emissions of intermediate-volatility organic compounds from biomass burning, and enthalpy of vaporization) were implemented in the regional air quality model CAMx (Comprehensive Air Quality Model with extensions). The model results from the VBS schemes with standard (VBS_BASE) and vapor-wall-loss-corrected parameters (VBS_WLS), as well as the traditional two-product approach, were compared and evaluated by OA measurements from five Aerodyne aerosol chemical speciation monitor (ACSM) or aerosol mass spectrometer (AMS) stations in the winter of 2011. An additional reference scenario, VBS_noWLS, was also developed using the same parameterization as VBS_WLS except for the SOA yields, which were optimized by assuming there is no vapor wall loss. The VBS_WLS generally shows the best performance for predicting OA among all OA schemes and reduces the mean fractional bias from −72.9 % (VBS_BASE) to −1.6 % for the winter OA. In Europe, the VBS_WLS produces the highest domain average OA in winter (2.3 µg m−3), which is 106.6 % and 26.2 % higher than VBS_BASE and VBS_noWLS, respectively. Compared to VBS_noWLS, VBS_WLS leads to an increase in SOA by up to ∼80 % (in the Balkans). VBS_WLS also leads to better agreement between the modeled SOA fraction in OA (fSOA) and the estimated values in the literature. The substantial influence of vapor wall loss correction on modeled OA in Europe highlights the importance of further improvements in parameterizations based on laboratory studies for a wider range of chamber conditions and field observations with higher spatial and temporal coverage.
- Published
- 2021
33. Stroboscopic neutron diffraction applied to fast time-resolved operando studies on Li-ion batteries (d-LiNi0.5Mn1.5O4vs. graphite)
- Author
-
Claire Villevieille, Vladimir Pomjakushin, Denis Sheptyakov, Cécile Tessier, Lucien Boulet-Roblin, Philippe Borel, Matériaux Interfaces ELectrochimie (MIEL), Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI), Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratory for Neutron Scattering and Imaging [Paul Scherrer Institute] (LNS), Paul Scherrer Institute (PSI), SAFT [Bordeaux], and Société des accumulateurs fixes et de traction (SAFT)
- Subjects
Materials science ,Neutron diffraction ,02 engineering and technology ,Crystal structure ,engineering.material ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,law.invention ,Ion ,law ,[CHIM]Chemical Sciences ,General Materials Science ,Neutron ,Graphite ,Renewable Energy, Sustainability and the Environment ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Spinel ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Cathode ,0104 chemical sciences ,Chemical physics ,engineering ,0210 nano-technology - Abstract
International audience; The high penetration ability of neutrons and dramatic character of crystal structure modifications occurring in battery materials during electrochemical cycling make neutron powder diffraction an obvious method to study the reaction mechanisms in rechargeable cells. Unfortunately, a typical balance of the available intensities of neutron beams and the amounts of active materials in commercial battery systems often limits the area of study to slow cycling rates or forces the use of too large amounts of materials, which in turn is incompatible with reliable electrochemistry. Herein we present a practical implementation of stroboscopic operando neutron diffraction to allow studying the structural changes occurring in a battery composed of a next generation 5 V disordered LiNi0.5Mn1.5O4 spinel cathode versus graphite during repetitive cycles at incredibly fast rates (up to 15C). We demonstrate that the graphite lithiation mechanisms at fast rates are different from those observed at reasonable rates. In particular, the earlier appearance and disappearance of lithiated graphite stages 1 and 2 in the charge and discharge processes, and also the suppression of the formation of the LiC18 phase can be associated with cell degradation at fast charge rates. This result is in agreement with the theoretical ‘shrinking-annuli’ model developed to simulate the electrochemical processes occurring during graphite lithiation at fast rates.
- Published
- 2020
34. Crystal-field states and defect levels in candidate quantum spin ice Ce$_{2}$Hf$_{2}$O$_{7}$
- Author
-
Porée, Victor, Lhotel, Elsa, Petit, Sylvain, Krajewska, Aleksandra, Puphal, Pascal, Clark, Adam H., Pomjakushin, Vladimir, Walker, Helen C., Gauthier, Nicolas, Gawryluk, Dariusz J., Sibille, Romain, Laboratory for Neutron Scattering and Imaging [Paul Scherrer Institute] (LNS), Paul Scherrer Institute (PSI), Magnétisme et Supraconductivité (NEEL - MagSup), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), LLB - Nouvelles frontières dans les matériaux quantiques (NFMQ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ISIS Neutron and Muon Source (ISIS), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Max Planck Institute for Solid State Research, Max-Planck-Gesellschaft, SLAC National Accelerator Laboratory (SLAC), and Stanford University
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science ,Strongly Correlated Electrons (cond-mat.str-el) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
International audience; We report the synthesis of powder and single-crystal samples of cerium pyrohafnate and their characterization using neutron diffraction, thermogravimetry and x-ray absorption spectroscopy. We evaluate the amount of nonmagnetic Ce4+ defects and use this result to interpret the spectrum of crystal-electric field transitions observed using inelastic neutron scattering. The analysis of these single-ion transitions indicates the dipole-octupole nature of the ground-state doublet and a significant degree of spin-lattice coupling. The single-ion properties calculated from the crystal-electric field parameters obtained spectroscopically are in good agreement with bulk magnetic susceptibility data down to about 1 K. Below this temperature, the behavior of the magnetic susceptibility indicates a correlated regime without showing any sign of magnetic long-range order or freezing down to 0.08 K. We conclude that Ce2Hf2O7 is another candidate to investigate exotic correlated states of quantum matter, such as the octupolar quantum spin ice recently argued to exist in the isostructural compounds Ce2Sn2O7 and Ce2Zr2O7.
- Published
- 2022
- Full Text
- View/download PDF
35. Electron-momentum dependence of electron-phonon coupling underlies dramatic phonon renormalization in YNi$_{2}$B$_{2}$C
- Author
-
Kurzhals, Philipp, Kremer, Geoffroy, Jaouen, Thomas, Nicholson, Christopher, Heid, Rolf, Nagel, Peter, Castellan, John-Paul, Ivanov, Alexandre, Muntwiler, Matthias, Rumo, Maxime, Salzmann, Bjoern, Strocov, vladimir, Reznik, Dmitry, Monney, Claude, Weber, Frank, Karlsruhe Institute of Technology (KIT), Université de Fribourg = University of Fribourg (UNIFR), Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), LLB - Nouvelles frontières dans les matériaux quantiques (NFMQ), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), Paul Scherrer Institute (PSI), Department of Physics [Boulder], University of Colorado [Boulder], Center for Experiments on Quantum Materials, University of Colorado at Boulder, Boulder, CO 80309, USA., We acknowledge local support from Daria Sostina during test experiments at the PEARL beamline at SLS. This project was supported from the Swiss National Science Foundation (SNSF) Grant No. P00P2_170597. We acknowledge the Paul Scherrer Institute, Villigen, Switzerland for provision of synchrotron radiation beamtime at beamline ADRESS of the Swiss Light Source. D.R. was supported by the DOE, Office of Basic Energy Sciences, Office of Science, under Contract No. DE-SC0006939. Open Access funding enabled and organized by Projekt DEAL., University of Fribourg, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, and ILL
- Subjects
[PHYS]Physics [physics] ,Superconductivity (cond-mat.supr-con) ,Condensed Matter::Materials Science ,Physics ,Science ,Condensed Matter - Superconductivity ,Condensed Matter::Superconductivity ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,FOS: Physical sciences ,ddc:530 ,Condensed Matter::Strongly Correlated Electrons ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect - Abstract
Electron-phonon coupling, i.e., the scattering of lattice vibrations by electrons and vice versa, is ubiquitous in solids and can lead to emergent ground states such as superconductivity and charge-density wave order. A broad spectral phonon line shape is often interpreted as a marker of strong electron-phonon coupling associated with Fermi surface nesting, i.e., parallel sections of the Fermi surface connected by the phonon momentum. Alternatively broad phonons are known to arise from strong atomic lattice anharmonicity. Here, we show that strong phonon broadening can occur in the absence of both Fermi surface nesting and lattice anharmonicity, if electron-phonon coupling is strongly enhanced for specific values of electron- momentum, k. We use inelastic neutron scattering, soft x-ray angle-resolved photoemission spectroscopy measurements and ab-initio lattice dynamical and electronic band structure calculations to demonstrate this scenario in the highly anisotropic tetragonal electron-phonon superconductor YNi2B2C. This new scenario likely applies to a wide range of compounds.
- Published
- 2022
- Full Text
- View/download PDF
36. Multiscale modelling for fusion and fission materials: the M4F project
- Author
-
M. Sauzay, F. Jiménez, Igor Simonovski, Chu-Chun Fu, P.-W. Ma, Pär Olsson, H. Namburi, G. Bonny, M. Prester, O. Libera, Francesca Boioli, L. Gélébart, Fernando Mota, Philippe Spätig, M.J. Konstantinović, D. Tanguy, Ermile Gaganidze, Mihai-Cosmin Marinica, C. Pareige, N. Kvashin, Karin Vogel, C. Guerrero, Susana Merino, C. Kaden, E. Meslin, M. Hernández-Mayoral, Qamar Hayat, Max Boleininger, L. Kurpaska, Gonzalo de Diego, R.R. Rajakrishnan, M. Clozel, S. Austin, C. Robertson, N. Anento, Lorenzo Malerba, Frédéric Mompiou, Anna Serra, Jarir Aktaa, C.J. Ortiz, P.M. Gueye, Alexander Bakaev, A. Kraych, Jacob B. J. Chapman, Jacek Jagielski, J. Zhao, Benoit Devincre, Dorival Gonçalves, T. Manninen, Ana Ruiz-Moreno, M. Vallet, Michal Trebala, J.P. Balbuena, N. Castin, P. Chekhonin, Frank Bergner, Mickaël Trochet, David Rodney, B. Gómez-Ferrer, Peter Hähner, Nigel M. Jennett, Sergei L. Dudarev, F. Soisson, R. Gatti, M.J. Caturla, A. Ulbricht, G. Kapoor, Tuncay Yalçinkaya, D. Terentyev, Marta Serrano, A. Kuronen, Tymofii Khvan, Simo-Pekka Hannula, L. Dupuy, Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. Doctorat en Física Computacional i Aplicada, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas [Madrid] (CIEMAT), Universidad de Alicante, Karlsruher Institut für Technologie (KIT), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Centre d'Etude de l'Energie Nucléaire (SCK-CEN), Royal Institute of Technology [Stockholm] (KTH ), CEA- Saclay (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Modélisation de la matière condensée et des interfaces (MMCI), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), European Commission - Joint Research Centre [Petten], Universitat Politècnica de Catalunya [Barcelona] (UPC), LEM, UMR 104, CNRS-ONERA, Université Paris-Saclay (Laboratoire d'étude des microstructures), ONERA-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), UK Atomic Energy Authority (UKAEA), Narodowe Centrum Badań Jądrowych (NCBJ), Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Aalto University, Coventry University (UK), Coventry University, Université de Liège, Centre d'élaboration de matériaux et d'études structurales (CEMES), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Paul Scherrer Institute (PSI), Middle East Technical University [Ankara] (METU), This work has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 755039 (M4F project)., Universidad de Alicante. Departamento de Física Aplicada, Grupo de Nanofísica, Física de la Materia Condensada, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Centrum výzkumu Řež, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), CIEMAT, University of Alicante, Karlsruhe Institute of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Belgian Nuclear Research Centre, KTH Royal Institute of Technology, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), European Commission Joint Research Centre Institute, BarcelonaTech, UK Atomic Energy Authority, National Centre for Nuclear Research, Université de Rouen, Department of Chemistry and Materials Science, University of Helsinki, Czech Academy of Sciences, Institut za Fiziku, Paul Scherrer Institute, Middle East Technical University, Aalto-yliopisto, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and OpenMETU
- Subjects
Nuclear and High Energy Physics ,Engineering ,Fission ,Materials Science (miscellaneous) ,02 engineering and technology ,01 natural sciences ,Fissió nuclear ,Multiscale modelling ,Física Aplicada ,0103 physical sciences ,Fusió nuclear ,Fusion ,Training programme ,QC ,Engineering & allied operations ,010302 applied physics ,Energies::Energia nuclear [Àrees temàtiques de la UPC] ,business.industry ,TK9001-9401 ,Nuclear fission ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Nuclear Energy and Engineering ,Work (electrical) ,TA ,Systems engineering ,Nuclear engineering. Atomic power ,M4F project ,Nuclear fusion ,ddc:620 ,0210 nano-technology ,business ,[CHIM.RADIO]Chemical Sciences/Radiochemistry - Abstract
The M4F project brings together the fusion and fission materials communities working on the prediction of radiation damage production and evolution and their effects on the mechanical behaviour of irradiated ferritic/martensitic (F/M) steels. It is a multidisciplinary project in which several different experimental and computational materials science tools are integrated to understand and model the complex phenomena associated with the formation and evolution of irradiation induced defects and their effects on the macroscopic behaviour of the target materials. In particular the project focuses on two specific aspects: (1) To develop physical understanding and predictive models of the origin and consequences of localised deformation under irradiation in F/M steels; (2) To develop good practices and possibly advance towards the definition of protocols for the use of ion irradiation as a tool to evaluate radiation effects on materials. Nineteen modelling codes across different scales are being used and developed and an experimental validation programme based on the examination of materials irradiated with neutrons and ions is being carried out. The project enters now its 4th year and is close to delivering high-quality results. This paper overviews the work performed so far within the project, highlighting its impact for fission and fusion materials science. Peer Reviewed L. Malerba a,*, M.J. Caturla b, E. Gaganidze c, C. Kaden d, M.J. Konstantinovi´c e, P. Olsson f, C. Robertson g, D. Rodney h, A.M. Ruiz-Moreno i, M. Serrano a, J. Aktaa c, N. Anento j, S. Austin i, A. Bakaev e, J.P. Balbuena b, F. Bergner d, F. Boioli k, M. Boleininger l, G. Bonny e, N. Castin e, J.B. J. Chapman l, P. Chekhonin d, M. Clozel m, B. Devincre k, L. Dupuy g, G. Diego a, S.L. Dudarev l, C.-C. Fu g, R. Gatti k, L. G´el´ebart g, B. G´omez-Ferrer n, D. Gonçalves g, C. Guerrero a, P.M. Gueye n, P. H¨ahner i, S.P. Hannula o, Q. Hayat p, M. Hern´andez-Mayoral a, J. Jagielski m, N. Jennett p, F. Jim´enez a, G. Kapoor d, A. Kraych h, T. Khvan e,q, L. Kurpaska m, A. Kuronen r, N. Kvashin j, O. Libera s, P.-W. Ma l, T. Manninen o, M.-C. Marinica g, S. Merino a, E. Meslin g, F. Mompiou t, F. Mota a, H. Namburi s, C.J. Ortiz a, C. Pareige n, M. Prester u, R.R. Rajakrishnan t, M. Sauzay g, A. Serra j, I. Simonovski i, F. Soisson g, P. Sp¨atig v, D. Tanguy h, D. Terentyev e, M. Trebala o, M. Trochet g, A. Ulbricht d, M.Vallet g, K. Vogel d, T. Yalcinkaya w, J. Zhao r a Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol´ogicas (CIEMAT), Madrid, Spain b Universidad de Alicante, San Vicente del Raspeig, Spain c Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany d Helmholtz-Zentrum Dresden-Rossendorf Ev (HZDR), Rossendorf, Germany e Studiecentrum voor Kernenergie / Centre d’´Etude de l’´Energie Nucl´eaire (SCK CEN), Mol, Belgium f KTH Royal Institute of Technology, Stockholm, Sweden g Universit´e Paris-Saclay, Commissariat `a l’´Energie Atomique et aux ´Energies Alternatives (CEA), Gif-sur-Yvette, France h Institut Lumi`ere Mati`ere (ILM), Centre National de la Recherche Scientifique, Lyon, France i Joint Research Centre (JRC)- European Commission, Petten, the Netherlands j Universitat Polit`ecnica de Catalunya, Barcelona, Spain k Laboratoire d’Etude des Microstructures (LEM), Centre National de la Recherche Scientifique, Chˆatillon, France l United Kingdom Atomic Energy Authority (UKAEA), Culham, UK m Narodowe Centrum Badan Jadrowych (NCBJ), Swierk, Poland n Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Mat´eriaux, 76000 Rouen, France o Aalto University, Espoo, Finland p Coventry University, UK q Universit´e de Li`ege, Belgium r Helsingin Yliopisto, Helsinki, Finland s Centrum Vyzkumu ˇReˇz S.R.O. (CVR), ˇReˇz, Czech Republic t Centre pour l’´Elaboration Elaboration de Mat´eriaux et pour l’´Etude des Structures (CEMES), Centre National de la Recherche Scientifique, Toulouse, France u Institut za Fiziku, Zagreb, Croatia v Paul Scherrer Institut (PSI), Villingen, Switzerland w Middle East Technical University (METU), Ankara, Turkey
- Published
- 2021
37. Real-time source apportionment of organic aerosols in three European cities
- Author
-
Chen, Gang, Canonaco, Francesco, Slowik, Jay G., Daellenbach, Kaspar R., Stavroulas, Iasonas, Mihalopoulos, Nikolaos, Gerasopoulos, Evangelos, Petit, Jean-Eudes, Favez, Olivier, Baltensperger, Urs, Prévôt, André S. H., Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), Institute for Environmental Research and Sustainable Development (IERSD), National Observatory of Athens (NOA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Institut National de l'Environnement Industriel et des Risques (INERIS)
- Subjects
[SDE]Environmental Sciences - Abstract
International audience; Atmospheric particulate matter (PM) has direct and indirect effects on public health, ecosystems and climate (IPCC, 2014). At the same time, European countries are still suffering from poor air quality: 70% of air quality monitoring stations within Europe exceed the annual PM2.5 value of the WHO guidelines (10 μg/m3) (European Environment Agency (EEA), 2020). Considering organic aerosol (OA) is one of the major components of PM (Jimenez et al., 2009), the knowledge of OA sources is extremely valuable for policymakers in order to design effective mitigation strategies.
- Published
- 2021
38. Ubiquity of amplitude-modulated magnetic ordering in the $H − T$ phase diagram of the frustrated non-Fermi-liquid YbAgGe
- Author
-
Garry J. McIntyre, Ch. Rüegg, D. F. McMorrow, Oksana Zaharko, C. B. Larsen, B. Fåk, Eric Ressouche, S.L. Bud'ko, D. G. Mazzone, Emmanuel Canévet, P. C. Canfield, Laboratory for Neutron Scattering and Imaging [Paul Scherrer Institute] (LNS), Paul Scherrer Institute (PSI), Department of Quantum Matter Physics [Geneva] (DQMP), University of Geneva [Switzerland], London Centre for Nanotechnology, University College of London [London] (UCL), Institut Laue-Langevin (ILL), ILL, Magnétisme et Diffusion Neutronique (MDN ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Ames Laboratory [Ames, USA], Iowa State University (ISU)-U.S. Department of Energy [Washington] (DOE), the Swiss National Science Foundation (Grant No. 200020-182536), and Université de Genève = University of Geneva (UNIGE)
- Subjects
Physics ,Condensed matter physics ,Neutron diffraction ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,Thermal conduction ,01 natural sciences ,Magnetic field ,Amplitude ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Fermi liquid theory ,010306 general physics ,0210 nano-technology ,Anisotropy ,Phase diagram - Abstract
International audience; YbAgGe contains a magnetic geometrically frustrated kagome-like lattice that also features significant local single-ion anisotropy. The electronic state is established by hybridization of $4f$ and conduction electrons leading to heavy electronic masses. The competition between these various interactions leads to nontrivial behavior under external magnetic field, including a sequence of magnetic phase transitions, non-Fermi-liquid states, and possibly a quantum critical point. We present a series of neutron diffraction experiments performed in the mK temperature range and under magnetic fields up to 8 T in the hexagonal plane, revealing the microscopic nature of the first four subsequent magnetic states of this phase diagram. The magnetic phases are associated with the propagation vectors $k_1$ = (${1\over 3}$ 0 ${1\over 3}$) for $H$ < 2 T, $k_2$ = (0 0 0.32) for 2 T < $H$ < 3 T, $k_1$ = (${1\over 3}$ 0 ${1\over 3}$) for 3 T < $H$ < 4.5 T, and $k_3$ = (0.195 0.195 0.38) for 4.5 T < $H$ < 7 T. Our structural refinements reveal a strong modulation of the magnetic moment amplitude in all phases. We observe that the ordered moments of the three magnetically different Yb sites become increasingly different in field, which complies with the principle local anisotropy directions relative to the field direction. While the ordered moments are aligned predominantly in the hexagonal plane, we also find a significant out-of-plane component and a ferromagnetic contribution above 2 T. We discuss possible scenarios that may evolve around the phase boundary at 4.5 T, which is associated with putative quantum criticality as identified by various bulk probes. We propose further steps that are required to better understand the microscopic interactions in this material.
- Published
- 2021
39. EANO guideline on the diagnosis and management of meningiomas
- Author
-
Christian Mawrin, Felix Sahm, Emilie Le Rhun, Michael D. Jenkinson, Emanuel Houdart, Florence Lefranc, Michael Weller, Pantelis Stavrinou, Morten Lund-Johansen, David Nieuwenhuizen, Riccardo Soffietti, Kita Sallabanda, Giuseppe Minniti, Roland Goldbrunner, Matthias Preusser, Ghazaleh Tabatabai, Damien C. Weber, University of Zurich, Goldbrunner, Roland, INSERM, Université de Lille, University Hospital of Cologne [Cologne], Heidelberg University Hospital [Heidelberg], Otto-von-Guericke-Universität Magdeburg = Otto-von-Guericke University [Magdeburg] [OVGU], Paul Scherrer Institute [PSI], Medizinische Universität Wien = Medical University of Vienna, Università degli Studi di Siena = University of Siena [UNISI], Hôpital Lariboisière, University hospital of Zurich [Zurich], Università degli studi di Torino = University of Turin [UNITO], Universität Zürich [Zürich] = University of Zurich [UZH], Otto-von-Guericke-Universität Magdeburg = Otto-von-Guericke University [Magdeburg] (OVGU), Paul Scherrer Institute (PSI), Università degli Studi di Siena = University of Siena (UNISI), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Lariboisière-Fernand-Widal [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Paris Diderot - Paris 7 (UPD7), Università degli studi di Torino = University of Turin (UNITO), and Universität Zürich [Zürich] = University of Zurich (UZH)
- Subjects
Vascular Endothelial Growth Factor A ,Cancer Research ,medicine.medical_specialty ,medicine.medical_treatment ,[SDV]Life Sciences [q-bio] ,610 Medicine & health ,Guidelines ,meningioma ,Radiosurgery ,Meningioma ,surgery ,10180 Clinic for Neurosurgery ,Pharmacotherapy ,molecular pathology ,Meningeal Neoplasms ,medicine ,Humans ,1306 Cancer Research ,Medical diagnosis ,Aged ,neuropathology ,Molecular pathology ,business.industry ,radiosurgery ,Guideline ,medicine.disease ,Magnetic Resonance Imaging ,10040 Clinic for Neurology ,Clinical trial ,2728 Neurology (clinical) ,Oncology ,Radionuclide therapy ,2730 Oncology ,Neurology (clinical) ,Radiology ,business - Abstract
Meningiomas are the most common intracranial tumors. Yet, only few controlled clinical trials have been conducted to guide clinical decision making, resulting in variations of management approaches across countries and centers. However, recent advances in molecular genetics and clinical trial results help to refine the diagnostic and therapeutic approach to meningioma. Accordingly, the European Association of Neuro-Oncology (EANO) updated its recommendations for the diagnosis and treatment of meningiomas. A provisional diagnosis of meningioma is typically made by neuroimaging, mostly magnetic resonance imaging. Such provisional diagnoses may be made incidentally. Accordingly, a significant proportion of meningiomas, notably in patients that are asymptomatic or elderly or both, may be managed by a watch-and-scan strategy. A surgical intervention with tissue, commonly with the goal of gross total resection, is required for the definitive diagnosis according to the WHO classification. A role for molecular profiling including gene panel sequencing and genomic methylation profiling is emerging. A gross total surgical resection including the involved dura is often curative. Inoperable or recurrent tumors requiring treatment can be treated with radiosurgery, if the size or the vicinity of critical structures allows that, or with fractionated radiotherapy (RT). Treatment concepts combining surgery and radiosurgery or fractionated RT are increasingly used, although there remain controversies regard timing, type, and dosing of the various RT approaches. Radionuclide therapy targeting somatostatin receptors is an experimental approach, as are all approaches of systemic pharmacotherapy. The best albeit modest results with pharmacotherapy have been obtained with bevacizumab or multikinase inhibitors targeting vascular endothelial growth factor receptor, but no standard of care systemic treatment has been yet defined.
- Published
- 2021
40. Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatite
- Author
-
Joeri Kok, Elin Törnquist, Deepak Bushan Raina, Sophie Le Cann, Vladimir Novak, Aurimas Širka, Lars Lidgren, Lorenzo Grassi, Hanna Isaksson, Lund University [Lund], Laboratoire Modélisation et Simulation Multi-Echelle (MSME), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, The Swiss Light Source (SLS) (SLS-PSI), Paul Scherrer Institute (PSI), Lithuanian University of Health Sciences [Kaunas, Lithuania], Swiss Light Source, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Lithuania University of Health Science, A.Mickeviciaus ave.2, Kaunas, Department of Biomedical Engineering, Lund University, 22100 Lund, Sweden, Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden, and LE CANN, Sophie
- Subjects
[SPI] Engineering Sciences [physics] ,Sulfates ,Biomedical Engineering ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Biocompatible Materials ,Calcium Sulfate ,Bone and Bones ,Biomaterials ,[SPI]Engineering Sciences [physics] ,Fractures, Bone ,Durapatite ,Mechanics of Materials ,Humans ,ComputingMilieux_MISCELLANEOUS - Abstract
Calcium sulfate/hydroxyapatite (CaS/HA) biomaterials have been investigated for use in several orthopedic applications. However, the mechanical interactions between the composite of CaS/HA and bone at the microscale are still unknown. The aim of this study was to determine if and how augmentation with CaS/HA alters the fracture behavior of bone. Eleven cylinders of trabecular bone were drilled from human femoral heads and cleaned from bone marrow. Among them, five cylinders were injected with CaS/HA to generate composite specimens, while the others were kept intact. One extra specimen of pure CaS/HA was prepared. All specimens were compressed in situ using synchrotron X-ray tomography and imaged at ∼2% strain intervals. Structural properties were calculated from the images in unloaded state and mechanical properties were determined from the load-curves. CaS/HA alone displayed the highest peak force and stiffness and the lowest strain at fracture. All composite specimens had a higher peak force than the pure bone specimens and the composite specimens had higher toughness than the pure CaS/HA specimen. Furthermore, the fracture behavior was analyzed further to characterize the local deformations. The pure bone specimens presented damage in multiple trabeculae and the CaS/HA specimen displayed sharp transition in strains, with low strain in one load step and large cracks in the next. The composite specimens deformed uniformly, with the CaS/HA preventing tissue damage and the bone preventing cracks in the CaS/HA from propagating through the specimen. In conclusion, using tomography with in situ loading, it was possible to show how CaS/HA can help prevent bone tissue damage before global failure.
- Published
- 2021
41. Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set
- Author
-
G. Stefenelli, J. Jiang, A. Bertrand, E. A. Bruns, S. M. Pieber, U. Baltensperger, N. Marchand, S. Aksoyoglu, A. S. H. Prévôt, J. G. Slowik, I. El Haddad, Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), Laboratoire Chimie de l'environnement (LCE), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC), Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME), EMPA Air Pollution/Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), and Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,010501 environmental sciences ,Combustion ,behavioral disciplines and activities ,7. Clean energy ,01 natural sciences ,lcsh:Chemistry ,chemistry.chemical_compound ,Lignin ,Cellulose ,Air quality index ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,lcsh:QC1-999 ,Aerosol ,lcsh:QD1-999 ,chemistry ,13. Climate action ,Environmental chemistry ,Stove ,Environmental science ,[CHIM.OTHE]Chemical Sciences/Other ,Pyrolysis ,Volatility (chemistry) ,lcsh:Physics - Abstract
Residential wood combustion remains one of the most important sources of primary organic aerosols (POA) and secondary organic aerosol (SOA) precursors during winter. The overwhelming majority of these precursors have not been traditionally considered in regional models, and only recently were lignin pyrolysis products and polycyclic aromatics identified as the principal SOA precursors from flaming wood combustion. The SOA yields of these components in the complex matrix of biomass smoke remain unknown and may not be inferred from smog chamber data based on single-compound systems. Here, we studied the ageing of emissions from flaming and smoldering-dominated wood fires in three different residential stoves, across a wide range of ageing temperatures (−10, 2 and 15 ∘C) and emission loads. Organic gases (OGs) acting as SOA precursors were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), while the evolution of the aerosol properties during ageing in the smog chamber was monitored by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). We developed a novel box model based on the volatility basis set (VBS) to determine the volatility distributions of the oxidation products from different precursor classes found in the emissions, grouped according to their emission pathways and SOA production rates. We show for the first time that SOA yields in complex emissions are consistent with those reported in literature from single-compound systems. We identify the main SOA precursors in both flaming and smoldering wood combustion emissions at different temperatures. While single-ring and polycyclic aromatics are significant precursors in flaming emissions, furans generated from cellulose pyrolysis appear to be important for SOA production in the case of smoldering fires. This is especially the case at high loads and low temperatures, given the higher volatility of furan oxidation products predicted by the model. We show that the oxidation products of oxygenated aromatics from lignin pyrolysis are expected to dominate SOA formation, independent of the combustion or ageing conditions, and therefore can be used as promising markers to trace ageing of biomass smoke in the field. The model framework developed herein may be generalizable for other complex emission sources, allowing determination of the contributions of different precursor classes to SOA, at a level of complexity suitable for implementation in regional air quality models.
- Published
- 2019
42. Spatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate
- Author
-
Michael Grabner, Tatjana Boettger, Sławomira Pawełczyk, Marika Haupt, V. R. Switsur, Adomas Vitas, Christina E. Reynolds-Henne, Michel Stievenard, Marek Krąpiec, Luigi Todaro, Neil J. Loader, Eloni Sonninen, Gerhard H. Schleser, Martin Weigl, Monique Pierre, Katja Rinne-Garmston, David Frank, Matthias Saurer, Isabel Dorado-Liñán, Malgorzata Szymaszek, Laia Andreu-Hayles, Tatiana A. Shestakova, Gerhard Helle, Markus Leuenberger, M. Filot, Hamid Marah, Emmi Hilasvuori, John S. Waterhouse, Kerstin Treydte, Anna Pazdur, Antonio Saracino, Jordi Voltas, Valérie Masson-Delmotte, Jan Esper, Rupert Wimmer, Valérie Daux, Zdzisław Bednarz, Högne Jungner, Octavi Planells, Maarit Kalela‐Brundin, Rūtilė Pukienė, Angelo Rita, Frank Berninger, Emilia Gutiérrez, Elżbieta Szychowska‐Kra̧piec, Shestakova, Ta, Voltas, J, Saurer, M, Berninger, F, Esper, J, Andreu-Hayles, L, Daux, V, Helle, G, Leuenberger, M, Loader, Nj, Masson-Delmotte, V, Saracino, Antonio, Waterhouse, J, Schleser, Gh, Bednarz, Z, Boettger, T, Dorado-Liñán, I, Filot, M, Frank, D, Grabner, M, Haupt, M, Hilasvuori, E, Jungner, H, Kalela-Brundin, M, Krąpiec, M, Marah, H, Pawełczyk, S, Pazdur, A, Pierre, M, Planells, O, Pukienė, R, Reynolds-Henne, Ce, Rinne, Kt, Rita, Angelo, Sonninen, E, Stiévenard, M, Switsur, Vr, Szychowska-Krąpiec, E, Szczepanek, M, Todaro, L, Treydte, K, Vitas, A, Weigl, M, Wimmer, R, Gutiérrez, E, Hickler, T., Rinne‐Garmston , Katja T., The Woods Hole Research Center, Woods Hole Oceanographic Institution (WHOI), Department of Crop and Forest Sciences, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center (UdL-Agrotecnio), Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Department of Forest Sciences [Helsinki], Faculty of Agriculture and Forestry [Helsinki], University of Helsinki-University of Helsinki, Department of Geography [Mainz], Johannes Gutenberg - Universität Mainz (JGU), Tree‐Ring Laboratory, Lamont–Doherty Earth Observatory of Columbia University, Palisades, New York, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Géochrononologie Traceurs Archéométrie (GEOTRAC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), German Research Centre for Geosciences - Helmholtz-Centre Potsdam (GFZ), Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern]-Universität Bern [Bern], Department of Geography [Swansea], Swansea University, University of Naples Federico II, Anglia Ruskin University (ARU), Institut für Bio- und Geowissenschaften [Jülich], Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Department of Forest Biodiversity, University of Agriculture in Krakow, Department of Isotope Hydrology, Helmholtz Centre for Environmental Research ‒ UFZ, Halle, Germany, Centro de Investigacion Forestal (INIA-CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria = National Institute for Agricultural and Food Research and Technology (INIA), School of Geography and Development and Laboratory of Tree-Ring Research, University of Arizona, University of Natural Resources and Life Sciences (BOKU), Laboratory of Chronology, University of Helsinki, Helsinki, Finland, Forestry Museum, Lycksele, Sweden, AGH University of Science and Technology [Krakow, PL] (AGH UST), Laboratoire d'hydrologie isotopique, CNESTEN, Maroc., Chercheur indépendant, Silesian University of Technology, Department of Biological Evolution, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain, The State Scientific Research Institute Nature Research Centre, Vilnius, Lithuania, Oeschger Centre for Climate Change Research (OCCR), University of Bern, Soil Ecosystems, Natural Resources Institute Finland (Luke), University of Basilicata, Department of Radioisotopes, Silesian University of Technology, Gliwice, Poland, Environmental Research Centre, Vytautas Magnus University, Kaunas, Lithuania, Holzforschung Austria, University of Natural Resources and Applied Life Sciences, IFA-Tulln, University of Barcelona, Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE), University of Naples Federico II = Università degli studi di Napoli Federico II, Laboratory of Tree-Ring Research [University of Arizona] (LTRR), Universität für Bodenkultur Wien = University of Natural Resources and Life [Vienne, Autriche] (BOKU), Natural Resources Institute Finland (LUKE), and Università degli studi della Basilicata [Potenza] (UNIBAS)
- Subjects
0106 biological sciences ,Drought stress ,010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,Climate change ,Fractionation ,010603 evolutionary biology ,01 natural sciences ,Panoply ,Dendroecology ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Isotope fractionation ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Evapotranspiration ,ddc:550 ,Ecosystem ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Global and Planetary Change ,Ecology ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Tree rings ,Carbon isotopes ,15. Life on land ,[SDE.ES]Environmental Sciences/Environmental and Society ,Tree (data structure) ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,13. Climate action ,Isotopes of carbon ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,[SHS.ENVIR]Humanities and Social Sciences/Environmental studies ,Environmental science ,carbon isotopes, climate change, dendroecology, drought stress, European forests, latitudinal gradients, Pinus, Quercus, stomatal control, tree rings ,European forests - Abstract
Aim The aim was to decipher Europe‐wide spatio‐temporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming. Location Europe and North Africa (30‒70° N, 10° W‒35° E). Time period 1901‒2003. Major taxa studied Temperate and Euro‐Siberian trees. Methods We characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree‐ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic, boreal, cold continental, Mediterranean and temperate). We also examine whether TRWi shows variable coupling with leaf‐level gas exchange, inferred from indexed carbon isotope discrimination of tree‐ring cellulose (Δ13Ci). Results We find spatial autocorrelation for TRWi and Δ13Ci extending over a maximum of 1,000 km among forest stands. However, growth synchrony is not uniform across Europe, but increases along a latitudinal gradient concurrent with decreasing temperature and evapotranspiration. Latitudinal relationships between TRWi and Δ13Ci (changing from negative to positive southwards) point to drought impairing carbon uptake via stomatal regulation for water saving occurring at forests below 60° N in continental Europe. An increase in forest growth synchrony over the 20th century together with increasingly positive relationships between TRWi and Δ13Ci indicate intensifying impacts of drought on tree performance. These effects are noticeable in drought‐prone biomes (Mediterranean, temperate and cold continental). Main conclusions At the turn of this century, convergence in growth synchrony across European forest ecosystems is coupled with coordinated warming‐induced effects of drought on leaf physiology and tree growth spreading northwards. Such a tendency towards exacerbated moisture‐sensitive growth and physiology could override positive effects of enhanced leaf intercellular CO2 concentrations, possibly resulting in Europe‐wide declines of forest carbon gain in the coming decades. Spanish Government, Grant/Award Number: AGL2015‐68274 ‐C3 ‐3‐R; Sixth Framework Programme, Grant/AwardNumber: EVK2‐2001 ‐00237; Seventh Framework Programme, Grant/AwardNumber: COST ‐STSM ‐ECOST ‐STSM ‐FP1304‐140915‐066395 and ERANET‐Mundus program (Grant agreement 20112573)
- Published
- 2019
43. A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe
- Author
-
Bressi, M., Cavalli, F., Putaud, J.P., Fröhlich, R., Petit, J.-E., Aas, W., Äijälä, M., Alastuey, A., Allan, J.D., Aurela, M., Berico, M., Bougiatioti, A., Bukowiecki, N., Canonaco, F., Crenn, V., Dusanter, S., Ehn, M., Elsasser, M., Flentje, H., Graf, P., Green, D.C., Heikkinen, L., Hermann, H., Holzinger, R., Hueglin, C., Keernik, H., Kiendler-Scharr, A., Kubelová, L., Lunder, C., Maasikmets, M., Makeš, O., Malaguti, A., Mihalopoulos, N., Nicolas, J.B., O'Dowd, C., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A., Schlag, P., Schwarz, J., Sciare, J., Slowik, J., Sosedova, Y., Stavroulas, I., Teinemaa, E., Via, M., Vodička, P., Williams, P.I., Wiedensohler, A., Young, D.E., Zhang, S., Favez, O., Minguillón, M.C., Prevot, A.S.H., Sub Atmospheric physics and chemistry, Energy, Resources & Technological Change, Marine and Atmospheric Research, Norwegian Institute for Air Research (NILU), University of Helsinki, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, School of Earth, Atmospheric and Environmental Sciences [Manchester] (SEAES), University of Manchester [Manchester], Finnish Meteorological Institute (FMI), Environmental Chemical Processes Laboratory [Heraklion] (ECPL), Department of Chemistry [Heraklion], University of Crete [Heraklion] (UOC)-University of Crete [Heraklion] (UOC), Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Nord Europe), Institut Mines-Télécom [Paris] (IMT), Institute for Atmospheric and Earth System Research (INAR), German Meteorological Service, EMPA Air Pollution/Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), King‘s College London, Leibniz Institute for Tropospheric Research (TROPOS), Institute for Marine and Atmospheric Research [Utrecht] (IMAU), Utrecht University [Utrecht], EMPA, Swiss Federal Laboratories for Materials Testing and Research, Estonian Environmental Research Center, Tallinn, Estonia, Institut für Energie- und Klimaforschung - Troposphäre (IEK-8), Forschungszentrum Jülich GmbH, CESNET [Prague], Czech Academy of Sciences [Prague] (CAS), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Landwirtschaftliches Zentrum, Tallinn University, University of Crete [Heraklion] (UOC), Centre for Climate and Air Pollution Studies [Galway] (C-CAPS), National University of Ireland [Galway] (NUI Galway), Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Université de Strasbourg (UNISTRA), Instituto Universitario de Investigacion de Nanocienca de Aragon, University of Zaragoza - Universidad de Zaragoza [Zaragoza], Institute of Chemical Technology [Prague] (ICT), Cancer Research UK Manchester Institute, Department of Earth Sciences [Manchester], Institut National de l'Environnement Industriel et des Risques (INERIS), JRC Institute for Environment and Sustainability (IES), European Commission - Joint Research Centre [Ispra] (JRC), Chimie Atmosphérique Expérimentale (CAE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai), Centre for Energy and Environment (CERI EE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Norwegian Ministry of Climate and Environment Strategic Institute Program, Spanish Ministry of Economy and Competitiveness, Météo-France, EMME-CARE, UK National Research Council, UK Department of Environment, Food and Rural Affairs (DEFRA), Greek Operational Programme' Competitiveness, Entrepreneurship and Innovation' (NSRF 2014–2020), European Regional Development Fund, French Ministry of Higher Education and Research, French CNRS, French Regional Council 'Hauts-de-France', Czech ACTRIS-CZ RI (CZ.02.1.01/0.0/0.0/16_013/0001315), EPA Ireland, Irish Department of Communications, Climate Action and Environment (DCCAE), German Federal Environmental Agency, French ADEME, COST COLOSSAL CA16109, PRISMA project (CGL2012-39623-C02-1), ClearfLo project (NE/H008136/1), 'Panhellenic infrastructure for atmospheric composition and climate change, PANACEA' (MIS 5021516), CPER CLIMIBIO, CPER IRENI, Czech MEYS’s project (LTC18068), German Ultrafine Aerosol Network GUAN (F&E 370343200, F&E 371143232), ChArMEx project, ANR-11-LABX-0005,Cappa,Physiques et Chimie de l'Environnement Atmosphérique(2011), European Project: 262254,EC:FP7:INFRA,FP7-INFRASTRUCTURES-2010-1,ACTRIS(2011), European Project: 654109,H2020,H2020-INFRAIA-2014-2015,ACTRIS-2(2015), European Project: 603445,EC:FP7:ENV,FP7-ENV-2013-two-stage,BACCHUS(2013), Sub Atmospheric physics and chemistry, Energy, Resources & Technological Change, Marine and Atmospheric Research, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Centre for Energy and Environment (CERI EE - IMT Nord Europe), Department of Physics, European Commission, Alastuey, Andrés [0000-0002-5453-5495], Minguillón, María Cruz [0000-0002-5464-0391], Alastuey, Andrés, and Minguillón, María Cruz
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Chemical composition ,010501 environmental sciences ,01 natural sciences ,Environmental pollution ,German ,Meteorology. Climatology ,11. Sustainability ,ddc:550 ,Aerosoles ,AMS ,ORGANIC AEROSOL ,ComputingMilieux_MISCELLANEOUS ,General Environmental Science ,media_common ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Time resolution ,Mass sprectrometry ,TD172-193.5 ,SOURCE APPORTIONMENT ,[SDE]Environmental Sciences ,language ,MONTSEC SOUTHERN PYRENEES ,Phenomenology ,Research center ,Chemical compositions ,Entrepreneurship ,Higher education ,[SDE.MCG]Environmental Sciences/Global Changes ,AIR-QUALITY ,European Regional Development Fund ,Library science ,114 Physical sciences ,SPECIATION MONITOR ,Political science ,media_common.cataloged_instance ,European union ,Aerosol ,1172 Environmental sciences ,0105 earth and related environmental sciences ,RESOLVED MEASUREMENTS ,Government ,Mass spectrometry ,business.industry ,COMPONENTS ,language.human_language ,CARBONACEOUS AEROSOLS ,13. Climate action ,MASS-SPECTROMETER ,QC851-999 ,business - Abstract
Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62°N and 10° W – 26°E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in mid-latitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (μg/m³) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 μg/m³ at half of the sites., This study was partially supported by the European Union's projects ACTRIS (EU FP7-262254) and ACTRIS-2 (EU Horizon 2020–654109). COST Action CA16109 COLOSSAL, Chemical On-Line cOmpoSition and Source Apportionment of fine aerosoL, is acknowledged. The ACSM observations at Birkenes was funded by the Norwegian Ministry of Climate and Environment Strategic Institute Program. IDAEA-CSIC (3 datasets: BCN, MSA, MSY) was partially supported by the Spanish Ministry of Economy and Competitiveness and FEDER funds under the PRISMA project (CGL 2012-39623-C02-1). The London measurements were supported by the UK National Research Council through the ClearfLo project and a PhD studentship (grant refs. NE/H008136/1 and NE/I528142/1) and the Department of Environment, Food and Rural Affairs (DEFRA). ECPL personel, namely Nikolaos Mihalopoulos, Aikaterini Bougiatioti and Iasonas Stavroulas acknowledge support by the project “Panhellenic infrastructure for atmospheric composition and climate change, PANACEA” (MIS 5021516) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme” Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund). IMT Lille Douai acknowledges financial support from the CaPPA (Chemical and Physical Properties of the Atmosphere) project funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract ANR-11-LABX-0005-01, and two CPER projects funded by the French Ministry of Higher Education and Research, the CNRS, the Regional Council “Hauts-de-France” and the European Regional Development Fund (ERDF): Climibio, and IRENI (additionally financed by the Communauté Urbaine de Dunkerque). S. Zhang thanks IMT Lille Douai and the Regional Council “Hauts-de-France” for her PhD grant. Prague co-authors would like to acknowledge a Czech MEYS's project under INTER-EXCELENCE INTERCOST program under grant agreement LTC18068 and from European Regional Development Fund-Project under the grant ACTRIS-CZ RI (CZ.02.1.01/0.0/0.0/16_013/0001315). EPA Ireland, Department of Communications, Climate Action and Environment (DCCAE) and the European Union's Seventh Framework Programme (FP7/2007–2013) project BACCHUS under grant agreement n_603445 are acknowledged for research support at Mace Head. The physical measurements were also funded by the German Ultrafine Aerosol Network GUAN, which was jointly established with help of the German Federal Environment Ministry (BMU) grants F&E 370343200 (German title: “Erfassung der Zahl feiner und ultrafeiner Partikel in der Auβenluft”), 2008–2010, and F&E 371143232 (German title: “Trendanalysen gesundheitsgefährdender Fein-und Ultrafeinstaubfraktionen unter Nutzung der im German Ultrafine Aerosol Network (GUAN) ermittelten Immissionsdaten durch Fortführung und Interpretation der Messreihen”) 2012–2014. We also acknowledge the WCCAP (World Calibration Center for Aerosol Physics) as part of the WMO-GAW program. The WCCAP is base-funded by the German Federal Environmental Agency (Umweltbundesamt), Germany. Support by the European Regional Development Funds (EFRE – Europe funds Saxony) is gratefully acknowledged. Atmospheric measurements performed in Corsica is part of the ChArMEx project supported by CNRS-INSU, ADEME, Météo-France and CEA in the framework of the multidisciplinary programme MISTRALS (Mediterranean Integrated Studies aT Regional And Local Scales; http://mistrals-home.org/, last access: June 10, 2020). Final data processing of these measurements has been supported by the EMME-CARE (Eastern Mediterranean and Middle East Climate and Atmosphere Research Center) which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 856612 and the Cyprus Government. The measurements in Switzerland were supported by the Federal Office for the Environment. We thank the International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG) for the opportunity to perform experiments on the Jungfraujoch.
- Published
- 2021
44. Evaluated kinetic and photochemical data for atmospheric chemistry: volume VIII – gas-phase reactions of organic species with four, or more, carbon atoms ( ≥ C4)
- Author
-
Mellouki, Abdelwahid, Ammann, Markus, Cox, R. Anthony, Crowley, John, HERRMANN, HARTMUT, Jenkin, Michael, McNeill, V. Faye, Troe, Jürgen, Wallington, Timothy, Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences de l'Ingénierie et des Systèmes (INSIS), Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), University of Cambridge [UK] (CAM), Max Planck Institute for Chemistry, Division of Atmospheric Chemistry, 55128 Mainz, Germany, Atmospheric Chemistry Dept. (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany, Atmospheric Chemistry Services, Okehampton, Devon, EX20 4QB, UK, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Institute for Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany, Ford Motor Company, Research and Advanced Engineering, Mail Drop RIC-2122, Dearborn, Michigan 48121-2053, USA, Laboratory of Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland, and Centre for Atmospheric Science, Dept. of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EP, UK
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDE.MCG]Environmental Sciences/Global Changes ,[SDE]Environmental Sciences - Abstract
International audience; Abstract. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase thermal and photochemical reactions of organic species with four, or more, carbon atoms (≥ C4) available on the IUPAC website in 2021, including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. The present work is a continuation of volume II (Atkinson et al., 2006), with new reactions and updated data sheets for reactions of HO (77 reactions) and NO3 (36 reactions) with ≥ C4 organics, including alkanes, alkenes, dienes, aromatics, oxygenated, organic nitrates and nitro compounds in addition to photochemical processes for nine species. The article consists of a summary table (Table 1), containing the recommended kinetic parameters for the evaluated reactions, and a supplement containing the data sheets, which provide information upon which recommendations are made.
- Published
- 2021
45. Magnetic-field control of magnetoelastic coupling in the rare-earth pyrochlore Tb₂Ti₂O₇
- Author
-
Turrini, A. A., Ruminy, M, Bourdarot, F., Stuhr, U., White, J. S., Tucker, G., Skoulatos, M., Núñez-Valdez, M., Fennell, T., SwissFEL, Paul Scherrer Institut, Magnétisme et Diffusion Neutronique (MDN ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratory for Neutron Scattering and Imaging [Paul Scherrer Institute] (LNS), Paul Scherrer Institute (PSI), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), and Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
- Subjects
[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
In the rare-earth pyrochlore Tb2Ti2O7, there are strong interactions between crystal field and phonon excitations resulting in the hybridization of crystal field excitations with both acoustic and optical phonon excitations, which may be implicated in its evasion of the expected long-range ordered states. The magnetoelastic coupling mechanisms are thought to involve large quadrupolar matrix elements between the crystal field states that allow them to couple with intersecting phonons. The character of the hybridized modes can be determined by polarized neutron scattering, as is done here for the case of a crystal field-optical phonon coupling. The coupling mechanism can be further investigated by applying a magnetic field to modify the energies of the crystal field states relative to the phonon spectrum. For a weakly dispersive optical phonon and crystal field level, this has the effect of detuning the quasidegeneracy necessary for hybridization and suppressing the magnetoelastic signal. For a strongly dispersive acoustic phonon crossing a crystal field level, the magnetic field moves the crystal field level, changing the wave vector and energy at which the modes intersect. The field-driven modification of matrix elements for dipole and quadrupole operators involved in the formation of the coupled mode results in the suppression of the magnetoelastic coupling. As the crystal field states shift to higher energy and the magnetoelastic coupling is suppressed, the spin system is driven closer to classically anticipated ordered structures.
- Published
- 2021
46. Interdependent scaling of long-range oxygen and magnetic ordering in nonstoichiometric Nd 2 NiO 4.10
- Author
-
Maity, Sumit Ranjan, Ceretti, Monica, Keller, Lukas, Schefer, Jürg, Meven, Martin, Pomjakushina, Ekaterina, Paulus, Werner, Laboratory for Neutron Scattering and Imaging [Paul Scherrer Institute] (LNS), Paul Scherrer Institute (PSI), Department of Quantum Matter Physics, University of Geneva, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institute of Crystallography, RWTH Aachen University, Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH at Heinz Maier-Leibnitz Zentrum (MLZ), and Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut
- Subjects
[CHIM.MATE]Chemical Sciences/Material chemistry ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2021
47. Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols
- Author
-
Bianchi, F., Junninen, H., Bigi, A., Sinclair, V., Dada, L., Hoyle, C., Zha, Q., Yao, L., Ahonen, L., Bonasoni, P., Buenrostro Mazon, S., Hutterli, M., Laj, P., Lehtipalo, K., Kangasluoma, J., Kerminen, V.-M., Kontkanen, J., Marinoni, A., Mirme, S., Molteni, U., Petäjä, T., Riva, M., Rose, Clémence, Sellegri, K., Yan, C., Worsnop, D., Kulmala, M., Baltensperger, U., Dommen, J., Institute for Atmospheric and Earth System Research (INAR), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, University of Modena and Reggio Emilia, Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), CNR Institute of Atmospheric Sciences and Climate (ISAC), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Tofwerk AG, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Finnish Meteorological Institute (FMI), University of Tartu, IRCELYON-Catalytic and Atmospheric Reactivity for the Environment (CARE), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Physique (LaMP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Aerodyne Research Inc., Beijing University of Chemical Technology, University of Helsinki, Consiglio Nazionale delle Ricerche (CNR), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Polar and arctic atmospheric research (PANDA), INAR Physics, Air quality research group, and Global Atmosphere-Earth surface feedbacks
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,respiratory system ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,114 Physical sciences ,complex mixtures - Abstract
Aerosols of biogenic and anthropogenic origin affect the total radiative forcing of global climate. Poor knowledge of the pre-industrial aerosol concentration and composition, in particular of particles formed directly in the atmosphere from gaseous precursors, constitutes a large uncertainty in the anthropogenic radiative forcing. Investigations of new particle formation at pre-industrial-like conditions can contribute to the reduction of this uncertainty. Here we present observations taken at the remote Nepal Climate Observatory Pyramid station at 5,079 m above sea level, a few kilometres from the summit of Everest. We show that up-valley winds funnel gaseous aerosol precursors to higher altitudes. During this transport, these are oxidized into compounds of very low volatility, which rapidly form a large number of aerosol particles. These are then transported into the free troposphere, which suggests that the whole Himalayan region may act as an 'aerosol factory' and contribute substantially to the free tropospheric aerosol population. Aerosol production in this region occurs mainly via organic precursors of biogenic origin with little evidence of the involvement of anthropogenic pollutants. This process is therefore likely to be essentially unchanged since the pre-industrial period, and may have been one of the major sources that contributes to the upper tropospheric aerosol population during that time. Newly formed biogenic particles in the Himalaya increase free-tropospheric background aerosol concentration by a factor of up to two.
- Published
- 2020
48. Sources of particulate-matter air pollution and its oxidative potential in Europe
- Author
-
Jeroen Kuenen, Giulia Stefenelli, Arjo Segers, Alexandre Albinet, Laure-Estelle Cassagnes, Jean Luc Jaffrezo, Jianhui Jiang, Josef Dommen, Imad El Haddad, Samuël Weber, Kaspar R. Daellenbach, Olivier Favez, Athanasia Vlachou, Zaira Leni, Sebnem Aksoyoglu, Francesco Canonaco, Gaëlle Uzu, Urs Baltensperger, Marianne Geiser, Martijn Schaap, André S. H. Prévôt, Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), Laboratoire Chimie de l'environnement (LCE), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institute of Anatomy, Universität Bern [Bern] (UNIBE), The Netherlands Organisation for Applied Scientific Research (TNO), Institut für Meteorologie [Berlin], Freie Universität Berlin, Institut National de l'Environnement Industriel et des Risques (INERIS), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), University of Berne, and Institute of Anatomy, University of Bern, Bern
- Subjects
Rural Population ,Acute effects ,Urban Population ,010504 meteorology & atmospheric sciences ,Air pollution ,Bronchi ,Oxidative phosphorylation ,010501 environmental sciences ,medicine.disease_cause ,01 natural sciences ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Air Pollution ,11. Sustainability ,medicine ,Humans ,Mass concentration (chemistry) ,Cities ,Biomass burning ,Cells, Cultured ,0105 earth and related environmental sciences ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Air Pollutants ,Multidisciplinary ,Ambient air pollution ,Epithelial Cells ,Oxidative activity ,Models, Theoretical ,Particulates ,Europe ,13. Climate action ,Environmental chemistry ,Environmental science ,Particulate Matter ,Oxidation-Reduction - Abstract
Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally(1-3). Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part(4). Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain(5-8). Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results(7). In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration(7). Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass. Observations and air-quality modelling reveal that the sources of particulate matter and oxidative potential in Europe are different, implying that reducing mass concentrations of particulate matter alone may not reduce oxidative potential.
- Published
- 2020
49. A biogenic secondary organic aerosol source of cirrus ice nucleating particles
- Author
-
Ellen Gute, Megan Goodell, Tianqu Cui, Karine Sellegri, Maria A. Zawadowicz, Margaux Winter, Michael Rösch, Yue Zhang, Martin J. Wolf, Jason D. Surratt, Jesse H. Kroll, Ezra J. T. Levin, Daniel J. Cziczo, Jonathan P. D. Abbatt, Evelyn Freney, Paul J. DeMott, Abigail R. Koss, Larissa Lacher, Karl D. Froyd, Duncan Axisa, Department of Earth and Planetary Sciences [Cambridge, USA] (EPS), Harvard University [Cambridge], Department of Environmental Sciences & Engineering, University of North Carolina [Chapel Hill] (UNC), University of North Carolina System (UNC)-University of North Carolina System (UNC), Aerodyne Research Incorporated, Center for Aerosol and Cloud Chemistry, Department of Chemistry and Chemical Biology [Boston], Northeastern University [Boston], Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory (PNNL), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA), Laboratoire de Météorologie Physique (LaMP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Institute for Atmospheric and Climate Science [Zürich] (IAC), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), Department of Chemistry and Chemical Biology [Harvard], Institute of Meteorology and Climate Research – Atmospheric Environmental Research, Karlsruhe Institute of Technology, Partenaires INRAE, Droplet Measurement Technologies, Department of Atmospheric Science, Colorado State University, Department of Chemistry [University of Toronto], University of Toronto, Department of Civil and Environmental Engineering [Cambridge] (CEE), Massachusetts Institute of Technology (MIT), Harvard University, Karlsruhe Institute of Technology (KIT), Department of Atmospheric Science [Fort Collins], and Colorado State University [Fort Collins] (CSU)
- Subjects
Atmospheric chemistry ,010504 meteorology & atmospheric sciences ,Climate ,Science ,General Physics and Astronomy ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Physics::Geophysics ,Troposphere ,Atmosphere ,chemistry.chemical_compound ,Hemiterpenes ,ddc:550 ,Butadienes ,Atmospheric science ,Precipitation ,lcsh:Science ,Physics::Atmospheric and Oceanic Physics ,Isoprene ,0105 earth and related environmental sciences ,Aerosols ,Supersaturation ,Multidisciplinary ,Ice ,General Chemistry ,Aerosol ,Earth sciences ,chemistry ,13. Climate action ,[SDE]Environmental Sciences ,Ice nucleus ,Environmental science ,lcsh:Q ,Cirrus ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at –46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L–1. Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties., Ice nucleating particles impact the global climate by altering cloud formation and properties, but the sources of these emissions are not completely characterized. Here, the authors show that secondary organic aerosols formed from the oxidation of organic gases in the atmosphere can be a source of ice nucleating particles.
- Published
- 2020
50. A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
- Author
-
P. Laj, A. Bigi, C. Rose, E. Andrews, C. Lund Myhre, M. Collaud Coen, Y. Lin, A. Wiedensohler, M. Schulz, J. A. Ogren, M. Fiebig, J. Gliß, A. Mortier, M. Pandolfi, T. Petäja, S.-W. Kim, W. Aas, J.-P. Putaud, O. Mayol-Bracero, M. Keywood, L. Labrador, P. Aalto, E. Ahlberg, L. Alados Arboledas, A. Alastuey, M. Andrade, B. Artíñano, S. Ausmeel, T. Arsov, E. Asmi, J. Backman, U. Baltensperger, S. Bastian, O. Bath, J. P. Beukes, B. T. Brem, N. Bukowiecki, S. Conil, C. Couret, D. Day, W. Dayantolis, A. Degorska, K. Eleftheriadis, P. Fetfatzis, O. Favez, H. Flentje, M. I. Gini, A. Gregorič, M. Gysel-Beer, A. G. Hallar, J. Hand, A. Hoffer, C. Hueglin, R. K. Hooda, A. Hyvärinen, I. Kalapov, N. Kalivitis, A. Kasper-Giebl, J. E. Kim, G. Kouvarakis, I. Kranjc, R. Krejci, M. Kulmala, C. Labuschagne, H.-J. Lee, H. Lihavainen, N.-H. Lin, G. Löschau, K. Luoma, A. Marinoni, S. Martins Dos Santos, F. Meinhardt, M. Merkel, J.-M. Metzger, N. Mihalopoulos, N. A. Nguyen, J. Ondracek, N. Pérez, M. R. Perrone, J.-E. Petit, D. Picard, J.-M. Pichon, V. Pont, N. Prats, A. Prenni, F. Reisen, S. Romano, K. Sellegri, S. Sharma, G. Schauer, P. Sheridan, J. P. Sherman, M. Schütze, A. Schwerin, R. Sohmer, M. Sorribas, M. Steinbacher, J. Sun, G. Titos, B. Toczko, T. Tuch, P. Tulet, P. Tunved, V. Vakkari, F. Velarde, P. Velasquez, P. Villani, S. Vratolis, S.-H. Wang, K. Weinhold, R. Weller, M. Yela, J. Yus-Diez, V. Zdimal, P. Zieger, N. Zikova, INAR Physics, Institute for Atmospheric and Earth System Research (INAR), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Università degli Studi di Modena e Reggio Emilia = University of Modena and Reggio Emilia (UNIMORE), Laboratoire de Météorologie Physique (LaMP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Norwegian Institute for Air Research (NILU), Federal Office of Meteorology and Climatology MeteoSwiss, Leibniz Institute for Tropospheric Research (TROPOS), Norwegian Meteorological Institute [Oslo] (MET), Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), School of Earth and Environmental Sciences [Seoul] (SEES), Seoul National University [Seoul] (SNU), JRC Institute for Environment and Sustainability (IES), European Commission - Joint Research Centre [Ispra] (JRC), Universidad Mayor de San Andrés (UMSA), Centro de Investigaciones Energéticas Medioambientales y Tecnológicas [Madrid] (CIEMAT), Finnish Meteorological Institute (FMI), Paul Scherrer Institute (PSI), Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA), Iinstitute of Environmental Protection - National Research Institute (IOS-PIB), Environmental Radioactivity laboratory (ERL), Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), National Center for Scientific Research 'Demokritos' (NCSR)-National Center for Scientific Research 'Demokritos' (NCSR), National Centre for Scientific Research Demokritos, Institut National de l'Environnement Industriel et des Risques (INERIS), Deutscher Wetterdienst [Offenbach] (DWD), Department of Computer Science and Engineering [Minneapolis], University of Minnesota [Twin Cities] (UMN), University of Minnesota System-University of Minnesota System, Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Arctic Space Centre [Helsinki], Bulgarian Academy of Sciences (BAS), University of Crete [Heraklion] (UOC), Institute for Chemical Technologies and Analytics, Vienna University of Technology (TU Wien), Environmental Chemical Processes Laboratory [Heraklion] (ECPL), Department of Chemistry [Heraklion], University of Crete [Heraklion] (UOC)-University of Crete [Heraklion] (UOC), Department of Environmental Science and Analytical Chemistry [Stockholm] (ACES), Stockholm University, South African Weather Service (SAWS), Department of Medicine [New York], Icahn School of Medicine at Mount Sinai [New York] (MSSM), Observatoire des Sciences de l'Univers de La Réunion (OSU-Réunion), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR), Institute for Environmental Research and Sustainable Development (IERSD), National Observatory of Athens (NOA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Chimie Atmosphérique Expérimentale (CAE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'aérologie (LAERO), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), NERC National Centre for Earth Observation (NCEO), Natural Environment Research Council (NERC), Laboratoire de l'Atmosphère et des Cyclones (LACy), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Institute for Applied Environmental Research [Stockholm], Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Instituto Nacional de Técnica Aeroespacial (INTA), European Project: 654109,H2020,H2020-INFRAIA-2014-2015,ACTRIS-2(2015), 10092390 - Beukes, Johan Paul, European Commission, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), CNR - National Research Council of Italy, University of Helsinki, Università degli Studi di Modena e Reggio Emilia, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Météo France, Laj, P., Bigi, A., Rose, C., Andrews, E., Lund Myhre, C., Collaud Coen, M., Lin, Y., Wiedensohler, A., Schulz, M., A. Ogren, J., Fiebig, M., Gliss, J., Mortier, A., Pandolfi, M., Petaja, T., Kim, S. -W., Aas, W., Putaud, J. -P., Mayol-Bracero, O., Keywood, M., Labrador, L., Aalto, P., Ahlberg, E., Alados Arboledas, L., Alastuey, A., Andrade, M., Artinano, B., Ausmeel, S., Arsov, T., Asmi, E., Backman, J., Baltensperger, U., Bastian, S., Bath, O., Paul Beukes, J., T. Brem, B., Bukowiecki, N., Conil, S., Couret, C., Day, D., Dayantolis, W., Degorska, A., Eleftheriadis, K., Fetfatzis, P., Favez, O., Flentje, H., I. Gini, M., Gregoric, A., Gysel-Beer, M., Gannet Hallar, A., Hand, J., Hoffer, A., Hueglin, C., K. Hooda, R., Hyvarinen, A., Kalapov, I., Kalivitis, N., Kasper-Giebl, A., Eun Kim, J., Kouvarakis, G., Kranjc, I., Krejci, R., Kulmala, M., Labuschagne, C., Lee, H. -J., Lihavainen, H., Lin, N. -H., Loschau, G., Luoma, K., Marinoni, A., Martins Dos Santos, S., Meinhardt, F., Merkel, M., Metzger, J. -M., Mihalopoulos, N., Anh Nguyen, N., Ondracek, J., Perez, N., Rita Perrone, M., Pichon, J. -M., Picard, D., Pont, V., Prats, N., Prenni, A., Reisen, F., Romano, S., Sellegri, K., Sharma, S., Schauer, G., Sheridan, P., Patrick Sherman, J., Schutze, M., Schwerin, A., Sohmer, R., Sorribas, M., Steinbacher, M., Sun, J., Titos, G., Toczko, B., Tuch, T., Tulet, P., Tunved, P., Vakkari, V., Velarde, F., Velasquez, P., Villani, P., Vratolis, S., Wang, S. -H., Weinhold, K., Weller, R., Yela, M., Yus-Diez, J., Zdimal, V., Zieger, P., and Zikova, N.
- Subjects
Earth's energy budget ,1171 Geosciences ,Atmospheric Science ,Eearth radiation balance ,PARTICLE NUMBER ,010504 meteorology & atmospheric sciences ,Particle number ,Meteorology ,VISIBLE-LIGHT ABSORPTION ,010501 environmental sciences ,01 natural sciences ,Atmosphere ,PARTICULATE MATTER ,Solar radiation ,Cloud condensation nuclei ,lcsh:TA170-171 ,ORGANIC AEROSOL ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,SIZE DISTRIBUTIONS ,lcsh:TA715-787 ,Global Atmosphere Watch ,REGIONAL BACKGROUND SITES ,lcsh:Earthwork. Foundations ,Aerosol particles ,OPTICAL-PROPERTIES ,Albedo ,Particulates ,RADIATIVE PROPERTIES ,Aerosol ,lcsh:Environmental engineering ,13. Climate action ,Greenhouse gas ,FILTER-BASED MEASUREMENTS ,BLACK CARBON ,Environmental science ,Trollobservatoriet ,Global Climate Monitoring System - Abstract
Aerosol particles are essential constituents of the Earth’s atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system., European Commission Joint Research Centre 654109, European ERDF funds through different Spanish R&D projects of the Spanish Ministerio de Economia, Industria y Competitividad, NorthWest University, University of Helsinki, Academy of Finland 272041, Academy of Finland project Greenhouse gas 269095 296302, Korea Meteorological Administration Research and Development Program "Development of Monitoring and Analysis Techniques for Atmospheric Composition in Korea KMA2018-00522, National Research Foundation of Korea 2017R1D1A1B06032548, Korea Meteorological Administration Research and Development Program KMI2018-01111, Taiwan Environmental Protection Administration, Ministry of Research, France, French Ministry of the Environment, United States Environmental Protection Agency, MeteoSwiss (GAW-CH aerosol monitoring programme), Swiss State Secretariat for Education, Research and Innovation (SERI), Ministry of Education, Youth and Sports of CR within National Sustainability Program I (NPU I) LO1415, ERDF "ACTRISCZ RI" CZ.02.1.01/0.0/0.0/16_013/0001315 CGL2017-85344-R MINECO/AEI/FEDER, TIGAS-CM (Madrid Regional Government) Y2018/EMT-5177, AIRTECCM (Madrid Regional Government) P2018/EMT4329 REDMAAS2020 RED2018-102594-T CIENCIA, Spanish Ministry of Economy, Industry and Competitiveness, European Union (EU) CGL2016-78594-R, Generalitat de Catalunya AGAUR 2017 SGR41, National Institute for Aerospace Technology, Ministerio Espanol de Economia, Industria y Competitividad (MINECO) MIS 5021516, Competitiveness, Entrepreneurship and Innovation, NSRF, Ministry of Education, Universities and Research (MIUR), Norwegian Environment Agency, Swedish FORMAS; Swedish Research Council (VR), Magnus Bergvall foundation, Marta och Erik Holmberg foundation, Swedish EPA
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.