247 results on '"Pendall, E."'
Search Results
2. Correction to: Soil nematodes modify interactions between nitrogen-fixing and non-fixing tree seedlings from late, but not early, successional stages
- Author
-
Gilarte, P., Plett, J. M., Pendall, E., Carrillo, Y., and Nielsen, U. N.
- Published
- 2024
- Full Text
- View/download PDF
3. Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites
- Author
-
Chu, H, Luo, X, Ouyang, Z, Chan, WS, Dengel, S, Biraud, SC, Torn, MS, Metzger, S, Kumar, J, Arain, MA, Arkebauer, TJ, Baldocchi, D, Bernacchi, C, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Bracho, R, Brown, S, Brunsell, NA, Chen, J, Chen, X, Clark, K, Desai, AR, Duman, T, Durden, D, Fares, S, Forbrich, I, Gamon, JA, Gough, CM, Griffis, T, Helbig, M, Hollinger, D, Humphreys, E, Ikawa, H, Iwata, H, Ju, Y, Knowles, JF, Knox, SH, Kobayashi, H, Kolb, T, Law, B, Lee, X, Litvak, M, Liu, H, Munger, JW, Noormets, A, Novick, K, Oberbauer, SF, Oechel, W, Oikawa, P, Papuga, SA, Pendall, E, Prajapati, P, Prueger, J, Quinton, WL, Richardson, AD, Russell, ES, Scott, RL, Starr, G, Staebler, R, Stoy, PC, Stuart-Haëntjens, E, Sonnentag, O, Sullivan, RC, Suyker, A, Ueyama, M, Vargas, R, Wood, JD, and Zona, D
- Subjects
Flux footprint ,Spatial representativeness ,Landsat EVI ,Land cover ,Sensor location bias ,Model-data benchmarking ,Meteorology & Atmospheric Sciences ,Earth Sciences ,Biological Sciences ,Agricultural and Veterinary Sciences - Abstract
Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
- Published
- 2021
4. Hyperspectral imaging predicts yield and nitrogen content in grass–legume polycultures
- Author
-
Ball, K. R., Liu, H., Brien, C., Berger, B., Power, S. A., and Pendall, E.
- Published
- 2022
- Full Text
- View/download PDF
5. Phosphorus availability and arbuscular mycorrhizal fungi limit soil C cycling and influence plant responses to elevated CO2 conditions
- Author
-
Castañeda-Gómez, L., Powell, J. R., Pendall, E., and Carrillo, Y.
- Published
- 2022
- Full Text
- View/download PDF
6. Reconciling Top‐Down and Bottom‐Up Estimates of Ecosystem Respiration in a Mature Eucalypt Forest.
- Author
-
Noh, N. J., Renchon, A. A., Knauer, J., Haverd, V., Li, J., Griebel, A., Barton, C. V. M., Yang, J., Sihi, D., Arndt, S. K., Davidson, E. A., Tjoelker, M. G., and Pendall, E.
- Subjects
LAND surface temperature ,SOIL respiration ,RESPIRATORY measurements ,RESPIRATION in plants ,CARBON cycle ,HETEROTROPHIC respiration - Abstract
Ecosystem respiration (Reco) arises from interacting autotrophic and heterotrophic processes constrained by distinct drivers. Here, we evaluated up‐scaling of observed components of Reco in a mature eucalypt forest in southeast Australia and assessed whether a land surface model adequately represented all the fluxes and their seasonal temperature responses. We measured respiration from soil (Rsoil), heterotrophic soil microbes (Rh), roots (Rroot), and stems (Rstem) in 2018–2019. Reco and its components were simulated using the CABLE–POP (Community Atmosphere‐Biosphere Land Exchange–Population Orders Physiology) land surface model, constrained by eddy covariance and chamber measurements and enabled with a newly implemented Dual Arrhenius and Michaelis‐Menten (DAMM) module for soil organic matter decomposition. Eddy‐covariance based Reco (Reco.eddy, 1,439 g C m−2 y−1) was slightly higher than the sum of the respiration components (Reco.sum, 1,295 g C m−2 y−1) and simulated Reco (1,297 g C m−2 y−1). The largest mean contribution to Reco was from Rsoil (64%) across seasons. The measured contributions of Rh (49%), Rroot (15%), and Rstem (22%) to Reco.sum were very close to model outputs of 46%, 11%, and 22%, respectively. The modeled Rh was highly correlated with measured Rh (R2 = 0.66, RMSE = 0.61), empirically validating the DAMM module. The apparent temperature sensitivities (Q10) of Reco were 2.22 for Reco.sum, 2.15 for Reco.eddy, and 1.57 for CABLE‐POP. This research demonstrated that bottom‐up respiration component measurements can be successfully scaled to eddy covariance‐based Reco and help to better constrain the magnitude of individual respiration components as well as their temperature sensitivities in land surface models. Plain Language Summary: Ecosystem respiration (Reco) represents losses of carbon from the land to the atmosphere and consists of aboveground plant respiration and belowground root and microbial respiration. Because respiration processes increase exponentially with temperature, understanding their contributions to Reco is critical to predicting carbon cycle responses to warming. We used field observations to test and improve the modeling of respiration components of an evergreen eucalypt forest in Australia. Field measurements indicated that the model adequately captured the quantitative contributions of respiration components to Reco. In particular, the improved microbial version of the model was in good agreement with measurements. However, improvements are needed for modeling and measuring the autotrophic components from roots, stems, and forest canopy. This study highlights that scaling up individual respiratory sources and their temperature responses provides insights to understanding ecosystem scale carbon cycle‐climate feedbacks. Key Points: Concurrent scaled chamber measurements matched flux tower observations to within 10%Implementing a substrate function into a land surface model improved representation of heterotrophic respirationDiscrepancies between observations and simulations were largest for temperature sensitivity of canopy and root respiration [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Plant functional identity has predictable effects on nematode communities across successional stages
- Author
-
Gilarte, P., Pendall, E., Carrillo, Y., and Nielsen, U.N.
- Published
- 2021
- Full Text
- View/download PDF
8. Direct and indirect trophic interactions of soil nematodes impact chickpea and oat nutrition
- Author
-
Gilarte, P., Plett, J., Pendall, E., Carrillo, Y., and Nielsen, U. N.
- Published
- 2020
9. Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: Detecting short-term management effects using infrared spectroscopy
- Author
-
Ball, K.R., Baldock, J.A., Penfold, C., Power, S.A., Woodin, S.J., Smith, P., and Pendall, E.
- Published
- 2020
- Full Text
- View/download PDF
10. A trade-off between plant and soil carbon storage under elevated CO.sub.2
- Author
-
Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., van Groenigen, K. J., Keenan, T.F., Sulman, B.N., Stocker, B.D., Reich, P.B., Pellegrini, A.F.A., Pendall, E., Zhang, H., Evans, R.D., Carrillo, Y., and Fisher, J.B.
- Subjects
Plants -- Environmental aspects ,Soils -- Carbon content ,Ecological research ,Carbon dioxide -- Environmental aspects ,Plant-soil relationships -- Research ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO.sub.2) emitted by human activities each year.sup.1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO.sub.2 (refs. .sup.2,3). Although plant biomass often increases in elevated CO.sub.2 (eCO.sub.2) experiments.sup.4-6, SOC has been observed to increase, remain unchanged or even decline.sup.7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections.sup.8,9. Here we synthesized data from 108 eCO.sub.2 experiments and found that the effect of eCO.sub.2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO.sub.2, SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO.sub.2 in grasslands (8 [plus or minus] 2 per cent) but not in forests (0 [plus or minus] 2 per cent), even though plant biomass in grasslands increase less (9 [plus or minus] 3 per cent) than in forests (23 [plus or minus] 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised. A synthesis of elevated carbon dioxide experiments reveals that when plant biomass is strongly stimulated by elevated carbon dioxide levels, soil carbon storage declines, and where biomass is weakly stimulated, soil carbon accumulates., Author(s): C. Terrer [sup.1] [sup.2] , R. P. Phillips [sup.3] , B. A. Hungate [sup.4] [sup.5] , J. Rosende [sup.6] , J. Pett-Ridge [sup.1] , M. E. Craig [sup.3] [sup.7] [...]
- Published
- 2021
- Full Text
- View/download PDF
11. Quantifying global soil carbon losses in response to warming.
- Author
-
Crowther, TW, Todd-Brown, KEO, Rowe, CW, Wieder, WR, Carey, JC, Machmuller, MB, Snoek, BL, Fang, S, Zhou, G, Allison, SD, Blair, JM, Bridgham, SD, Burton, AJ, Carrillo, Y, Reich, PB, Clark, JS, Classen, AT, Dijkstra, FA, Elberling, B, Emmett, BA, Estiarte, M, Frey, SD, Guo, J, Harte, J, Jiang, L, Johnson, BR, Kröel-Dulay, G, Larsen, KS, Laudon, H, Lavallee, JM, Luo, Y, Lupascu, M, Ma, LN, Marhan, S, Michelsen, A, Mohan, J, Niu, S, Pendall, E, Peñuelas, J, Pfeifer-Meister, L, Poll, C, Reinsch, S, Reynolds, LL, Schmidt, IK, Sistla, S, Sokol, NW, Templer, PH, Treseder, KK, Welker, JM, and Bradford, MA
- Subjects
Carbon ,Soil ,Models ,Statistical ,Reproducibility of Results ,Ecosystem ,Temperature ,Atmosphere ,Geography ,Feedback ,Databases ,Factual ,Global Warming ,Carbon Cycle ,Models ,Statistical ,Databases ,Factual ,General Science & Technology - Abstract
The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.
- Published
- 2016
12. Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the "angry Summer" of 2012/2013
- Author
-
Van Gorsel, E, Wolf, S, Cleverly, J, Isaac, P, Haverd, V, Ewenz, C, Arndt, S, Beringer, J, De Dios, VR, Evans, BJ, Griebel, A, Hutley, LB, Keenan, T, Kljun, N, Macfarlane, C, Meyer, WS, McHugh, I, Pendall, E, Prober, SM, and Silberstein, R
- Subjects
Meteorology & Atmospheric Sciences ,Earth Sciences ,Environmental Sciences ,Biological Sciences - Abstract
As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand the response of terrestrial ecosystems to such temperature extremes for predicting land-surface feedbacks in a changing climate. While land-surface feedbacks in drought conditions and during heat waves have been reported from Europe and the US, direct observations of the impact of such extremes on the carbon and water cycles in Australia have been lacking. During the 2012/2013 summer, Australia experienced a record-breaking heat wave with an exceptional spatial extent that lasted for several weeks. In this study we synthesised eddy-covariance measurements from seven woodlands and one forest site across three biogeographic regions in southern Australia. These observations were combined with model results from BIOS2 (Haverd et al., 2013a, b) to investigate the effect of the summer heat wave on the carbon and water exchange of terrestrial ecosystems which are known for their resilience toward hot and dry conditions. We found that water-limited woodland and energy-limited forest ecosystems responded differently to the heat wave. During the most intense part of the heat wave, the woodlands experienced decreased latent heat flux (23ĝ€% of background value), increased Bowen ratio (154ĝ€%) and reduced carbon uptake (60ĝ€%). At the same time the forest ecosystem showed increased latent heat flux (151ĝ€%), reduced Bowen ratio (19ĝ€%) and increased carbon uptake (112ĝ€%). Higher temperatures caused increased ecosystem respiration at all sites (up to 139ĝ€%). During daytime all ecosystems remained carbon sinks, but carbon uptake was reduced in magnitude. The number of hours during which the ecosystem acted as a carbon sink was also reduced, which switched the woodlands into a carbon source on a daily average. Precipitation occurred after the first, most intense part of the heat wave, and the subsequent cooler temperatures in the temperate woodlands led to recovery of the carbon sink, decreased the Bowen ratio (65ĝ€%) and hence increased evaporative cooling. Gross primary productivity in the woodlands recovered quickly with precipitation and cooler temperatures but respiration remained high. While the forest proved relatively resilient to this short-Term heat extreme the response of the woodlands is the first direct evidence that the carbon sinks of large areas of Australia may not be sustainable in a future climate with an increased number, intensity and duration of heat waves.
- Published
- 2016
13. Stable-Carbon Isotopes and Soil Organic Carbon in Wheat under CO 2 Enrichment
- Author
-
Leavitt, S. W., Pendall, E., Paul, E. A., Brooks, T., Kimball, B. A., Pinter,, P. J., Johnson, H. B., Matthias, A., Wall, G. W., and LaMorte, R. L.
- Published
- 2001
14. Does soil respiration decline following bark beetle induced forest mortality? Evidence from a lodgepole pine forest
- Author
-
Borkhuu, B., Peckham, S.D., Ewers, B.E., Norton, U., and Pendall, E.
- Published
- 2015
- Full Text
- View/download PDF
15. Upscaling CO2 fluxes using leaf, soil and chamber measurements across successional growth stages in a sagebrush steppe ecosystem
- Author
-
Cleary, M.B., Naithani, K.J., Ewers, B.E., and Pendall, E.
- Published
- 2015
- Full Text
- View/download PDF
16. Seasonally contrasting responses of evapotranspiration to warming and elevated CO2 in a semiarid grassland
- Author
-
Sorokin, Y., Zelikova, T. J., Blumenthal, D., Williams, D. G., and Pendall, E.
- Published
- 2017
- Full Text
- View/download PDF
17. The three major axes of terrestrial ecosystem function
- Author
-
Migliavacca, M, Musavi, T, Mahecha, M, Nelson, J, Knauer, J, Baldocchi, D, Perez-Priego, O, Christiansen, R, Peters, J, Anderson, K, Bahn, M, Black, T, Blanken, P, Bonal, D, Buchmann, N, Caldararu, S, Carrara, A, Carvalhais, N, Cescatti, A, Chen, J, Cleverly, J, Cremonese, E, Desai, A, El-Madany, T, Farella, M, Fernandez-Martinez, M, Filippa, G, Forkel, M, Galvagno, M, Gomarasca, U, Gough, C, Gockede, M, Ibrom, A, Ikawa, H, Janssens, I, Jung, M, Kattge, J, Keenan, T, Knohl, A, Kobayashi, H, Kraemer, G, Law, B, Liddell, M, Ma, X, Mammarella, I, Martini, D, Macfarlane, C, Matteucci, G, Montagnani, L, Pabon-Moreno, D, Panigada, C, Papale, D, Pendall, E, Penuelas, J, Phillips, R, Reich, P, Rossini, M, Rotenberg, E, Scott, R, Stahl, C, Weber, U, Wohlfahrt, G, Wolf, S, Wright, I, Yakir, D, Zaehle, S, Reichstein, M, Migliavacca M., Musavi T., Mahecha M. D., Nelson J. A., Knauer J., Baldocchi D. D., Perez-Priego O., Christiansen R., Peters J., Anderson K., Bahn M., Black T. A., Blanken P. D., Bonal D., Buchmann N., Caldararu S., Carrara A., Carvalhais N., Cescatti A., Chen J., Cleverly J., Cremonese E., Desai A. R., El-Madany T. S., Farella M. M., Fernandez-Martinez M., Filippa G., Forkel M., Galvagno M., Gomarasca U., Gough C. M., Gockede M., Ibrom A., Ikawa H., Janssens I. A., Jung M., Kattge J., Keenan T. F., Knohl A., Kobayashi H., Kraemer G., Law B. E., Liddell M. J., Ma X., Mammarella I., Martini D., Macfarlane C., Matteucci G., Montagnani L., Pabon-Moreno D. E., Panigada C., Papale D., Pendall E., Penuelas J., Phillips R. P., Reich P. B., Rossini M., Rotenberg E., Scott R. L., Stahl C., Weber U., Wohlfahrt G., Wolf S., Wright I. J., Yakir D., Zaehle S., Reichstein M., Migliavacca, M, Musavi, T, Mahecha, M, Nelson, J, Knauer, J, Baldocchi, D, Perez-Priego, O, Christiansen, R, Peters, J, Anderson, K, Bahn, M, Black, T, Blanken, P, Bonal, D, Buchmann, N, Caldararu, S, Carrara, A, Carvalhais, N, Cescatti, A, Chen, J, Cleverly, J, Cremonese, E, Desai, A, El-Madany, T, Farella, M, Fernandez-Martinez, M, Filippa, G, Forkel, M, Galvagno, M, Gomarasca, U, Gough, C, Gockede, M, Ibrom, A, Ikawa, H, Janssens, I, Jung, M, Kattge, J, Keenan, T, Knohl, A, Kobayashi, H, Kraemer, G, Law, B, Liddell, M, Ma, X, Mammarella, I, Martini, D, Macfarlane, C, Matteucci, G, Montagnani, L, Pabon-Moreno, D, Panigada, C, Papale, D, Pendall, E, Penuelas, J, Phillips, R, Reich, P, Rossini, M, Rotenberg, E, Scott, R, Stahl, C, Weber, U, Wohlfahrt, G, Wolf, S, Wright, I, Yakir, D, Zaehle, S, Reichstein, M, Migliavacca M., Musavi T., Mahecha M. D., Nelson J. A., Knauer J., Baldocchi D. D., Perez-Priego O., Christiansen R., Peters J., Anderson K., Bahn M., Black T. A., Blanken P. D., Bonal D., Buchmann N., Caldararu S., Carrara A., Carvalhais N., Cescatti A., Chen J., Cleverly J., Cremonese E., Desai A. R., El-Madany T. S., Farella M. M., Fernandez-Martinez M., Filippa G., Forkel M., Galvagno M., Gomarasca U., Gough C. M., Gockede M., Ibrom A., Ikawa H., Janssens I. A., Jung M., Kattge J., Keenan T. F., Knohl A., Kobayashi H., Kraemer G., Law B. E., Liddell M. J., Ma X., Mammarella I., Martini D., Macfarlane C., Matteucci G., Montagnani L., Pabon-Moreno D. E., Panigada C., Papale D., Pendall E., Penuelas J., Phillips R. P., Reich P. B., Rossini M., Rotenberg E., Scott R. L., Stahl C., Weber U., Wohlfahrt G., Wolf S., Wright I. J., Yakir D., Zaehle S., and Reichstein M.
- Abstract
The leaf economics spectrum and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability. Here we derive a set of ecosystem functions from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems.
- Published
- 2021
18. Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils
- Author
-
Kopittke, P.M., Berhe, A.A., Carrillo, Y., Cavagnaro, T.R., Chen, D., Chen, Q-L, Román Dobarco, M., Dijkstra, F.A., Field, D.J., Grundy, M.J., He, J-Z, Hoyle, F.C., Kögel-Knabner, I., Lam, S.K., Marschner, P., Martinez, C., McBratney, A.B., McDonald-Madden, E., Menzies, N.W., Mosley, L.M., Mueller, C.W., Murphy, D.V., Nielsen, U.N., O’Donnell, A.G., Pendall, E., Pett-Ridge, J., Rumpel, C., Young, I.M., Minasny, B., Kopittke, P.M., Berhe, A.A., Carrillo, Y., Cavagnaro, T.R., Chen, D., Chen, Q-L, Román Dobarco, M., Dijkstra, F.A., Field, D.J., Grundy, M.J., He, J-Z, Hoyle, F.C., Kögel-Knabner, I., Lam, S.K., Marschner, P., Martinez, C., McBratney, A.B., McDonald-Madden, E., Menzies, N.W., Mosley, L.M., Mueller, C.W., Murphy, D.V., Nielsen, U.N., O’Donnell, A.G., Pendall, E., Pett-Ridge, J., Rumpel, C., Young, I.M., and Minasny, B.
- Abstract
Not only do soils provide 98.7% of the calories consumed by humans, they also provide numerous other functions upon which planetary survivability closely depends. However, our continuously increasing focus on soils for biomass provision (food, fiber, and energy) through intensive agriculture is rapidly degrading soils and diminishing their capacity to deliver other vital functions. These tradeoffs in soil functionality – the increased provision of one function at the expense of other critical planetary functions – are the focus of this review. We examine how land-use change for biomass provision has decreased the ability of soils to regulate the carbon pool and thereby contribute profoundly to climate change, to cycle the nutrients that sustain plant growth and ecosystem health, to protect the soil biodiversity upon which many other functions depend, and to cycle the Earth’s freshwater supplies. We also examine how this decreasing ability of soil to provide these other functions can be halted and reversed. Despite the complexity and the interconnectedness of soil functions, we show that soil organic carbon plays a central role and is a master indicator for soil functioning and that we require a better understanding of the factors controlling the behavior and persistence of C in soils. Given the threats facing humanity and their economies, it is imperative that we recognize that Soil Security is itself an existential challenge and that we need to increase our focus on the multiple functions of soils for long-term human welfare and survivability of the planet.
- Published
- 2022
19. Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network
- Author
-
Beringer, J, Moore, CE, Cleverly, J, Campbell, D, Cleugh, H, De Kauwe, MG, Kirschbaum, MUF, Griebel, A, Grover, S, Huete, A, Hutley, LB, Laubach, J, Van Niel, T, Arndt, SK, Bennett, AC, Cernusak, LA, Eamus, D, Ewenz, CM, Goodrich, JP, Jiang, M, Hinko-Najera, N, Isaac, P, Hobeichi, S, Knauer, J, Koerber, GR, Liddell, M, Ma, X, Macfarlane, C, McHugh, ID, Medlyn, BE, Meyer, WS, Norton, AJ, Owens, J, Pitman, A, Pendall, E, Prober, SM, Ray, RL, Restrepo-Coupe, N, Rifai, SW, Rowlings, D, Schipper, L, Silberstein, RP, Teckentrup, L, Thompson, SE, Ukkola, AM, Wall, A, Wang, Y-P, Wardlaw, TJ, Woodgate, W, Beringer, J, Moore, CE, Cleverly, J, Campbell, D, Cleugh, H, De Kauwe, MG, Kirschbaum, MUF, Griebel, A, Grover, S, Huete, A, Hutley, LB, Laubach, J, Van Niel, T, Arndt, SK, Bennett, AC, Cernusak, LA, Eamus, D, Ewenz, CM, Goodrich, JP, Jiang, M, Hinko-Najera, N, Isaac, P, Hobeichi, S, Knauer, J, Koerber, GR, Liddell, M, Ma, X, Macfarlane, C, McHugh, ID, Medlyn, BE, Meyer, WS, Norton, AJ, Owens, J, Pitman, A, Pendall, E, Prober, SM, Ray, RL, Restrepo-Coupe, N, Rifai, SW, Rowlings, D, Schipper, L, Silberstein, RP, Teckentrup, L, Thompson, SE, Ukkola, AM, Wall, A, Wang, Y-P, Wardlaw, TJ, and Woodgate, W
- Abstract
In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists
- Published
- 2022
20. Long-Term Enhancement of N Availability and Plant Growth under Elevated Co₂ in a Semi-Arid Grassland
- Author
-
Dijkstra, F. A., Pendall, E., Mosier, A. R., King, J. Y., Milchunas, D. G., and Morgan, J. A.
- Published
- 2008
- Full Text
- View/download PDF
21. Spatial Patterns in Leaf Area and Plant Functional Type Cover across Chronosequences of Sagebrush Ecosystems
- Author
-
Ewers, B. E. and Pendall, E.
- Published
- 2008
- Full Text
- View/download PDF
22. Chapter 10: Grasslands. Second State of the Carbon Cycle Report
- Author
-
Pendall, E., primary, Bachelet, D., additional, Conant, R. T., additional, El Masri, B., additional, Flanagan, L. B., additional, Knapp, A. K., additional, Liu, J., additional, Liu, S., additional, and Schaeffer, S. M., additional
- Published
- 2018
- Full Text
- View/download PDF
23. Modeling Soil Co₂ Emissions from Ecosystems
- Author
-
Grosso, S. J. Del, Parton, W. J., Mosier, A. R., Holland, E. A., Pendall, E., Schimel, D. S., and Ojima, D. S.
- Published
- 2005
24. Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: Seasonal variations and ecosystem implications of elevated atmospheric CO 2
- Author
-
Ferretti, D. F., Pendall, E., Morgan, J. A., Nelson, J. A., LeCain, D., and Mosier, A. R.
- Published
- 2003
25. Phosphorus availability and arbuscular mycorrhizal fungi limit soil C cycling and influence plant responses to elevated CO2 conditions
- Author
-
Castañeda-Gómez, L., primary, Powell, J.R., additional, Pendall, E., additional, and Carrillo, Y., additional
- Published
- 2021
- Full Text
- View/download PDF
26. Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale
- Author
-
Trevathan-Tackett, Stacey, Kepfer-Rojas, S, Engelen, AH, York, PH, Ola, A, Li, J, Kelleway, JJ, Jinks, KI, Jackson, EL, Adame, MF, Pendall, E, Lovelock, CE, Connolly, RM, Watson, A, Visby, I, Trethowan, A, Taylor, B, Roberts, TNB, Petch, J, Farrington, L, Djukic, I, Macreadie, Peter, Trevathan-Tackett, Stacey, Kepfer-Rojas, S, Engelen, AH, York, PH, Ola, A, Li, J, Kelleway, JJ, Jinks, KI, Jackson, EL, Adame, MF, Pendall, E, Lovelock, CE, Connolly, RM, Watson, A, Visby, I, Trethowan, A, Taylor, B, Roberts, TNB, Petch, J, Farrington, L, Djukic, I, and Macreadie, Peter
- Published
- 2021
27. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data (vol 7, 225, 2020)
- Author
-
Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Reichstein, M, Ribeca, A, van Ingen, C, Vuichard, N, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardo, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Brummer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D'Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrene, E, Dunn, A, Dusek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Grunwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hortnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janous, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, Lopez-Ballesteros, A, Lopez-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Luers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, U, Raz-Yaseef, N, Rebmann, C, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sanchez-Canete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlak, P, Serrano-Ortiz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Sigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, Papale, D, Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Reichstein, M, Ribeca, A, van Ingen, C, Vuichard, N, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardo, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Brummer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D'Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrene, E, Dunn, A, Dusek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Grunwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hortnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janous, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, Lopez-Ballesteros, A, Lopez-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Luers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, U, Raz-Yaseef, N, Rebmann, C, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sanchez-Canete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlak, P, Serrano-Ortiz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Sigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, and Papale, D
- Abstract
A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00851-9.
- Published
- 2021
28. Exploring the Potential of DSCOVR EPIC Data to Retrieve Clumping Index in Australian Terrestrial Ecosystem Research Network Observing Sites
- Author
-
Pisek, J, Arndt, SK, Erb, A, Pendall, E, Schaaf, C, Wardlaw, TJ, Woodgate, W, Knyazikhin, Y, Pisek, J, Arndt, SK, Erb, A, Pendall, E, Schaaf, C, Wardlaw, TJ, Woodgate, W, and Knyazikhin, Y
- Abstract
Vegetation foliage clumping significantly alters the radiation environment and affects vegetation growth as well as water, carbon cycles. The clumping index (CI) is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index. Previously generated CI maps using a diverse set of Earth Observation multi-angle datasets across a wide range of scales have all relied on the single approach of using the normalized difference hotspot and darkspot (NDHD) method. We explore an alternative approach to estimate CI from space using the unique observing configuration of the Deep Space Climate Observatory Earth Polychromatic Imaging Camera (DSCOVR EPIC) and associated products at 10 km resolution. The performance was evaluated with in situ measurements in five sites of the Australian Terrestrial Ecosystem Research Network comprising a diverse range of canopy structure from short and sparse to dense and tall forest. The DSCOVR EPIC data can provide meaningful CI retrievals at the given spatial resolution. Independent but comparable CI retrievals obtained with a completely different sensor and new approach were encouraging for the general validity and compatibility of the foliage clumping information retrievals from space. We also assessed the spatial representativeness of the five TERN sites with respect to a particular point in time (field campaigns) for satellite retrieval validation. Our results improve our understanding of product uncertainty both in terms of the representativeness of the field data collected over the TERN sites and its relationship to Earth Observation data at different spatial resolutions.
- Published
- 2021
29. Thermal optima of gross primary productivity are closely aligned with mean air temperatures across Australian wooded ecosystems
- Author
-
Bennett, AC, Arndt, SK, Bennett, LT, Knauer, J, Beringer, J, Griebel, A, Hinko-Najera, N, Liddell, MJ, Metzen, D, Pendall, E, Silberstein, RP, Wardlaw, TJ, Woodgate, W, Haverd, V, Bennett, AC, Arndt, SK, Bennett, LT, Knauer, J, Beringer, J, Griebel, A, Hinko-Najera, N, Liddell, MJ, Metzen, D, Pendall, E, Silberstein, RP, Wardlaw, TJ, Woodgate, W, and Haverd, V
- Abstract
Gross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%-75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt ). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary-line analysis to eddy covariance flux observations to (a) derive ecosystem GPP-Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP-Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down-welling short-wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP-Ta relationship. GPP-Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna-wet and dry seasons). The shape of GPP-Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2 : 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of thes
- Published
- 2021
30. Concurrent Measurements of Soil and Ecosystem Respiration in a Mature Eucalypt Woodland: Advantages, Lessons, and Questions
- Author
-
Renchon, AA, Drake, JE, Macdonald, CA, Sihi, D, Hinko-Najera, N, Tjoelker, MG, Arndt, SK, Noh, NJ, Davidson, E, Pendall, E, Renchon, AA, Drake, JE, Macdonald, CA, Sihi, D, Hinko-Najera, N, Tjoelker, MG, Arndt, SK, Noh, NJ, Davidson, E, and Pendall, E
- Abstract
Understanding seasonal and diurnal dynamics of ecosystem respiration (Reco) in forests is challenging, because Reco can only be measured directly during night‐time by eddy‐covariance flux towers. Reco is the sum of soil respiration (Rsoil) and above‐ground respiration (in theory, RAG = Reco − Rsoil). Rsoil can be measured day and night and can provide a check of consistency on Reco, as the difference in magnitude and time dynamic between Reco and Rsoil should be explained by RAG. We assessed the temporal patterns and climatic drivers of Rsoil and Reco in a mature eucalypt woodland, using continuous measurements (only at night for Reco) at half‐hourly resolution over 4 years (2014–2017). Our data showed large seasonal and diurnal (overnight) variation of Reco, while Rsoil had a low diurnal amplitude and their difference (Reco − Rsoil, or RAG) had a low seasonal amplitude. This result implies at first glance that seasonal variation of Reco was mainly influenced by Rsoil while its diurnal variation was mainly influenced by RAG. However, our analysis suggests that the night‐time Reco decline cannot realistically be explained by a decline of RAG. Chamber measurements of autotrophic components at half‐hourly time resolution are needed to quantify how much of the Reco decline overnight is due to declines in leaf or stem respiration, and how much is due to missing storage or advection, which may create a systematic bias in Reco measurements. Our findings emphasize the need for reconciling bottom‐up (via components measured with chambers) and direct estimates of Reco (via eddy‐covariance method).
- Published
- 2021
31. The three major axes of terrestrial ecosystem function
- Author
-
Migliavacca, M., Musavi, T., Mahecha, Miguel Dario, Nelson, J.A., Knauer, J., Baldocchi, D.D., Perez-Priego, O., Christiansen, R., Peters, J., Anderson, K., Bahn, M., Black, T.A., Blanken, P.D., Bonal, D., Buchmann, N., Caldararu, S., Carrara, A., Carvalhais, N., Cescatti, A., Chen, J., Cleverly, J., Cremonese, E., Desai, A.R., El-Madany, T.S., Farella, M.M., Fernández-Martínez, M., Filippa, G., Forkel, M., Galvagno, M., Gomarasca, U., Gough, C.M., Göckede, M., Ibrom, A., Ikawa, H., Janssens, I.A., Jung, M., Kattge, J., Keenan, T.F., Knohl, A., Kobayashi, H., Kraemer, G., Law, B.E., Liddell, M.J., Ma, X., Mammarella, I., Martini, D., Macfarlane, C., Matteucci, G., Montagnani, L., Pabon-Moreno, D.E., Panigada, C., Papale, D., Pendall, E., Penuelas, J., Phillips, R.P., Reich, P.B., Rossini, M., Rotenberg, E., Scott, R.L., Stahl, C., Weber, U., Wohlfahrt, G., Wolf, S., Wright, I.J., Yakir, D., Zaehle, S., Reichstein, M., Migliavacca, M., Musavi, T., Mahecha, Miguel Dario, Nelson, J.A., Knauer, J., Baldocchi, D.D., Perez-Priego, O., Christiansen, R., Peters, J., Anderson, K., Bahn, M., Black, T.A., Blanken, P.D., Bonal, D., Buchmann, N., Caldararu, S., Carrara, A., Carvalhais, N., Cescatti, A., Chen, J., Cleverly, J., Cremonese, E., Desai, A.R., El-Madany, T.S., Farella, M.M., Fernández-Martínez, M., Filippa, G., Forkel, M., Galvagno, M., Gomarasca, U., Gough, C.M., Göckede, M., Ibrom, A., Ikawa, H., Janssens, I.A., Jung, M., Kattge, J., Keenan, T.F., Knohl, A., Kobayashi, H., Kraemer, G., Law, B.E., Liddell, M.J., Ma, X., Mammarella, I., Martini, D., Macfarlane, C., Matteucci, G., Montagnani, L., Pabon-Moreno, D.E., Panigada, C., Papale, D., Pendall, E., Penuelas, J., Phillips, R.P., Reich, P.B., Rossini, M., Rotenberg, E., Scott, R.L., Stahl, C., Weber, U., Wohlfahrt, G., Wolf, S., Wright, I.J., Yakir, D., Zaehle, S., and Reichstein, M.
- Abstract
The leaf economics spectrum(1,2) and the global spectrum of plant forms and functions(3) revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species(2). Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities(4). However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability(4,5). Here we derive a set of ecosystem functions(6) from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems(7,8).
- Published
- 2021
32. Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
- Author
-
Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Reichstein, M, Ribeca, A, van Ingen, C, Vuichard, N, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardö, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Brümmer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D’Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrêne, E, Dunn, A, Dušek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Grünwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hörtnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janouš, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, López-Ballesteros, A, López-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Lüers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, Ü, Raz-Yaseef, N, Rebmann, C, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sánchez-Cañete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlák, P, Serrano-Ortíz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Šigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, Papale, D, Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Reichstein, M, Ribeca, A, van Ingen, C, Vuichard, N, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardö, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Brümmer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D’Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrêne, E, Dunn, A, Dušek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Grünwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hörtnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janouš, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, López-Ballesteros, A, López-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Lüers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, Ü, Raz-Yaseef, N, Rebmann, C, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sánchez-Cañete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlák, P, Serrano-Ortíz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Šigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, and Papale, D
- Abstract
The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions.
- Published
- 2021
33. Testing sagebrush allometric relationships across three fire chronosequences in Wyoming, USA
- Author
-
Cleary, M.B., Pendall, E., and Ewers, B.E.
- Published
- 2008
- Full Text
- View/download PDF
34. Timber harvesting alters soil carbon mineralization and microbial community structure in coniferous forests
- Author
-
Chatterjee, A., Vance, G.F., Pendall, E., and Stahl, P.D.
- Published
- 2008
- Full Text
- View/download PDF
35. Multiscale observations of snow accumulation and peak snowpack following widespread, insect-induced lodgepole pine mortality
- Author
-
Biederman, Joel A., Brooks, P. D., Harpold, A. A., Gochis, D. J., Gutmann, E., Reed, D. E., Pendall, E., and Ewers, B. E.
- Published
- 2014
- Full Text
- View/download PDF
36. Integrating Ecological Stoichiometry to Understand Nutrient Limitation and Potential for Competition in Mixed Pasture Assemblages
- Author
-
Ball, K. R., primary, Woodin, S. J., additional, Power, S. A., additional, Brien, C., additional, Berger, B., additional, Smith, P., additional, and Pendall, E., additional
- Published
- 2021
- Full Text
- View/download PDF
37. Phosphorus availability and arbuscular mycorrhizal fungi limit soil C cycling and influence plant responses to elevated CO2 conditions.
- Author
-
Castañeda-Gómez, L., Powell, J. R., Pendall, E., and Carrillo, Y.
- Subjects
VESICULAR-arbuscular mycorrhizas ,SOIL fungi ,PLANT biomass ,BIOGEOCHEMICAL cycles ,NUTRIENT uptake - Abstract
Soil organic matter (SOM) decomposition and organic phosphorus (P) cycling may help sustain plant productivity under elevated CO
2 (eCO2 ) and low-P conditions. Arbuscular mycorrhizal (AM) fungi and their role in P-acquisition and SOM decomposition may become more relevant in these conditions. Yet, experimental evidence of AM fungi and P availability interactive effects on soil carbon (C) cycling under eCO2 is scarce with the potential mechanisms of this control being poorly understood. We performed a pot experiment with soil and a grass from a low-P ecosystem where plant biomass and soil C cycling have been mostly unresponsive to eCO2 . We manipulated AM fungi, P, and CO2 levels and assessed their impacts on soil C cycling and plant growth using continuous13 C plant labelling to isolate and measure short-term changes in total and SOM-derived fractions of respired CO2 , dissolved organic C (DOC) and microbial biomass (MBC), as relevant components of the soil C cycle. Increases in SOM decomposition and microbial C use were hypothesised to support plant growth under eCO2 and low-P with AM fungi intensifying this effect. However, we did not detect simultaneous significant impacts of the three experimental factors. We observed instead increased root biomass and nutrient uptake with eCO2 and AM presence and lower SOM-derived DOC and MBC with low-P, decreasing further with AM inoculation. Taken together, our findings in this model plant-soil system suggest that, AM fungi can support root biomass growth and nutrient uptake under eCO2 and protect the SOM pool against decomposition even in low-P conditions. Contrary to reports from N-limited ecosystems, our results allow us to conclude that C and P biogeochemical cycles may not become coupled to sustain an eCO2 fertilisation effect and that the role of AM fungi protecting the SOM pool is likely driven by competitive interactions with saprotrophic communities over nutrients. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
38. Evaluation of energy balance closure correction methods for multiple eddy-covariance sites in different biomes
- Author
-
Mauder, M., Johnson, D., Fratini, G., Berveiller, D., Brut, A., Kumar Deb Burman, P., Carrara, A., Chakraborty, S., Chen, K.Y., Drollinger, S., Fischer, M., Griebel, A., Jain, A.K., Jocher, G., Kljun, N., Klosterhalfen, A., Kowalska, N., Laudon, H., Belelli Marchesini, L., Mammarella, I., Metzen, D., Montagnani, L., Nair, S.K., Nilsson, M., Normets, A., Orsag, M., Pavelka, M., Peichl, M., Pendall, E., Prajapati, P., Roberti, D.R., Rocha, H., Rotenberg, E., Stojanović, M., Stoy, P., Schwartz, E., Woodgate, W., and Yakir, D.
- Subjects
Settore AGR/05 - ASSESTAMENTO FORESTALE E SELVICOLTURA - Abstract
The apparent lack of surface energy balance closure is one of the most crucial challenges in the measurement of biosphere-atmosphere exchange. In principle, this issue can have a variety of potential reasons, including instrumental errors and errors introduced in the data processing chain. In addition, secondary circulations have been identified as one of the main reasons for a non-closure of the surface energy balance, since the related energy transport cannot be captured by common eddy-covariance tower flux measurements. When present, neglecting this process will result in an underestimation of turbulent fluxes. Secondary circulations can, however, be represented by means of large-eddy simulations, which have been employed to develop a novel semi-empirical model to correct for the missing large-scale flux (De Roo et al. 2018, DOI 10.1371/journal.pone.0209022). In this study, we compare the results of this process-based method with two other previously published bulk-correction methods (Mauder et al. 2013, DOI 10.1016/j.agrformet.2012.09.006; Charuchittipan et al. 2014, DOI 10.1007/s10546-014-9922-6). These three correction methods are applied for multiple sites in different biomes around the world. Independent data of energy fluxes from these sites are used to assess which of these methods leads to the most reliable results, and we discuss the limitations of these corrections methods with respect to meteorological conditions and site characteristics, such as measurement height, the landscape-scale heterogeneity and terrain complexity.
- Published
- 2020
- Full Text
- View/download PDF
39. The fate of carbon in a mature forest under carbon dioxide enrichment
- Author
-
Jiang, M., Medlyn, B.E., Drake, J.E., Duursma, R.A., Anderson, I.C., Barton, C.V.M., Boer, M.M., Carrillo, Y., Castañeda-Gómez, L., Collins, L., Crous, K.Y., De Kauwe, M.G., Dos Santos, B.M., Emmerson, K.M., Facey, S.L., Gherlenda, A.N., Gimeno, T.E., Hasegawa, S., Johnson, S.N., Kännaste, A., Macdonald, C.A., Mahmud, K., Moore, B.D., Nazaries, L., Neilson, E.H.J., Nielsen, U.N., Niinemets, Ü., Noh, N.J., Ochoa-Hueso, R., Pathare, V.S., Pendall, E., Pihlblad, J., Piñeiro, J., Powell, J.R., Power, S.A., Reich, P.B., Renchon, A.A., Riegler, M., Rinnan, R., Rymer, P.D., Salomón, R.L., Singh, B.K., Smith, B., Tjoelker, M.G., Walker, J.K.M., Wujeska-Klause, A., Yang, J., Zaehle, S., Ellsworth, D.S., Jiang, M., Medlyn, B.E., Drake, J.E., Duursma, R.A., Anderson, I.C., Barton, C.V.M., Boer, M.M., Carrillo, Y., Castañeda-Gómez, L., Collins, L., Crous, K.Y., De Kauwe, M.G., Dos Santos, B.M., Emmerson, K.M., Facey, S.L., Gherlenda, A.N., Gimeno, T.E., Hasegawa, S., Johnson, S.N., Kännaste, A., Macdonald, C.A., Mahmud, K., Moore, B.D., Nazaries, L., Neilson, E.H.J., Nielsen, U.N., Niinemets, Ü., Noh, N.J., Ochoa-Hueso, R., Pathare, V.S., Pendall, E., Pihlblad, J., Piñeiro, J., Powell, J.R., Power, S.A., Reich, P.B., Renchon, A.A., Riegler, M., Rinnan, R., Rymer, P.D., Salomón, R.L., Singh, B.K., Smith, B., Tjoelker, M.G., Walker, J.K.M., Wujeska-Klause, A., Yang, J., Zaehle, S., and Ellsworth, D.S.
- Abstract
Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1 5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3 5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7 10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7 11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.
- Published
- 2020
40. Trading Water for Carbon: Maintaining Photosynthesis at the Cost of Increased Water Loss During High Temperatures in a Temperate Forest
- Author
-
Griebel, A, Bennett, LT, Metzen, D, Pendall, E, Lane, PNJ, Arndt, SK, Griebel, A, Bennett, LT, Metzen, D, Pendall, E, Lane, PNJ, and Arndt, SK
- Abstract
Carbon and water fluxes are often assumed to be coupled as a result of stomatal regulation during dry conditions. However, recent observations evidenced increased transpiration rates during isolated heatwaves across a range of eucalypt species under experimental and natural conditions, with inconsistent effects on photosynthesis (ranging from increases to stark declines). To improve the empirical basis for understanding carbon and water fluxes in forests under hotter and drier climates, we measured the water use of dominant trees and ecosystem‐scale carbon and water exchange in a temperate eucalypt forest over three summer seasons. The forest maintained photosynthesis within 16% of baseline rates during hot and dry conditions, despite ~70% reductions in canopy conductance during a 5‐day heatwave. While carbon and water fluxes both decreased by 16% on exceptionally dry days, gross primary productivity only decreased by 5% during the hottest days and increased by 2% during the heatwave. However, evapotranspiration increased by 43% (hottest days) and 74% (heatwave), leading to ~40% variation in traditional water use efficiency (water use efficiency = gross primary productivity/evapotranspiration) across conditions and approximately two‐fold differences between traditional and underlying or intrinsic water use efficiency on the same days. Furthermore, the forest became a net source of carbon following a 137% increase in ecosystem respiration during the heatwave, highlighting that the potential for temperate eucalypt forests to act as net carbon sinks under hotter and drier climates will depend not only on the responses of photosynthesis to higher temperatures and changes in water availability, but also on the concomitant responses of ecosystem respiration.
- Published
- 2020
41. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
- Author
-
Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Ribeca, A, van Ingen, C, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardo, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Bruemmer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D'Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrene, E, Dunn, A, Dusek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Gruenwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hoertnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janous, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, Lopez-Ballesteros, A, Lopez-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Lueers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, U, Raz-Yaseef, N, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sanchez-Canete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlak, P, Serrano-Ortiz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Sigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tiedemann, F, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, Papale, D, Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Ribeca, A, van Ingen, C, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardo, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Bruemmer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D'Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrene, E, Dunn, A, Dusek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Gruenwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hoertnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janous, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, Lopez-Ballesteros, A, Lopez-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Lueers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, U, Raz-Yaseef, N, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sanchez-Canete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlak, P, Serrano-Ortiz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Sigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tiedemann, F, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, and Papale, D
- Abstract
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
- Published
- 2020
42. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
- Author
-
Pastorello, G. (Gilberto), Trotta, C. (Carlo), Canfora, E. (Eleonora), Chu, H. (Housen), Christianson, D. (Danielle), Cheah, Y.-W. (You-Wei), Poindexter, C. (Cristina), Chen, J. (Jiquan), Elbashandy, A. (Abdelrahman), Humphrey, M. (Marty), Isaac, P. (Peter), Polidori, D. (Diego), Ribeca, A. (Alessio), van Ingen, C. (Catharine), Zhang, L. (Leiming), Amiro, B. (Brian), Ammann, C. (Christof), Arain, M. A. (M. Altaf), Ardo, J. (Jonas), Arkebauer, T. (Timothy), Arndt, S. K. (Stefan K.), Arriga, N. (Nicola), Aubinet, M. (Marc), Aurela, M. (Mika), Baldocchi, D. (Dennis), Barr, A. (Alan), Beamesderfer, E. (Eric), Marchesini, L. B. (Luca Belelli), Bergeron, O. (Onil), Beringer, J. (Jason), Bernhofer, C. (Christian), Berveiller, D. (Daniel), Billesbach, D. (Dave), Black, T. A. (Thomas Andrew), Blanken, P. D. (Peter D.), Bohrer, G. (Gil), Boike, J. (Julia), Bolstad, P. V. (Paul V.), Bonal, D. (Damien), Bonnefond, J.-M. (Jean-Marc), Bowling, D. R. (David R.), Bracho, R. (Rosvel), Brodeur, J. (Jason), Bruemmer, C. (Christian), Buchmann, N. (Nina), Burban, B. (Benoit), Burns, S. P. (Sean P.), Buysse, P. (Pauline), Cale, P. (Peter), Cavagna, M. (Mauro), Cellier, P. (Pierre), Chen, S. (Shiping), Chini, I. (Isaac), Christensen, T. R. (Torben R.), Cleverly, J. (James), Collalti, A. (Alessio), Consalvo, C. (Claudia), Cook, B. D. (Bruce D.), Cook, D. (David), Coursolle, C. (Carole), Cremonese, E. (Edoardo), Curtis, P. S. (Peter S.), D'Andrea, E. (Ettore), da Rocha, H. (Humberto), Dai, X. (Xiaoqin), Davis, K. J. (Kenneth J.), De Cinti, B. (Bruno), de Grandcourt, A. (Agnes), De Ligne, A. (Anne), De Oliveira, R. C. (Raimundo C.), Delpierre, N. (Nicolas), Desai, A. R. (Ankur R.), Di Bella, C. M. (Carlos Marcelo), di Tommasi, P. (Paul), Dolman, H. (Han), Domingo, F. (Francisco), Dong, G. (Gang), Dore, S. (Sabina), Duce, P. (Pierpaolo), Dufrene, E. (Eric), Dunn, A. (Allison), Dusek, J. (Jiri), Eamus, D. (Derek), Eichelmann, U. (Uwe), ElKhidir, H. A. (Hatim Abdalla M.), Eugster, W. (Werner), Ewenz, C. M. (Cacilia M.), Ewers, B. (Brent), Famulari, D. (Daniela), Fares, S. (Silvano), Feigenwinter, I. (Iris), Feitz, A. (Andrew), Fensholt, R. (Rasmus), Filippa, G. (Gianluca), Fischer, M. (Marc), Frank, J. (John), Galvagno, M. (Marta), Gharun, M. (Mana), Gianelle, D. (Damiano), Gielen, B. (Bert), Gioli, B. (Beniamino), Gitelson, A. (Anatoly), Goded, I. (Ignacio), Goeckede, M. (Mathias), Goldstein, A. H. (Allen H.), Gough, C. M. (Christopher M.), Goulden, M. L. (Michael L.), Graf, A. (Alexander), Griebel, A. (Anne), Gruening, C. (Carsten), Gruenwald, T. (Thomas), Hammerle, A. (Albin), Han, S. (Shijie), Han, X. (Xingguo), Hansen, B. U. (Birger Ulf), Hanson, C. (Chad), Hatakka, J. (Juha), He, Y. (Yongtao), Hehn, M. (Markus), Heinesch, B. (Bernard), Hinko-Najera, N. (Nina), Hoertnagl, L. (Lukas), Hutley, L. (Lindsay), Ibrom, A. (Andreas), Ikawa, H. (Hiroki), Jackowicz-Korczynski, M. (Marcin), Janous, D. (Dalibor), Jans, W. (Wilma), Jassal, R. (Rachhpal), Jiang, S. (Shicheng), Kato, T. (Tomomichi), Khomik, M. (Myroslava), Klatt, J. (Janina), Knohl, A. (Alexander), Knox, S. (Sara), Kobayashi, H. (Hideki), Koerber, G. (Georgia), Kolle, O. (Olaf), Kosugi, Y. (Yoshiko), Kotani, A. (Ayumi), Kowalski, A. (Andrew), Kruijt, B. (Bart), Kurbatova, J. (Julia), Kutsch, W. L. (Werner L.), Kwon, H. (Hyojung), Launiainen, S. (Samuli), Laurila, T. (Tuomas), Law, B. (Bev), Leuning, R. (Ray), Li, Y. (Yingnian), Liddell, M. (Michael), Limousin, J.-M. (Jean-Marc), Lion, M. (Marryanna), Liska, A. J. (Adam J.), Lohila, A. (Annalea), Lopez-Ballesteros, A. (Ana), Lopez-Blanco, E. (Efren), Loubet, B. (Benjamin), Loustau, D. (Denis), Lucas-Moffat, A. (Antje), Lueers, J. (Johannes), Ma, S. (Siyan), Macfarlane, C. (Craig), Magliulo, V. (Vincenzo), Maier, R. (Regine), Mammarella, I. (Ivan), Manca, G. (Giovanni), Marcolla, B. (Barbara), Margolis, H. A. (Hank A.), Marras, S. (Serena), Massman, W. (William), Mastepanov, M. (Mikhail), Matamala, R. (Roser), Matthes, J. H. (Jaclyn Hatala), Mazzenga, F. (Francesco), McCaughey, H. (Harry), McHugh, I. (Ian), McMillan, A. M. (Andrew M. S.), Merbold, L. (Lutz), Meyer, W. (Wayne), Meyers, T. (Tilden), Miller, S. D. (Scott D.), Minerbi, S. (Stefano), Moderow, U. (Uta), Monson, R. K. (Russell K.), Montagnani, L. (Leonardo), Moore, C. E. (Caitlin E.), Moors, E. (Eddy), Moreaux, V. (Virginie), Moureaux, C. (Christine), Munger, J. W. (J. William), Nakai, T. (Taro), Neirynck, J. (Johan), Nesic, Z. (Zoran), Nicolini, G. (Giacomo), Noormets, A. (Asko), Northwood, M. (Matthew), Nosetto, M. (Marcelo), Nouvellon, Y. (Yann), Novick, K. (Kimberly), Oechel, W. (Walter), Olesen, J. E. (Jorgen Eivind), Ourcival, J.-M. (Jean-Marc), Papuga, S. A. (Shirley A.), Parmentier, F.-J. (Frans-Jan), Paul-Limoges, E. (Eugenie), Pavelka, M. (Marian), Peichl, M. (Matthias), Pendall, E. (Elise), Phillips, R. P. (Richard P.), Pilegaard, K. (Kim), Pirk, N. (Norbert), Posse, G. (Gabriela), Powell, T. (Thomas), Prasse, H. (Heiko), Prober, S. M. (Suzanne M.), Rambal, S. (Serge), Rannik, U. (Ullar), Raz-Yaseef, N. (Naama), Reed, D. (David), de Dios, V. R. (Victor Resco), Restrepo-Coupe, N. (Natalia), Reverter, B. R. (Borja R.), Roland, M. (Marilyn), Sabbatini, S. (Simone), Sachs, T. (Torsten), Saleska, S. R. (Scott R.), Sanchez-Canete, E. P. (Enrique P.), Sanchez-Mejia, Z. M. (Zulia M.), Schmid, H. P. (Hans Peter), Schmidt, M. (Marius), Schneider, K. (Karl), Schrader, F. (Frederik), Schroder, I. (Ivan), Scott, R. L. (Russell L.), Sedlak, P. (Pavel), Serrano-Ortiz, P. (Penelope), Shao, C. (Changliang), Shi, P. (Peili), Shironya, I. (Ivan), Siebicke, L. (Lukas), Sigut, L. (Ladislav), Silberstein, R. (Richard), Sirca, C. (Costantino), Spano, D. (Donatella), Steinbrecher, R. (Rainer), Stevens, R. M. (Robert M.), Sturtevant, C. (Cove), Suyker, A. (Andy), Tagesson, T. (Torbern), Takanashi, S. (Satoru), Tang, Y. (Yanhong), Tapper, N. (Nigel), Thom, J. (Jonathan), Tiedemann, F. (Frank), Tomassucci, M. (Michele), Tuovinen, J.-P. (Juha-Pekka), Urbanski, S. (Shawn), Valentini, R. (Riccardo), van der Molen, M. (Michiel), van Gorsel, E. (Eva), van Huissteden, K. (Ko), Varlagin, A. (Andrej), Verfaillie, J. (Joseph), Vesala, T. (Timo), Vincke, C. (Caroline), Vitale, D. (Domenico), Vygodskaya, N. (Natalia), Walker, J. P. (Jeffrey P.), Walter-Shea, E. (Elizabeth), Wang, H. (Huimin), Weber, R. (Robin), Westermann, S. (Sebastian), Wille, C. (Christian), Wofsy, S. (Steven), Wohlfahrt, G. (Georg), Wolf, S. (Sebastian), Woodgate, W. (William), Li, Y. (Yuelin), Zampedri, R. (Roberto), Zhang, J. (Junhui), Zhou, G. (Guoyi), Zona, D. (Donatella), Agarwal, D. (Deb), Biraud, S. (Sebastien), Torn, M. (Margaret), Papale, D. (Dario), Pastorello, G. (Gilberto), Trotta, C. (Carlo), Canfora, E. (Eleonora), Chu, H. (Housen), Christianson, D. (Danielle), Cheah, Y.-W. (You-Wei), Poindexter, C. (Cristina), Chen, J. (Jiquan), Elbashandy, A. (Abdelrahman), Humphrey, M. (Marty), Isaac, P. (Peter), Polidori, D. (Diego), Ribeca, A. (Alessio), van Ingen, C. (Catharine), Zhang, L. (Leiming), Amiro, B. (Brian), Ammann, C. (Christof), Arain, M. A. (M. Altaf), Ardo, J. (Jonas), Arkebauer, T. (Timothy), Arndt, S. K. (Stefan K.), Arriga, N. (Nicola), Aubinet, M. (Marc), Aurela, M. (Mika), Baldocchi, D. (Dennis), Barr, A. (Alan), Beamesderfer, E. (Eric), Marchesini, L. B. (Luca Belelli), Bergeron, O. (Onil), Beringer, J. (Jason), Bernhofer, C. (Christian), Berveiller, D. (Daniel), Billesbach, D. (Dave), Black, T. A. (Thomas Andrew), Blanken, P. D. (Peter D.), Bohrer, G. (Gil), Boike, J. (Julia), Bolstad, P. V. (Paul V.), Bonal, D. (Damien), Bonnefond, J.-M. (Jean-Marc), Bowling, D. R. (David R.), Bracho, R. (Rosvel), Brodeur, J. (Jason), Bruemmer, C. (Christian), Buchmann, N. (Nina), Burban, B. (Benoit), Burns, S. P. (Sean P.), Buysse, P. (Pauline), Cale, P. (Peter), Cavagna, M. (Mauro), Cellier, P. (Pierre), Chen, S. (Shiping), Chini, I. (Isaac), Christensen, T. R. (Torben R.), Cleverly, J. (James), Collalti, A. (Alessio), Consalvo, C. (Claudia), Cook, B. D. (Bruce D.), Cook, D. (David), Coursolle, C. (Carole), Cremonese, E. (Edoardo), Curtis, P. S. (Peter S.), D'Andrea, E. (Ettore), da Rocha, H. (Humberto), Dai, X. (Xiaoqin), Davis, K. J. (Kenneth J.), De Cinti, B. (Bruno), de Grandcourt, A. (Agnes), De Ligne, A. (Anne), De Oliveira, R. C. (Raimundo C.), Delpierre, N. (Nicolas), Desai, A. R. (Ankur R.), Di Bella, C. M. (Carlos Marcelo), di Tommasi, P. (Paul), Dolman, H. (Han), Domingo, F. (Francisco), Dong, G. (Gang), Dore, S. (Sabina), Duce, P. (Pierpaolo), Dufrene, E. (Eric), Dunn, A. (Allison), Dusek, J. (Jiri), Eamus, D. (Derek), Eichelmann, U. (Uwe), ElKhidir, H. A. (Hatim Abdalla M.), Eugster, W. (Werner), Ewenz, C. M. (Cacilia M.), Ewers, B. (Brent), Famulari, D. (Daniela), Fares, S. (Silvano), Feigenwinter, I. (Iris), Feitz, A. (Andrew), Fensholt, R. (Rasmus), Filippa, G. (Gianluca), Fischer, M. (Marc), Frank, J. (John), Galvagno, M. (Marta), Gharun, M. (Mana), Gianelle, D. (Damiano), Gielen, B. (Bert), Gioli, B. (Beniamino), Gitelson, A. (Anatoly), Goded, I. (Ignacio), Goeckede, M. (Mathias), Goldstein, A. H. (Allen H.), Gough, C. M. (Christopher M.), Goulden, M. L. (Michael L.), Graf, A. (Alexander), Griebel, A. (Anne), Gruening, C. (Carsten), Gruenwald, T. (Thomas), Hammerle, A. (Albin), Han, S. (Shijie), Han, X. (Xingguo), Hansen, B. U. (Birger Ulf), Hanson, C. (Chad), Hatakka, J. (Juha), He, Y. (Yongtao), Hehn, M. (Markus), Heinesch, B. (Bernard), Hinko-Najera, N. (Nina), Hoertnagl, L. (Lukas), Hutley, L. (Lindsay), Ibrom, A. (Andreas), Ikawa, H. (Hiroki), Jackowicz-Korczynski, M. (Marcin), Janous, D. (Dalibor), Jans, W. (Wilma), Jassal, R. (Rachhpal), Jiang, S. (Shicheng), Kato, T. (Tomomichi), Khomik, M. (Myroslava), Klatt, J. (Janina), Knohl, A. (Alexander), Knox, S. (Sara), Kobayashi, H. (Hideki), Koerber, G. (Georgia), Kolle, O. (Olaf), Kosugi, Y. (Yoshiko), Kotani, A. (Ayumi), Kowalski, A. (Andrew), Kruijt, B. (Bart), Kurbatova, J. (Julia), Kutsch, W. L. (Werner L.), Kwon, H. (Hyojung), Launiainen, S. (Samuli), Laurila, T. (Tuomas), Law, B. (Bev), Leuning, R. (Ray), Li, Y. (Yingnian), Liddell, M. (Michael), Limousin, J.-M. (Jean-Marc), Lion, M. (Marryanna), Liska, A. J. (Adam J.), Lohila, A. (Annalea), Lopez-Ballesteros, A. (Ana), Lopez-Blanco, E. (Efren), Loubet, B. (Benjamin), Loustau, D. (Denis), Lucas-Moffat, A. (Antje), Lueers, J. (Johannes), Ma, S. (Siyan), Macfarlane, C. (Craig), Magliulo, V. (Vincenzo), Maier, R. (Regine), Mammarella, I. (Ivan), Manca, G. (Giovanni), Marcolla, B. (Barbara), Margolis, H. A. (Hank A.), Marras, S. (Serena), Massman, W. (William), Mastepanov, M. (Mikhail), Matamala, R. (Roser), Matthes, J. H. (Jaclyn Hatala), Mazzenga, F. (Francesco), McCaughey, H. (Harry), McHugh, I. (Ian), McMillan, A. M. (Andrew M. S.), Merbold, L. (Lutz), Meyer, W. (Wayne), Meyers, T. (Tilden), Miller, S. D. (Scott D.), Minerbi, S. (Stefano), Moderow, U. (Uta), Monson, R. K. (Russell K.), Montagnani, L. (Leonardo), Moore, C. E. (Caitlin E.), Moors, E. (Eddy), Moreaux, V. (Virginie), Moureaux, C. (Christine), Munger, J. W. (J. William), Nakai, T. (Taro), Neirynck, J. (Johan), Nesic, Z. (Zoran), Nicolini, G. (Giacomo), Noormets, A. (Asko), Northwood, M. (Matthew), Nosetto, M. (Marcelo), Nouvellon, Y. (Yann), Novick, K. (Kimberly), Oechel, W. (Walter), Olesen, J. E. (Jorgen Eivind), Ourcival, J.-M. (Jean-Marc), Papuga, S. A. (Shirley A.), Parmentier, F.-J. (Frans-Jan), Paul-Limoges, E. (Eugenie), Pavelka, M. (Marian), Peichl, M. (Matthias), Pendall, E. (Elise), Phillips, R. P. (Richard P.), Pilegaard, K. (Kim), Pirk, N. (Norbert), Posse, G. (Gabriela), Powell, T. (Thomas), Prasse, H. (Heiko), Prober, S. M. (Suzanne M.), Rambal, S. (Serge), Rannik, U. (Ullar), Raz-Yaseef, N. (Naama), Reed, D. (David), de Dios, V. R. (Victor Resco), Restrepo-Coupe, N. (Natalia), Reverter, B. R. (Borja R.), Roland, M. (Marilyn), Sabbatini, S. (Simone), Sachs, T. (Torsten), Saleska, S. R. (Scott R.), Sanchez-Canete, E. P. (Enrique P.), Sanchez-Mejia, Z. M. (Zulia M.), Schmid, H. P. (Hans Peter), Schmidt, M. (Marius), Schneider, K. (Karl), Schrader, F. (Frederik), Schroder, I. (Ivan), Scott, R. L. (Russell L.), Sedlak, P. (Pavel), Serrano-Ortiz, P. (Penelope), Shao, C. (Changliang), Shi, P. (Peili), Shironya, I. (Ivan), Siebicke, L. (Lukas), Sigut, L. (Ladislav), Silberstein, R. (Richard), Sirca, C. (Costantino), Spano, D. (Donatella), Steinbrecher, R. (Rainer), Stevens, R. M. (Robert M.), Sturtevant, C. (Cove), Suyker, A. (Andy), Tagesson, T. (Torbern), Takanashi, S. (Satoru), Tang, Y. (Yanhong), Tapper, N. (Nigel), Thom, J. (Jonathan), Tiedemann, F. (Frank), Tomassucci, M. (Michele), Tuovinen, J.-P. (Juha-Pekka), Urbanski, S. (Shawn), Valentini, R. (Riccardo), van der Molen, M. (Michiel), van Gorsel, E. (Eva), van Huissteden, K. (Ko), Varlagin, A. (Andrej), Verfaillie, J. (Joseph), Vesala, T. (Timo), Vincke, C. (Caroline), Vitale, D. (Domenico), Vygodskaya, N. (Natalia), Walker, J. P. (Jeffrey P.), Walter-Shea, E. (Elizabeth), Wang, H. (Huimin), Weber, R. (Robin), Westermann, S. (Sebastian), Wille, C. (Christian), Wofsy, S. (Steven), Wohlfahrt, G. (Georg), Wolf, S. (Sebastian), Woodgate, W. (William), Li, Y. (Yuelin), Zampedri, R. (Roberto), Zhang, J. (Junhui), Zhou, G. (Guoyi), Zona, D. (Donatella), Agarwal, D. (Deb), Biraud, S. (Sebastien), Torn, M. (Margaret), and Papale, D. (Dario)
- Abstract
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
- Published
- 2020
43. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.
- Author
-
Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah Y-W, Poindexter C, Chen J, Elbashandy A, Humphrey M, Isaac P, Polidori D, Ribeca A, van Ingen C, Zhang L, Amiro B, Ammann C, Arain MA, Ardö J, Arkebauer T, Arndt SK, Arriga N, Aubinet M, Aurela M, Baldocchi D, Barr A, Beamesderfer E, Marchesini LB, Bergeron O, Beringer J, Bernhofer C, Berveiller D, Billesbach D, Black TA, Blanken PD, Bohrer G, Boike J, Bolstad PV, Bonal D, Bonnefond J-M, Bowling DR, Bracho R, Brodeur J, Brümmer C, Buchmann N, Burban B, Burns SP, Buysse P, Cale P, Cavagna M, Cellier P, Chen S, Chini I, Christensen TR, Cleverly J, Collalti A, Consalvo C, Cook BD, Cook D, Coursolle C, Cremonese E, Curtis PS, D'Andrea E, da Rocha H, Dai X, Davis KJ, De Cinti B, de Grandcourt A, De Ligne A, De Oliveira RC, Delpierre N, Desai AR, Di Bella CM, di Tommasi P, Dolman H, Domingo F, Dong G, Dore S, Duce P, Dufrêne E, Dunn A, Dušek J, Eamus D, Eichelmann U, ElKhidir HAM, Eugster W, Ewenz CM, Ewers B, Famulari D, Fares S, Feigenwinter I, Feitz A, Fensholt R, Filippa G, Fischer M, Frank J, Galvagno M, Gharun M, Gianelle D, Gielen B, Gioli B, Gitelson A, Goded I, Goeckede M, Goldstein AH, Gough CM, Goulden ML, Graf A, Griebel A, Gruening C, Grünwald T, Hammerle A, Han S, Han X, Hansen BU, Hanson C, Hatakka J, He Y, Hehn M, Heinesch B, Hinko-Najera N, Hörtnagl L, Hutley L, Ibrom A, Ikawa H, Jackowicz-Korczynski M, Janouš D, Jans W, Jassal R, Jiang S, Kato T, Khomik M, Klatt J, Knohl A, Knox S, Kobayashi H, Koerber G, Kolle O, Kosugi Y, Kotani A, Kowalski A, Kruijt B, Kurbatova J, Kutsch WL, Kwon H, Launiainen S, Laurila T, Law B, Leuning R, Li Y, Liddell M, Limousin J-M, Lion M, Liska AJ, Lohila A, López-Ballesteros A, López-Blanco E, Loubet B, Loustau D, Lucas-Moffat A, Lüers J, Ma S, Macfarlane C, Magliulo V, Maier R, Mammarella I, Manca G, Marcolla B, Margolis HA, Marras S, Massman W, Mastepanov M, Matamala R, Matthes JH, Mazzenga F, McCaughey H, McHugh I, McMillan AMS, Merbold L, Meyer W, Meyers T, Miller SD, Minerbi S, Moderow U, Monson RK, Montagnani L, Moore CE, Moors E, Moreaux V, Moureaux C, Munger JW, Nakai T, Neirynck J, Nesic Z, Nicolini G, Noormets A, Northwood M, Nosetto M, Nouvellon Y, Novick K, Oechel W, Olesen JE, Ourcival J-M, Papuga SA, Parmentier F-J, Paul-Limoges E, Pavelka M, Peichl M, Pendall E, Phillips RP, Pilegaard K, Pirk N, Posse G, Powell T, Prasse H, Prober SM, Rambal S, Rannik Ü, Raz-Yaseef N, Reed D, de Dios VR, Restrepo-Coupe N, Reverter BR, Roland M, Sabbatini S, Sachs T, Saleska SR, Sánchez-Cañete EP, Sanchez-Mejia ZM, Schmid HP, Schmidt M, Schneider K, Schrader F, Schroder I, Scott RL, Sedlák P, Serrano-Ortíz P, Shao C, Shi P, Shironya I, Siebicke L, Šigut L, Silberstein R, Sirca C, Spano D, Steinbrecher R, Stevens RM, Sturtevant C, Suyker A, Tagesson T, Takanashi S, Tang Y, Tapper N, Thom J, Tiedemann F, Tomassucci M, Tuovinen J-P, Urbanski S, Valentini R, van der Molen M, van Gorsel E, van Huissteden K, Varlagin A, Verfaillie J, Vesala T, Vincke C, Vitale D, Vygodskaya N, Walker JP, Walter-Shea E, Wang H, Weber R, Westermann S, Wille C, Wofsy S, Wohlfahrt G, Wolf S, Woodgate W, Zampedri R, Zhang J, Zhou G, Zona D, Agarwal D, Biraud S, Torn M, Papale D, Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah Y-W, Poindexter C, Chen J, Elbashandy A, Humphrey M, Isaac P, Polidori D, Ribeca A, van Ingen C, Zhang L, Amiro B, Ammann C, Arain MA, Ardö J, Arkebauer T, Arndt SK, Arriga N, Aubinet M, Aurela M, Baldocchi D, Barr A, Beamesderfer E, Marchesini LB, Bergeron O, Beringer J, Bernhofer C, Berveiller D, Billesbach D, Black TA, Blanken PD, Bohrer G, Boike J, Bolstad PV, Bonal D, Bonnefond J-M, Bowling DR, Bracho R, Brodeur J, Brümmer C, Buchmann N, Burban B, Burns SP, Buysse P, Cale P, Cavagna M, Cellier P, Chen S, Chini I, Christensen TR, Cleverly J, Collalti A, Consalvo C, Cook BD, Cook D, Coursolle C, Cremonese E, Curtis PS, D'Andrea E, da Rocha H, Dai X, Davis KJ, De Cinti B, de Grandcourt A, De Ligne A, De Oliveira RC, Delpierre N, Desai AR, Di Bella CM, di Tommasi P, Dolman H, Domingo F, Dong G, Dore S, Duce P, Dufrêne E, Dunn A, Dušek J, Eamus D, Eichelmann U, ElKhidir HAM, Eugster W, Ewenz CM, Ewers B, Famulari D, Fares S, Feigenwinter I, Feitz A, Fensholt R, Filippa G, Fischer M, Frank J, Galvagno M, Gharun M, Gianelle D, Gielen B, Gioli B, Gitelson A, Goded I, Goeckede M, Goldstein AH, Gough CM, Goulden ML, Graf A, Griebel A, Gruening C, Grünwald T, Hammerle A, Han S, Han X, Hansen BU, Hanson C, Hatakka J, He Y, Hehn M, Heinesch B, Hinko-Najera N, Hörtnagl L, Hutley L, Ibrom A, Ikawa H, Jackowicz-Korczynski M, Janouš D, Jans W, Jassal R, Jiang S, Kato T, Khomik M, Klatt J, Knohl A, Knox S, Kobayashi H, Koerber G, Kolle O, Kosugi Y, Kotani A, Kowalski A, Kruijt B, Kurbatova J, Kutsch WL, Kwon H, Launiainen S, Laurila T, Law B, Leuning R, Li Y, Liddell M, Limousin J-M, Lion M, Liska AJ, Lohila A, López-Ballesteros A, López-Blanco E, Loubet B, Loustau D, Lucas-Moffat A, Lüers J, Ma S, Macfarlane C, Magliulo V, Maier R, Mammarella I, Manca G, Marcolla B, Margolis HA, Marras S, Massman W, Mastepanov M, Matamala R, Matthes JH, Mazzenga F, McCaughey H, McHugh I, McMillan AMS, Merbold L, Meyer W, Meyers T, Miller SD, Minerbi S, Moderow U, Monson RK, Montagnani L, Moore CE, Moors E, Moreaux V, Moureaux C, Munger JW, Nakai T, Neirynck J, Nesic Z, Nicolini G, Noormets A, Northwood M, Nosetto M, Nouvellon Y, Novick K, Oechel W, Olesen JE, Ourcival J-M, Papuga SA, Parmentier F-J, Paul-Limoges E, Pavelka M, Peichl M, Pendall E, Phillips RP, Pilegaard K, Pirk N, Posse G, Powell T, Prasse H, Prober SM, Rambal S, Rannik Ü, Raz-Yaseef N, Reed D, de Dios VR, Restrepo-Coupe N, Reverter BR, Roland M, Sabbatini S, Sachs T, Saleska SR, Sánchez-Cañete EP, Sanchez-Mejia ZM, Schmid HP, Schmidt M, Schneider K, Schrader F, Schroder I, Scott RL, Sedlák P, Serrano-Ortíz P, Shao C, Shi P, Shironya I, Siebicke L, Šigut L, Silberstein R, Sirca C, Spano D, Steinbrecher R, Stevens RM, Sturtevant C, Suyker A, Tagesson T, Takanashi S, Tang Y, Tapper N, Thom J, Tiedemann F, Tomassucci M, Tuovinen J-P, Urbanski S, Valentini R, van der Molen M, van Gorsel E, van Huissteden K, Varlagin A, Verfaillie J, Vesala T, Vincke C, Vitale D, Vygodskaya N, Walker JP, Walter-Shea E, Wang H, Weber R, Westermann S, Wille C, Wofsy S, Wohlfahrt G, Wolf S, Woodgate W, Zampedri R, Zhang J, Zhou G, Zona D, Agarwal D, Biraud S, Torn M, and Papale D
- Abstract
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
- Published
- 2020
44. Modeling soil CO2 emissions from ecosystems
- Author
-
Del Grosso, S.J., Parton, W.J., Mosier, A.R., Holland, E.A., Pendall, E., Schimel, D.S., and Ojima, D.S.
- Published
- 2005
- Full Text
- View/download PDF
45. Concurrent Measurements of Soil and Ecosystem Respiration in a Mature Eucalypt Woodland: Advantages, Lessons, and Questions
- Author
-
Renchon, A. A., primary, Drake, J. E., additional, Macdonald, C. A., additional, Sihi, D., additional, Hinko‐Najera, N., additional, Tjoelker, M. G., additional, Arndt, S. K., additional, Noh, N. J., additional, Davidson, E., additional, and Pendall, E., additional
- Published
- 2021
- Full Text
- View/download PDF
46. Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes
- Author
-
De Kauwe, MG, Medlyn, BE, Pitman, AJ, Drake, JE, Ukkola, A, Griebel, A, Pendall, E, Prober, S, Roderick, M, De Kauwe, MG, Medlyn, BE, Pitman, AJ, Drake, JE, Ukkola, A, Griebel, A, Pendall, E, Prober, S, and Roderick, M
- Abstract
Recent experimental evidence suggests that during heat extremes, wooded ecosystems may decouple photosynthesis and transpiration, reducing photosynthesis to near zero but increasing transpiration into the boundary layer. This feedback may act to dampen, rather than amplify, heat extremes in wooded ecosystems.We examined eddy covariance databases (OzFlux and FLUXNET2015) to identify whether there was field-based evidence to support these experimental findings. We focused on two types of heat extremes: (i) the 3 days leading up to a temperature extreme, defined as including a daily maximum temperature > 37 °C (similar to the widely used TXx metric), and (ii) heatwaves, defined as 3 or more consecutive days above 35 °C. When focusing on (i), we found some evidence of reduced photosynthesis and sustained or increased latent heat fluxes at seven Australian evergreen wooded flux sites. However, when considering the role of vapour pressure deficit and focusing on (ii), we were unable to conclusively disentangle the decoupling between photosynthesis and latent heat flux from the effect of increasing the vapour pressure deficit. Outside of Australia, the Tier- 1 FLUXNET2015 database provided limited scope to tackle this issue as it does not sample sufficient high temperature events with which to probe the physiological response of trees to extreme heat. Thus, further work is required to determine whether this photosynthetic decoupling occurs widely, ideally by matching experimental species with those found at eddy covariance tower sites. Such measurements would allow this decoupling mechanism to be probed experimentally and at the ecosystem scale. Transpiration during heatwaves remains a key issue to resolve, as no land surface model includes a decoupling mechanism, and any potential dampening of the land-atmosphere amplification is thus not included in climate model projections.
- Published
- 2019
47. The fate of carbon in a mature forest under carbon dioxide enrichment
- Author
-
Jiang, M., primary, Medlyn, B.E., additional, Drake, J.E., additional, Duursma, R.A., additional, Anderson, I.C., additional, Barton, C.V.M., additional, Boer, M.M., additional, Carrillo, Y., additional, Castañeda-Gómez, L., additional, Collins, L., additional, Crous, K.Y., additional, De Kauwe, M.G., additional, Emmerson, K.M., additional, Facey, S.L., additional, Gherlenda, A.N., additional, Gimeno, T.E., additional, Hasegawa, S., additional, Johnson, S.N., additional, Macdonald, C.A., additional, Mahmud, K., additional, Moore, B.D., additional, Nazaries, L., additional, Nielsen, U.N., additional, Noh, N.J., additional, Ochoa-Hueso, R., additional, Pathare, V.S., additional, Pendall, E., additional, Pineiro, J., additional, Powell, J.R., additional, Power, S.A., additional, Reich, P.B., additional, Renchon, A.A., additional, Riegler, M., additional, Rymer, P., additional, Salomón, R.L., additional, Singh, B.K., additional, Smith, B., additional, Tjoelker, M.G., additional, Walker, J.K.M., additional, Wujeska-Klause, A., additional, Yang, J., additional, Zaehle, S., additional, and Ellsworth, D.S., additional
- Published
- 2019
- Full Text
- View/download PDF
48. Can UAV-based infrared thermography be used to study plant-parasite interactions between mistletoe and Eucalypt trees?
- Author
-
Maes, WH, Huete, AR, Avino, M, Boer, MM, Dehaan, R, Pendall, E, Griebel, A, Steppe, K, Maes, WH, Huete, AR, Avino, M, Boer, MM, Dehaan, R, Pendall, E, Griebel, A, and Steppe, K
- Abstract
© 2018 by the authors. Some of the remnants of the Cumberland Plain woodland, an endangered dry sclerophyllous forest type of New South Wales, Australia, host large populations of mistletoe. In this study, the extent of mistletoe infection was investigated based on a forest inventory. We found that the mistletoe infection rate was relatively high, with 69% of the Eucalyptus fibrosa and 75% of the E. moluccana trees being infected. Next, to study the potential consequences of the infection for the trees, canopy temperatures of mistletoe plants and of infected and uninfected trees were analyzed using thermal imagery acquired during 10 flights with an unmanned aerial vehicle (UAV) in two consecutive summer seasons. Throughout all flight campaigns, mistletoe canopy temperature was 0.3-2 K lower than the temperature of the eucalypt canopy it was growing in, suggesting higher transpiration rates. Differences in canopy temperature between infected eucalypt foliage and mistletoe were particularly large when incoming radiation peaked. In these conditions, eucalypt foliage from infected trees also had significantly higher canopy temperatures (and likely lower transpiration rates) compared to that of uninfected trees of the same species. The study demonstrates the potential of using UAV-based infrared thermography for studying plant-water relations of mistletoe and its hosts.
- Published
- 2018
49. A trade-off between plant and soil carbon storage under elevated CO2.
- Author
-
Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., van Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E., Zhang, H., Evans, R. D., Carrillo, Y., Fisher, J. B., Van Sundert, K., Vicca, Sara, and Jackson, R. B.
- Abstract
Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO
2 ) emitted by human activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2 ) experiments4–6, SOC has been observed to increase, remain unchanged or even decline7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO2 , SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests (0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised.A synthesis of elevated carbon dioxide experiments reveals that when plant biomass is strongly stimulated by elevated carbon dioxide levels, soil carbon storage declines, and where biomass is weakly stimulated, soil carbon accumulates. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
50. Response of soil organic matter dynamics to conversion from tropical forest to grassland as determined by long-term incubation
- Author
-
Schwendenmann, L. and Pendall, E.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.