162 results on '"Plazas Malagón, A. A."'
Search Results
2. Weak Gravitational Lensing around Low Surface Brightness Galaxies in the DES Year 3 Data
- Author
-
N. Chicoine, J. Prat, G. Zacharegkas, C. Chang, D. Tanoglidis, A. Drlica-Wagner, D. Anbajagane, S. Adhikari, A. Amon, R. H. Wechsler, A. Alarcon, K. Bechtol, M. R. Becker, G. M. Bernstein, A. Campos, A. Carnero Rosell, M. Carrasco Kind, R. Cawthon, R. Chen, A. Choi, J. Cordero, C. Davis, J. DeRose, S. Dodelson, C. Doux, K. Eckert, J. Elvin-Poole, S. Everett, A. Ferté, M. Gatti, G. Giannini, D. Gruen, R. A. Gruendl, I. Harrison, K. Herner, M. Jarvis, P. -F. Leget, N. MacCrann, J. McCullough, J. Myles, A. Navarro-Alsina, S. Pandey, M. Raveri, R. P. Rollins, A. Roodman, A. J. Ross, E. S. Rykoff, C. Sánchez, L. F. Secco, I. Sevilla-Noarbe, E. Sheldon, T. Shin, M. A. Troxel, I. Tutusaus, T. N. Varga, B. Yanny, B. Yin, J. Zuntz, M. Aguena, O. Alves, D. Bacon, D. Brooks, J. Carretero, F. J. Castander, C. Conselice, S. Desai, J. De Vicente, P. Doel, I. Ferrero, B. Flaugher, J. Frieman, J. García-Bellido, E. Gaztanaga, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, S. Lee, C. Lidman, M. Lima, J. L. Marshall, J. Mena-Fernández, R. Miquel, J. Muir, R. L. C. Ogando, A. Palmese, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, A. Porredon, A. R. Walker, S. Samuroff, E. Sanchez, D. Sanchez Cid, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, C. To, D. L. Tucker, V. Vikram, N. Weaverdyck, and P. Wiseman
- Subjects
Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Abstract
We present galaxy-galaxy lensing measurements using a sample of low surface brightness galaxies (LSBGs) drawn from the Dark Energy Survey Year 3 (Y3) data as lenses. LSBGs are diffuse galaxies with a surface brightness dimmer than the ambient night sky. These dark-matter-dominated objects are intriguing due to potentially unusual formation channels that lead to their diffuse stellar component. Given the faintness of LSBGs, using standard observational techniques to characterize their total masses proves challenging. Weak gravitational lensing, which is less sensitive to the stellar component of galaxies, could be a promising avenue to estimate the masses of LSBGs. Our LSBG sample consists of 23,790 galaxies separated into red and blue color types at $g-i\ge 0.60$ and $g-i< 0.60$, respectively. Combined with the DES Y3 shear catalog, we measure the tangential shear around these LSBGs and find signal-to-noise ratios of 6.67 for the red sample, 2.17 for the blue sample, and 5.30 for the full sample. We use the clustering redshifts method to obtain redshift distributions for the red and blue LSBG samples. Assuming all red LSBGs are satellites, we fit a simple model to the measurements and estimate the host halo mass of these LSBGs to be $\log(M_{\rm host}/M_{\odot}) = 12.98 ^{+0.10}_{-0.11}$. We place a 95% upper bound on the subhalo mass at $\log(M_{\rm sub}/M_{\odot})
- Published
- 2024
- Full Text
- View/download PDF
3. Third data release of the Hyper Suprime-Cam Subaru Strategic Program
- Author
-
Aihara, Hiroaki, AlSayyad, Yusra, Ando, Makoto, Armstrong, Robert, Bosch, James, Egami, Eiichi, Furusawa, Hisanori, Furusawa, Junko, Harasawa, Sumiko, Harikane, Yuichi, Hsieh, Bau-Ching, Ikeda, Hiroyuki, Ito, Kei, Iwata, Ikuru, Kodama, Tadayuki, Koike, Michitaro, Kokubo, Mitsuru, Komiyama, Yutaka, Li, Xiangchong, Liang, Yongming, Lin, Yen-Ting, Lupton, Robert H, Lust, Nate B, MacArthur, Lauren A, Mawatari, Ken, Mineo, Sogo, Miyatake, Hironao, Miyazaki, Satoshi, More, Surhud, Morishima, Takahiro, Murayama, Hitoshi, Nakajima, Kimihiko, Nakata, Fumiaki, Nishizawa, Atsushi J, Oguri, Masamune, Okabe, Nobuhiro, Okura, Yuki, Ono, Yoshiaki, Osato, Ken, Ouchi, Masami, Pan, Yen-Chen, Plazas Malagón, Andrés A, Price, Paul A, Reed, Sophie L, Rykoff, Eli S, Shibuya, Takatoshi, Simunovic, Mirko, Strauss, Michael A, Sugimori, Kanako, Suto, Yasushi, Suzuki, Nao, Takada, Masahiro, Takagi, Yuhei, Takata, Tadafumi, Takita, Satoshi, Tanaka, Masayuki, Tang, Shenli, Taranu, Dan S, Terai, Tsuyoshi, Toba, Yoshiki, Turner, Edwin L, Uchiyama, Hisakazu, Vijarnwannaluk, Bovornpratch, Waters, Christopher Z, Yamada, Yoshihiko, Yamamoto, Naoaki, and Yamashita, Takuji
- Subjects
astronomical databases: miscellaneous ,cosmology: observations ,galaxies: general ,surveys ,Astronomical and Space Sciences ,Astronomy & Astrophysics - Abstract
This paper presents the third data release of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP), a wide-field multi-band imaging survey with the Subaru 8.2 m telescope. HSC-SSP has three survey layers (Wide, Deep, and UltraDeep) with different area coverages and depths, designed to address a wide array of astrophysical questions. This third release from HSC-SSP includes data from 278 nights of observing time and covers about 670 deg2 in all five broad-band filters (grizy) at the full depth (∼26 mag at 5σ depending on filter) in the Wide layer. If we include partially observed areas, the release covers 1470 deg2. The Deep and UltraDeep layers have ∼ 80% of the originally planned integration times, and are considered done, as we have slightly changed the observing strategy in order to compensate for various time losses. There are a number of updates in the image processing pipeline. Of particular importance is the change in the sky subtraction algorithm; we subtract the sky on small scales before the detection and measurement stages, which has significantly reduced the number of false detections. Thanks to this and other updates, the overall quality of the processed data has improved since the previous release. However, there are limitations in the data (for example, the pipeline is not optimized for crowded fields), and we encourage the user to check the quality assurance plots as well as a list of known issues before exploiting the data.
- Published
- 2022
4. The Dark Energy Survey: Cosmology Results with ∼1500 New High-redshift Type Ia Supernovae Using the Full 5 yr Data Set
- Author
-
DES Collaboration: T. M. C. Abbott, M. Acevedo, M. Aguena, A. Alarcon, S. Allam, O. Alves, A. Amon, F. Andrade-Oliveira, J. Annis, P. Armstrong, J. Asorey, S. Avila, D. Bacon, B. A. Bassett, K. Bechtol, P. H. Bernardinelli, G. M. Bernstein, E. Bertin, J. Blazek, S. Bocquet, D. Brooks, D. Brout, E. Buckley-Geer, D. L. Burke, H. Camacho, R. Camilleri, A. Campos, A. Carnero Rosell, D. Carollo, A. Carr, J. Carretero, F. J. Castander, R. Cawthon, C. Chang, R. Chen, A. Choi, C. Conselice, M. Costanzi, L. N. da Costa, M. Crocce, T. M. Davis, D. L. DePoy, S. Desai, H. T. Diehl, M. Dixon, S. Dodelson, P. Doel, C. Doux, A. Drlica-Wagner, J. Elvin-Poole, S. Everett, I. Ferrero, A. Ferté, B. Flaugher, R. J. Foley, P. Fosalba, D. Friedel, J. Frieman, C. Frohmaier, L. Galbany, J. García-Bellido, M. Gatti, E. Gaztanaga, G. Giannini, K. Glazebrook, O. Graur, D. Gruen, R. A. Gruendl, G. Gutierrez, W. G. Hartley, K. Herner, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. Huterer, B. Jain, D. J. James, N. Jeffrey, E. Kasai, L. Kelsey, S. Kent, R. Kessler, A. G. Kim, R. P. Kirshner, E. Kovacs, K. Kuehn, O. Lahav, J. Lee, S. Lee, G. F. Lewis, T. S. Li, C. Lidman, H. Lin, U. Malik, J. L. Marshall, P. Martini, J. Mena-Fernández, F. Menanteau, R. Miquel, J. J. Mohr, J. Mould, J. Muir, A. Möller, E. Neilsen, R. C. Nichol, P. Nugent, R. L. C. Ogando, A. Palmese, Y.-C. Pan, M. Paterno, W. J. Percival, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, B. Popovic, A. Porredon, J. Prat, H. Qu, M. Raveri, M. Rodríguez-Monroy, A. K. Romer, A. Roodman, B. Rose, M. Sako, E. Sanchez, D. Sanchez Cid, M. Schubnell, D. Scolnic, I. Sevilla-Noarbe, P. Shah, J. Allyn. Smith, M. Smith, M. Soares-Santos, E. Suchyta, M. Sullivan, N. Suntzeff, M. E. C. Swanson, B. O. Sánchez, G. Tarle, G. Taylor, D. Thomas, C. To, M. Toy, M. A. Troxel, B. E. Tucker, D. L. Tucker, S. A. Uddin, M. Vincenzi, A. R. Walker, N. Weaverdyck, R. H. Wechsler, J. Weller, W. Wester, P. Wiseman, M. Yamamoto, F. Yuan, B. Zhang, and Y. Zhang
- Subjects
Cosmology ,Type Ia supernovae ,Dark energy ,Dark matter ,Astrophysics ,QB460-466 - Abstract
We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 < z < 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-quality z > 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 < z < 0.10. Using SN data alone and including systematic uncertainties, we find Ω _M = 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration ( q _0 < 0 in ΛCDM) with over 5 σ confidence. We find $({{\rm{\Omega }}}_{{\rm{M}}},w)=({0.264}_{-0.096}^{+0.074},-{0.80}_{-0.16}^{+0.14})$ in flat w CDM. For flat w _0 w _a CDM, we find $({{\rm{\Omega }}}_{{\rm{M}}},{w}_{0},{w}_{a})=({0.495}_{-0.043}^{+0.033},-{0.36}_{-0.30}^{+0.36},-{8.8}_{-4.5}^{+3.7})$ , consistent with a constant equation of state to within ∼2 σ . Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (Ω _M , w ) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2 σ . Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses.
- Published
- 2024
- Full Text
- View/download PDF
5. The first Hubble diagram and cosmological constraints using superluminous supernovae
- Author
-
Inserra, C, Sullivan, M, Angus, CR, MacAulay, E, Nichol, RC, Smith, M, Frohmaier, C, Gutiérrez, CP, Vicenzi, M, Möller, A, Brout, D, Brown, PJ, Davis, TM, D'Andrea, CB, Galbany, L, Kessler, R, Kim, AG, Pan, YC, Pursiainen, M, Scolnic, D, Thomas, BP, Wiseman, P, Abbott, TMC, Annis, J, Avila, S, Bertin, E, Brooks, D, Burke, DL, Carnero Rosell, A, Carrasco Kind, M, Carretero, J, Castander, FJ, Cawthon, R, Desai, S, DIehl, HT, Eifler, TF, Finley, DA, Flaugher, B, Fosalba, P, Frieman, J, Garcia-Bellido, J, Gaztanaga, E, Gerdes, DW, Giannantonio, T, Gruen, D, Gruendl, RA, Gschwend, J, Gutierrez, G, Hollowood, DL, Honscheid, K, James, DJ, Krause, E, Kuehn, K, Kuropatkin, N, Li, TS, Lidman, C, Lima, M, Maia, MAG, Marshall, JL, Martini, P, Menanteau, F, Miquel, R, Plazas Malagón, AA, Romer, AK, Roodman, A, Sako, M, Sanchez, E, Scarpine, V, Schubnell, M, Serrano, S, Sevilla-Noarbe, I, Soares-Santos, M, Sobreira, F, Suchyta, E, Swanson, MEC, Tarle, G, Thomas, D, Tucker, DL, Vikram, V, Walker, AR, Zhang, Y, Asorey, J, Calcino, J, Carollo, D, Glazebrook, K, Hinton, SR, Hoormann, JK, Lewis, GF, Sharp, R, Swann, E, and Tucker, BE
- Subjects
astro-ph.CO ,astro-ph.HE ,Astronomy & Astrophysics ,Astronomical and Space Sciences - Abstract
We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints on the matter density, ωM, and the dark energy equation-of-state parameter, w(p/ρ). We build a sample of 20 cosmologically useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak-decline SLSN I standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical and systematic uncertainties. For a spatially flat Λ cold dark matter (ΛCDM) cosmological model, we find $\Omega{\rm M}=0.38^{+0.24}_{-0.19}$, with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I to a 'baseline' measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement in the constraints of w0 and wa of 4 per cent. We present simulations of future surveys with 868 and 492 SLSNe I (depending on the configuration used) and show that such a sample can deliver cosmological constraints in a flat ΛCDM model with the same precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of 2-3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology in the high-redshift (z > 1) universe.
- Published
- 2021
6. DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys
- Author
-
Dark Energy Survey, Kilo-Degree Survey Collaboration, T. M. C. Abbott, M. Aguena, A. Alarcon, O. Alves, A. Amon, F. Andrade-Oliveira, M. Asgari, S. Avila, D. Bacon, K. Bechtol, M. R. Becker, G. M. Bernstein, E. Bertin, M. Bilicki, J. Blazek, S. Bocquet, D. Brooks, P. Burger, D. L. Burke, H. Camacho, A. Campos, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, R. Cawthon, C. Chang, R. Chen, A. Choi, C. Conselice, J. Cordero, M. Crocce, L. N. da Costa, M. E. da Silva Pereira, R. Dalal, C. Davis, J. T. A. deJong, J. DeRose, S. Desai, H. T. Diehl, S. Dodelson, P. Doel, C. Doux, A. Drlica-Wagner, A. Dvornik, K. Eckert, T. F. Eifler, J. Elvin-Poole, S. Everett, X. Fang, I. Ferrero, A. Ferté, B. Flaugher, O. Friedrich, J. Frieman, J. García-Bellido, M. Gatti, G. Giannini, B. Giblin, D. Gruen, R. A. Gruendl, G. Gutierrez, I. Harrison, W. G. Hartley, K. Herner, C. Heymans, H. Hildebrandt, S. R. Hinton, H. Hoekstra, D. L. Hollowood, K. Honscheid, H. Huang, E. M. Huff, D. Huterer, D. J. James, M. Jarvis, N. Jeffrey, T. Jeltema, B. Joachimi, S. Joudaki, A. Kannawadi, E. Krause, K. Kuehn, K. Kuijken, N. Kuropatkin, O. Lahav, P. -F. Leget, P. Lemos, S. Li, X. Li, A. R. Liddle, M. Lima, C. -A Lin, H. Lin, N. MacCrann, C. Mahony, J. L. Marshall, J. McCullough, J. Mena-Fernández, F. Menanteau, R. Miquel, J. J. Mohr, J. Muir, J. Myles, N. Napolitano, A. Navarro-Alsina, R. L. C. Ogando, A. Palmese, S. Pandey, Y. Park, M. Paterno, J. A. Peacock, D. Petravick, A. Pieres, A. A. Plazas Malagón, A. Porredon, J. Prat, M. Radovich, M. Raveri, R. Reischke, N. C. Robertson, R. P. Rollins, A. K. Romer, A. Roodman, E. S. Rykoff, S. Samuroff, C. Sánchez, E. Sanchez, J. Sanchez, P. Schneider, L. F. Secco, I. Sevilla-Noarbe, H.-Y. Shan, E. Sheldon, T. Shin, C. Sifón, M. Smith, M. Soares-Santos, B. Stölzner, E. Suchyta, M. E. C. Swanson, G. Tarle, D. Thomas, C. To, M. A. Troxel, T. Tröster, I. Tutusaus, J. L. van den Busch, T. N. Varga, A. R. Walker, N. Weaverdyck, R. H. Wechsler, J. Weller, P. Wiseman, A. H. Wright, B. Yanny, B. Yin, M. Yoon, Y. Zhang, and J. Zuntz
- Subjects
Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Abstract
We present a joint cosmic shear analysis of the Dark Energy Survey (DES Y3) and the Kilo-Degree Survey (KiDS-1000) in a collaborative effort between the two survey teams. We find consistent cosmological parameter constraints between DES Y3 and KiDS-1000 which, when combined in a joint-survey analysis, constrain the parameter $S_8 = \sigma_8 \sqrt{\Omega_{\rm m}/0.3}$ with a mean value of $0.790^{+0.018}_{-0.014}$. The mean marginal is lower than the maximum a posteriori estimate, $S_8=0.801$, owing to skewness in the marginal distribution and projection effects in the multi-dimensional parameter space. Our results are consistent with $S_8$ constraints from observations of the cosmic microwave background by Planck, with agreement at the $1.7\sigma$ level. We use a Hybrid analysis pipeline, defined from a mock survey study quantifying the impact of the different analysis choices originally adopted by each survey team. We review intrinsic alignment models, baryon feedback mitigation strategies, priors, samplers and models of the non-linear matter power spectrum. Supplementary information: you can download the chains here or create your own chains with CosmoSIS here.
- Published
- 2023
- Full Text
- View/download PDF
7. DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys
- Author
-
T.M.C. Abbott, M. Aguena, A. Alarcon, O. Alves, A. Amon, F. Andrade-Oliveira, M. Asgari, S. Avila, D. Bacon, K. Bechtol, M. R. Becker, G. M. Bernstein, E. Bertin, M. Bilicki, J. Blazek, S. Bocquet, D. Brooks, P. Burger, D. L. Burke, H. Camacho, A. Campos, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, R. Cawthon, C. Chang, R. Chen, A. Choi, C. Conselice, J. Cordero, M. Crocce, L. N. da Costa, M. E. da Silva Pereira, R. Dalal, C. Davis, J. T. A. de Jong, J. DeRose, S. Desai, H. T. Diehl, S. Dodelson, P. Doel, C. Doux, A. Drlica-Wagner, A. Dvornik, K. Eckert, T. F. Eifler, J. Elvin-Poole, S. Everett, X. Fang, I. Ferrero, A. Ferté, B. Flaugher, O. Friedrich, J. Frieman, J. García-Bellido, M. Gatti, G. Giannini, B. Giblin, D. Gruen, R. A. Gruendl, G. Gutierrez, I. Harrison, W. G. Hartley, K. Herner, C. Heymans, H. Hildebrandt, S. R. Hinton, H. Hoekstra, D. L. Hollowood, K. Honscheid, H. Huang, E. M. Huff, D. Huterer, D. J. James, M. Jarvis, N. Jeffrey, T. Jeltema, B. Joachimi, S. Joudaki, A. Kannawadi, E. Krause, K. Kuehn, K. Kuijken, N. Kuropatkin, O. Lahav, P.-F. Leget, P. Lemos, S.-S. Li, X. Li, A. R. Liddle, M. Lima, C.-A. Lin, H. Lin, N. MacCrann, C. Mahony, J. L. Marshall, J. McCullough, J. Mena-Fernández, F. Menanteau, R. Miquel, J. J. Mohr, J. Muir, J. Myles, N. Napolitano, A. Navarro-Alsina, R. L. C. Ogando, A. Palmese, S. Pandey, Y. Park, M. Paterno, J. A. Peacock, D. Petravick, A. Pieres, A. A. Plazas Malagón, A. Porredon, J. Prat, M. Radovich, M. Raveri, R. Reischke, N. C. Robertson, R. P. Rollins, A. K. Romer, A. Roodman, E. S. Rykoff, S. Samuroff, C. Sánchez, E. Sanchez, J. Sanchez, P. Schneider, L. F. Secco, I. Sevilla-Noarbe, H.-Y. Shan, E. Sheldon, T. Shin, C. Sifón, M. Smith, M. Soares-Santos, B. Stölzner, E. Suchyta, M. E. C. Swanson, G. Tarle, D. Thomas, C. To, M. A. Troxel, T. Tröster, I. Tutusaus, J. L. van den Busch, T. N. Varga, A. R. Walker, N. Weaverdyck, R. H. Wechsler, J. Weller, P. Wiseman, A. H. Wright, B. Yanny, B. Yin, M. Yoon, Y. Zhang, and J. Zuntz
- Subjects
Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Published
- 2023
- Full Text
- View/download PDF
8. Environmental Quenching of Low-surface-brightness Galaxies Near Hosts from Large Magellanic Cloud to Milky Way Mass Scales
- Author
-
J. Bhattacharyya, A. H. G. Peter, P. Martini, B. Mutlu-Pakdil, A. Drlica-Wagner, A. B. Pace, L. E. Strigari, T.-Y. Cheng, D. Roberts, D. Tanoglidis, M. Aguena, O. Alves, F. Andrade-Oliveira, D. Bacon, D. Brooks, A. Carnero Rosell, J. Carretero, L. N. da Costa, M. E. S. Pereira, T. M. Davis, S. Desai, P. Doel, I. Ferrero, J. Frieman, J. García-Bellido, G. Giannini, D. Gruen, R. A. Gruendl, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, J. L. Marshall, J. Mena-Fernández, R. Miquel, A. Palmese, A. Pieres, A. A. Plazas Malagón, E. Sanchez, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, M. Vincenzi, A. R. Walker, N. Weaverdyck, P. Wiseman, and Dark Energy Survey Collaboration
- Subjects
Galaxy colors ,Low surface brightness galaxies ,Galaxy quenching ,Galaxy evolution ,Astrophysics ,QB460-466 - Abstract
Low-surface-brightness galaxies (LSBGs) are excellent probes of quenching and other environmental processes near massive galaxies. We study an extensive sample of LSBGs near massive hosts in the local universe that are distributed across a diverse range of environments. The LSBGs with surface-brightness ${\mu }_{\mathrm{eff},{g}}\gt 24.2\,\mathrm{mag}\,{\mathrm{arcsec}}^{-2}$ are drawn from the Dark Energy Survey Year 3 catalog while the hosts with masses $9.0\lt \mathrm{log}({{ \mathcal M }}_{\star }/{M}_{\odot })\lt 11.0$ comparable to the Milky Way and the Large Magellanic Cloud are selected from the z0MGS sample. We study the projected radial density profiles of LSBGs as a function of their color and surface brightness around hosts in both the rich Fornax–Eridanus cluster environment and the low-density field. We detect an overdensity with respect to the background density, out to 2.5 times the virial radius for both hosts in the cluster environment and the isolated field galaxies. When the LSBG sample is split by g − i color or surface brightness μ _eff, _g , we find the LSBGs closer to their hosts are significantly redder and brighter, like their high-surface-brightness counterparts. The LSBGs form a clear “red sequence” in both the cluster and isolated environments that is visible beyond the virial radius of the hosts. This suggests preprocessing of infalling LSBGs and a quenched backsplash population around both host samples. More so, the relative prominence of the “blue cloud” feature implies that preprocessing is ongoing near the isolated hosts compared to the cluster environment where the LSBGs are already well processed.
- Published
- 2024
- Full Text
- View/download PDF
9. The Dark Energy Survey Supernova Program: Cosmological Analysis and Systematic Uncertainties
- Author
-
M. Vincenzi, D. Brout, P. Armstrong, B. Popovic, G. Taylor, M. Acevedo, R. Camilleri, R. Chen, T. M. Davis, J. Lee, C. Lidman, S. R. Hinton, L. Kelsey, R. Kessler, A. Möller, H. Qu, M. Sako, B. Sanchez, D. Scolnic, M. Smith, M. Sullivan, P. Wiseman, J. Asorey, B. A. Bassett, D. Carollo, A. Carr, R. J. Foley, C. Frohmaier, L. Galbany, K. Glazebrook, O. Graur, E. Kovacs, K. Kuehn, U. Malik, R. C. Nichol, B. Rose, B. E. Tucker, M. Toy, D. L. Tucker, F. Yuan, T. M. C. Abbott, M. Aguena, O. Alves, S. S. Allam, F. Andrade-Oliveira, J. Annis, D. Bacon, K. Bechtol, G. M. Bernstein, D. Brooks, D. L. Burke, A. Carnero Rosell, J. Carretero, F. J. Castander, C. Conselice, L. N. da Costa, M. E. S. Pereira, S. Desai, H. T. Diehl, P. Doel, I. Ferrero, B. Flaugher, D. Friedel, J. Frieman, J. García-Bellido, M. Gatti, G. Giannini, D. Gruen, R. A. Gruendl, D. L. Hollowood, K. Honscheid, D. Huterer, D. J. James, N. Kuropatkin, O. Lahav, S. Lee, H. Lin, J. L. Marshall, J. Mena-Fernández, F. Menanteau, R. Miquel, A. Palmese, A. Pieres, A. A. Plazas Malagón, A. Porredon, A. K. Romer, A. Roodman, E. Sanchez, D. Sanchez Cid, M. Schubnell, I. Sevilla-Noarbe, E. Suchyta, M. E. C. Swanson, G. Tarle, C. To, A. R. Walker, N. Weaverdyck, M. Yamamoto, and DES Collaboration
- Subjects
Type Ia supernovae ,Cosmological constant experiments ,Dark energy ,Cosmological parameters ,Astrophysics ,QB460-466 - Abstract
We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 < z < 1.13, which is the largest sample of supernovae from any single survey and increases the number of known z > 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are ${\sigma }_{{{\rm{\Omega }}}_{M},\mathrm{stat}+\mathrm{sys}}^{{\rm{\Lambda }}\mathrm{CDM}}=$ 0.017 in a flat ΛCDM model, and $({\sigma }_{{{\rm{\Omega }}}_{M}},{\sigma }_{w}{)}_{\mathrm{stat}+\mathrm{sys}}^{w\mathrm{CDM}}$ = (0.082, 0.152) in a flat w CDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time.
- Published
- 2024
- Full Text
- View/download PDF
10. The Dark Energy Survey Supernova Program: Light Curves and 5 Yr Data Release
- Author
-
B. O. Sánchez, D. Brout, M. Vincenzi, M. Sako, K. Herner, R. Kessler, T. M. Davis, D. Scolnic, M. Acevedo, J. Lee, A. Möller, H. Qu, L. Kelsey, P. Wiseman, P. Armstrong, B. Rose, R. Camilleri, R. Chen, L. Galbany, E. Kovacs, C. Lidman, B. Popovic, M. Smith, P. Shah, M. Sullivan, M. Toy, T. M. C. Abbott, M. Aguena, S. Allam, O. Alves, J. Annis, J. Asorey, S. Avila, D. Bacon, D. Brooks, D. L. Burke, A. Carnero Rosell, D. Carollo, J. Carretero, L. N. da Costa, F. J. Castander, S. Desai, H. T. Diehl, J. Duarte, S. Everett, I. Ferrero, B. Flaugher, J. Frieman, J. García-Bellido, M. Gatti, E. Gaztanaga, G. Giannini, K. Glazebrook, S. González-Gaitán, R. A. Gruendl, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, O. Lahav, S. Lee, G. F. Lewis, H. Lin, J. L. Marshall, J. Mena-Fernández, R. Miquel, J. Myles, R. C. Nichol, R. L. C. Ogando, A. Palmese, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, A. Porredon, A. K. Romer, E. Sanchez, D. Sanchez Cid, I. Sevilla-Noarbe, E. Suchyta, M. E. C. Swanson, G. Tarle, B. E. Tucker, D. L. Tucker, V. Vikram, A. R. Walker, N. Weaverdyck, and DES Collaboration
- Subjects
Cosmology ,Type Ia supernovae ,Dark energy ,Astrophysics ,QB460-466 - Abstract
We present griz photometric light curves for the full 5 yr of the Dark Energy Survey Supernova (DES-SN) program, obtained with both forced point-spread function photometry on difference images ( DiffImg ) performed during survey operations, and scene modelling photometry (SMP) on search images processed after the survey. This release contains 31,636 DiffImg and 19,706 high-quality SMP light curves, the latter of which contain 1635 photometrically classified SNe that pass cosmology quality cuts. This sample spans the largest redshift ( z ) range ever covered by a single SN survey (0.1 < z < 1.13) and is the largest single sample from a single instrument of SNe ever used for cosmological constraints. We describe in detail the improvements made to obtain the final DES-SN photometry and provide a comparison to what was used in the 3 yr DES-SN spectroscopically confirmed Type Ia SN sample. We also include a comparative analysis of the performance of the SMP photometry with respect to the real-time DiffImg forced photometry and find that SMP photometry is more precise, more accurate, and less sensitive to the host-galaxy surface brightness anomaly. The public release of the light curves and ancillary data can be found at http://github.com/des-science/DES-SN5YR and doi:10.5281/zenodo.12720777.
- Published
- 2024
- Full Text
- View/download PDF
11. The Dark Energy Survey Supernova Program: Cosmological Biases from Host Galaxy Mismatch of Type Ia Supernovae
- Author
-
H. Qu, M. Sako, M. Vincenzi, C. Sánchez, D. Brout, R. Kessler, R. Chen, T. Davis, L. Galbany, L. Kelsey, J. Lee, C. Lidman, B. Popovic, B. Rose, D. Scolnic, M. Smith, M. Sullivan, P. Wiseman, T. M. C. Abbott, M. Aguena, O. Alves, D. Bacon, E. Bertin, D. Brooks, D. L. Burke, A. Carnero Rosell, J. Carretero, L. N. da Costa, M. E. S. Pereira, H. T. Diehl, P. Doel, S. Everett, I. Ferrero, J. Frieman, J. García-Bellido, G. Giannini, D. Gruen, R. A. Gruendl, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, O. Lahav, J. L. Marshall, J. Mena-Fernández, F. Menanteau, R. Miquel, R. L. C. Ogando, A. Palmese, A. Pieres, A. A. Plazas-Malagón, M. Raveri, E. Sanchez, I. Sevilla-Noarbe, M. Soares-Santos, E. Suchyta, G. Tarle, N. Weaverdyck, and DES Collaboration
- Subjects
Cosmology ,Type Ia supernovae ,Dark energy ,Astrophysics ,QB460-466 - Abstract
Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δ w ) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δ w = 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δ w ranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty on w from the DES-SN5YR sample of ∼0.03. We conclude that the bias on w from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts.
- Published
- 2024
- Full Text
- View/download PDF
12. A Search for Faint Resolved Galaxies Beyond the Milky Way in DES Year 6: A New Faint, Diffuse Dwarf Satellite of NGC 55
- Author
-
M. McNanna, K. Bechtol, S. Mau, E. O. Nadler, J. Medoff, A. Drlica-Wagner, W. Cerny, D. Crnojević, B. Mutlu-Pakdıl, A. K. Vivas, A. B. Pace, J. L. Carlin, M. L. M. Collins, P. S. Ferguson, D. Martínez-Delgado, C. E. Martínez-Vázquez, N. E. D. Noel, A. H. Riley, D. J. Sand, A. Smercina, E. Tollerud, R. H. Wechsler, T. M. C. Abbott, M. Aguena, O. Alves, D. Bacon, C. R. Bom, D. Brooks, D. L. Burke, J. A. Carballo-Bello, A. Carnero Rosell, J. Carretero, L. N. da Costa, T. M. Davis, J. De Vicente, H. T. Diehl, P. Doel, I. Ferrero, J. Frieman, G. Giannini, D. Gruen, G. Gutierrez, R. A. Gruendl, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, J. L. Marshall, J. Mena-Fernández, R. Miquel, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, J. D. Sakowska, E. Sanchez, D. Sanchez Cid, B. Santiago, I. Sevilla-Noarbe, M. Smith, G. S. Stringfellow, E. Suchyta, M. E. C. Swanson, G. Tarle, N. Weaverdyck, P. Wiseman, and DES & DELVE Collaboration
- Subjects
Local Group ,Low surface brightness galaxies ,Dwarf galaxies ,Astrophysics ,QB460-466 - Abstract
We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete to M _V ∼ (−7, −10) mag for galaxies at D = (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of ${2.2}_{-0.12}^{+0.05}\,\mathrm{Mpc}$ , a potential satellite of the Local Volume galaxy NGC 55, separated by 47′ (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absolute V -band magnitude of $-{8.0}_{-0.3}^{+0.5}\,\mathrm{mag}$ and an azimuthally averaged physical half-light radius of ${2.2}_{-0.4}^{+0.5}\,\mathrm{kpc}$ , making this one of the lowest surface brightness galaxies ever found with $\mu =32.3\,\mathrm{mag}\,{\mathrm{arcsec}}^{-2}$ . This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host.
- Published
- 2024
- Full Text
- View/download PDF
13. Designing an Optimal Kilonova Search Using DECam for Gravitational-wave Events
- Author
-
C. R. Bom, J. Annis, A. Garcia, A. Palmese, N. Sherman, M. Soares-Santos, L. Santana-Silva, R. Morgan, K. Bechtol, T. Davis, H. T. Diehl, S. S. Allam, T. G. Bachmann, B. M. O. Fraga, J. García-Bellido, M. S. S. Gill, K. Herner, C. D. Kilpatrick, M. Makler, F. Olivares E., M. E. S. Pereira, J. Pineda, A. Santos, D. L. Tucker, M. P. Wiesner, M. Aguena, O. Alves, D. Bacon, P. H. Bernardinelli, E. Bertin, S. Bocquet, D. Brooks, M. Carrasco Kind, J. Carretero, C. Conselice, M. Costanzi, L. N. da Costa, J. De Vicente, S. Desai, P. Doel, S. Everett, I. Ferrero, J. Frieman, M. Gatti, D. W. Gerdes, D. Gruen, R. A. Gruendl, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, N. Kuropatkin, P. Melchior, J. Mena-Fernández, F. Menanteau, A. Pieres, A. A. Plazas Malagón, M. Raveri, M. Rodriguez-Monroy, E. Sanchez, B. Santiago, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, C. To, and N. Weaverdyck
- Subjects
Gravitational wave astronomy ,Astronomical methods ,Astrostatistics tools ,Transient detection ,Astrophysics ,QB460-466 - Abstract
We address the problem of optimally identifying all kilonovae detected via gravitational-wave emission in the upcoming LIGO/Virgo/KAGRA observing run, O4, which is expected to be sensitive to a factor of ∼7 more binary neutron star (BNS) alerts than previously. Electromagnetic follow-up of all but the brightest of these new events will require >1 m telescopes, for which limited time is available. We present an optimized observing strategy for the DECam during O4. We base our study on simulations of gravitational-wave events expected for O4 and wide-prior kilonova simulations. We derive the detectabilities of events for realistic observing conditions. We optimize our strategy for confirming a kilonova while minimizing telescope time. For a wide range of kilonova parameters, corresponding to a fainter kilonova compared to GW170817/AT 2017gfo, we find that, with this optimal strategy, the discovery probability for electromagnetic counterparts with the DECam is ∼80% at the nominal BNS gravitational-wave detection limit for O4 (190 Mpc), which corresponds to an ∼30% improvement compared to the strategy adopted during the previous observing run. For more distant events (∼330 Mpc), we reach an ∼60% probability of detection, a factor of ∼2 increase. For a brighter kilonova model dominated by the blue component that reproduces the observations of GW170817/AT 2017gfo, we find that we can reach ∼90% probability of detection out to 330 Mpc, representing an increase of ∼20%, while also reducing the total telescope time required to follow up events by ∼20%.
- Published
- 2024
- Full Text
- View/download PDF
14. Characterization and Optimization of Skipper CCDs for the SOAR Integral Field Spectrograph
- Author
-
Villalpando, Edgar Marrufo, primary, Drlica-Wagner, Alex, additional, Plazas Malagón, Andrés A., additional, Bakshi, Abhishek, additional, Bonati, Marco, additional, Campa, Julia, additional, Cancino, Braulio, additional, Chavez, Claudio R., additional, Estrada, Juan, additional, Fernandez Moroni, Guillermo, additional, Fraga, Luciano, additional, Gaido, Manuel E., additional, Holland, Stephen, additional, Hur, Rachel, additional, Jonas, Michelle, additional, Moore, Peter, additional, and Tiffenberg, Javier, additional
- Published
- 2024
- Full Text
- View/download PDF
15. Mitigation of the Brighter-fatter Effect in the LSST Camera
- Author
-
Broughton, Alex, primary, Utsumi, Yousuke, additional, Plazas Malagón, Andrés A., additional, Waters, Christopher, additional, Lage, Craig, additional, Snyder, Adam, additional, Rasmussen, Andrew, additional, Marshall, Stuart, additional, Chiang, Jim, additional, Murgia, Simona, additional, and Roodman, Aaron, additional
- Published
- 2024
- Full Text
- View/download PDF
16. Spot-based measurement of the brighter-fatter effect on a Roman Space Telescope H4RG detector and comparison with flat-field data
- Author
-
Plazas Malagón, Andrés A., primary, Shapiro, Charles, additional, Choi, Ami, additional, and Hirata, Chris, additional
- Published
- 2024
- Full Text
- View/download PDF
17. Designing an Optimal Kilonova Search Using DECam for Gravitational-wave Events
- Author
-
Bom, C. R., primary, Annis, J., additional, Garcia, A., additional, Palmese, A., additional, Sherman, N., additional, Soares-Santos, M., additional, Santana-Silva, L., additional, Morgan, R., additional, Bechtol, K., additional, Davis, T., additional, Diehl, H. T., additional, Allam, S. S., additional, Bachmann, T. G., additional, Fraga, B. M. O., additional, García-Bellido, J., additional, Gill, M. S. S., additional, Herner, K., additional, Kilpatrick, C. D., additional, Makler, M., additional, Olivares E., F., additional, Pereira, M. E. S., additional, Pineda, J., additional, Santos, A., additional, Tucker, D. L., additional, Wiesner, M. P., additional, Aguena, M., additional, Alves, O., additional, Bacon, D., additional, Bernardinelli, P. H., additional, Bertin, E., additional, Bocquet, S., additional, Brooks, D., additional, Carrasco Kind, M., additional, Carretero, J., additional, Conselice, C., additional, Costanzi, M., additional, da Costa, L. N., additional, De Vicente, J., additional, Desai, S., additional, Doel, P., additional, Everett, S., additional, Ferrero, I., additional, Frieman, J., additional, Gatti, M., additional, Gerdes, D. W., additional, Gruen, D., additional, Gruendl, R. A., additional, Gutierrez, G., additional, Hinton, S. R., additional, Hollowood, D. L., additional, Honscheid, K., additional, James, D. J., additional, Kuehn, K., additional, Kuropatkin, N., additional, Melchior, P., additional, Mena-Fernández, J., additional, Menanteau, F., additional, Pieres, A., additional, Plazas Malagón, A. A., additional, Raveri, M., additional, Rodriguez-Monroy, M., additional, Sanchez, E., additional, Santiago, B., additional, Sevilla-Noarbe, I., additional, Smith, M., additional, Suchyta, E., additional, Swanson, M. E. C., additional, Tarle, G., additional, To, C., additional, and Weaverdyck, N., additional
- Published
- 2024
- Full Text
- View/download PDF
18. First Identification of a CMB Lensing Signal Produced by 1.5 Million Galaxies at z∼4 : Constraints on Matter Density Fluctuations at High Redshift
- Author
-
Hironao Miyatake, Yuichi Harikane, Masami Ouchi, Yoshiaki Ono, Nanaka Yamamoto, Atsushi J. Nishizawa, Neta Bahcall, Satoshi Miyazaki, and Andrés A. Plazas Malagón
- Published
- 2022
- Full Text
- View/download PDF
19. The CosmoQuest Moon Mappers Community Science Project: The Effect of Incidence Angle on the Lunar Surface Crater Distribution
- Author
-
Matthew Richardson, Andrés A. Plazas Malagón, Larry A. Lebofsky, Jennifer Grier, Pamela Gay, Stuart J. Robbins, and CosmoQuest Team
- Subjects
Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Abstract
The CosmoQuest virtual community science platform facilitates the creation and implementation of astronomical research projects performed by citizen scientists. One such project, called Moon Mappers, aids in determining the feasibility of producing crowd-sourced cratering statistics of the surface of the Moon. Lunar crater population statistics are an important metric used to understand the formation and evolutionary history of lunar surface features, to estimate relative and absolute model ages of regions on the Moon's surface, and to establish chronologies for other planetary surfaces via extrapolation from the lunar record. It has been suggested and shown that solar incidence angle has an effect on the identification of craters, particularly at meter scales. We have used high-resolution image data taken by the Lunar Reconnaissance Orbiter's Narrow-Angle Camera of the Apollo 15 landing site over a range of solar incidence angles and have compiled catalogs of crater identifications obtained by minimally trained members of the general public participating in CosmoQuest's Moon Mappers project. We have studied the effects of solar incidence angle spanning from approximately 27.5 deg to approximately 83 deg (extending the incidence angle range examined in previous works), down to a minimum crater size of 10 m, and find that the solar incidence angle has a significant effect on the crater identification process, as has been determined by subject matter experts in other studies. The results of this analysis not only highlight the ability to use crowd-sourced data in reproducing and validating scientific analyses but also indicate the potential to perform original research.
- Published
- 2022
- Full Text
- View/download PDF
20. Chemical Analysis of the Brightest Star of the Cetus II Ultrafaint Dwarf Galaxy Candidate
- Author
-
K. B. Webber, T. T. Hansen, J. L. Marshall, J. D. Simon, A. B. Pace, B. Mutlu-Pakdil, A. Drlica-Wagner, C. E. Martínez-Vázquez, M. Aguena, S. S. Allam, O. Alves, E. Bertin, D. Brooks, A. Carnero Rosell, J. Carretero, L. N. da Costa, J. De Vicente, P. Doel, I. Ferrero, D. Friedel, J. Frieman, J. García-Bellido, G. Giannini, D. Gruen, R. A. Gruendl, S. R. Hinton, D. L. Hollowood, K. Honscheid, K. Kuehn, J. Mena-Fernández, F. Menanteau, R. Miquel, R. L. C. Ogando, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, E. Sanchez, B. Santiago, J. Allyn Smith, M. Smith, E. Suchyta, G. Tarle, C. To, N. Weaverdyck, and B. Yanny
- Subjects
Chemical abundances ,Stellar abundances ,Astrophysics ,QB460-466 - Abstract
We present a detailed chemical abundance analysis of the brightest star in the ultrafaint dwarf (UFD) galaxy candidate Cetus II from high-resolution Magellan/MIKE spectra. For this star, DES J011740.53-173053, abundances or upper limits of 18 elements from carbon to europium are derived. Its chemical abundances generally follow those of other UFD galaxy stars, with a slight enhancement of the α -elements (Mg, Si, and Ca) and low neutron-capture element (Sr, Ba, and Eu) abundances supporting the classification of Cetus II as a likely UFD. The star exhibits lower Sc, Ti, and V abundances than Milky Way (MW) halo stars with similar metallicity. This signature is consistent with yields from a supernova originating from a star with a mass of ∼11.2 M _⊙ . In addition, the star has a potassium abundance of [K/Fe] = 0.81, which is somewhat higher than the K abundances of MW halo stars with similar metallicity, a signature that is also present in a number of UFD galaxies. A comparison including globular clusters and stellar stream stars suggests that high K is a specific characteristic of some UFD galaxy stars and can thus be used to help classify objects as UFD galaxies.
- Published
- 2023
- Full Text
- View/download PDF
21. Photometry of Outer Solar System Objects from the Dark Energy Survey. I. Photometric Methods, Light-curve Distributions, and Trans-Neptunian Binaries
- Author
-
Pedro H. Bernardinelli, Gary M. Bernstein, Nicholas Jindal, T. M. C. Abbott, M. Aguena, O. Alves, F. Andrade-Oliveira, J. Annis, D. Bacon, E. Bertin, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, L. N. da Costa, M. E. S. Pereira, T. M. Davis, S. Desai, H. T. Diehl, P. Doel, S. Everett, I. Ferrero, D. Friedel, J. Frieman, J. García-Bellido, G. Giannini, D. Gruen, K. Herner, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, J. L. Marshall, J. Mena-Fernández, F. Menanteau, R. Miquel, R. L. C. Ogando, A. Palmese, A. Pieres, A. A. Plazas Malagón, M. Raveri, E. Sanchez, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, C. To, A. R. Walker, P. Wiseman, Y. Zhang, and (The DES Collaboration)
- Subjects
Kuiper belt ,Trans-Neptunian objects ,Photometry ,Asteroid satellites ,Astrophysics ,QB460-466 - Abstract
We report the methods of and initial scientific inferences from the extraction of precision photometric information for the >800 trans-Neptunian objects (TNOs) discovered in the images of the Dark Energy Survey (DES). Scene-modeling photometry is used to obtain shot-noise-limited flux measures for each exposure of each TNO, with background sources subtracted. Comparison of double-source fits to the pixel data with single-source fits are used to identify and characterize two binary TNO systems. A Markov Chain Monte Carlo method samples the joint likelihood of the intrinsic colors of each source as well as the amplitude of its flux variation, given the time series of multiband flux measurements and their uncertainties. A catalog of these colors and light-curve amplitudes A is included with this publication. We show how to assign a likelihood to the distribution q ( A ) of light-curve amplitudes in any subpopulation. Using this method, we find decisive evidence (i.e., evidence ratio
- Published
- 2023
- Full Text
- View/download PDF
22. Identification of Galaxy–Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning
- Author
-
E. A. Zaborowski, A. Drlica-Wagner, F. Ashmead, J. F. Wu, R. Morgan, C. R. Bom, A. J. Shajib, S. Birrer, W. Cerny, E. J. Buckley-Geer, B. Mutlu-Pakdil, P. S. Ferguson, K. Glazebrook, S. J. Gonzalez Lozano, Y. Gordon, M. Martinez, V. Manwadkar, J. O’Donnell, J. Poh, A. Riley, J. D. Sakowska, L. Santana-Silva, B. X. Santiago, D. Sluse, C. Y. Tan, E. J. Tollerud, A. Verma, J. A. Carballo-Bello, Y. Choi, D. J. James, N. Kuropatkin, C. E. Martínez-Vázquez, D. L. Nidever, J. L. Nilo Castellon, N. E. D. Noël, K. A. G. Olsen, A. B. Pace, S. Mau, B. Yanny, A. Zenteno, T. M. C. Abbott, M. Aguena, O. Alves, F. Andrade-Oliveira, S. Bocquet, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, C. J. Conselice, M. Costanzi, M. E. S. Pereira, J. De Vicente, S. Desai, J. P. Dietrich, P. Doel, S. Everett, I. Ferrero, B. Flaugher, D. Friedel, J. Frieman, J. García-Bellido, D. Gruen, R. A. Gruendl, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, K. Kuehn, H. Lin, J. L. Marshall, P. Melchior, J. Mena-Fernández, F. Menanteau, R. Miquel, A. Palmese, F. Paz-Chinchón, A. Pieres, A. A. Plazas Malagón, J. Prat, M. Rodriguez-Monroy, A. K. Romer, E. Sanchez, V. Scarpine, I. Sevilla-Noarbe, M. Smith, E. Suchyta, C. To, N. Weaverdyck, and DELVE & DES Collaborations
- Subjects
Strong gravitational lensing ,Astrophysics ,QB460-466 - Abstract
We perform a search for galaxy–galaxy strong lens systems using a convolutional neural network (CNN) applied to imaging data from the first public data release of the DECam Local Volume Exploration Survey, which contains ∼520 million astronomical sources covering ∼4000 deg ^2 of the southern sky to a 5 σ point–source depth of g = 24.3, r = 23.9, i = 23.3, and z = 22.8 mag. Following the methodology of similar searches using Dark Energy Camera data, we apply color and magnitude cuts to select a catalog of ∼11 million extended astronomical sources. After scoring with our CNN, the highest-scoring 50,000 images were visually inspected and assigned a score on a scale from 0 (not a lens) to 3 (very probable lens). We present a list of 581 strong lens candidates, 562 of which are previously unreported. We categorize our candidates using their human-assigned scores, resulting in 55 Grade A candidates, 149 Grade B candidates, and 377 Grade C candidates. We additionally highlight eight potential quadruply lensed quasars from this sample. Due to the location of our search footprint in the northern Galactic cap ( b > 10 deg) and southern celestial hemisphere (decl. < 0 deg), our candidate list has little overlap with other existing ground-based searches. Where our search footprint does overlap with other searches, we find a significant number of high-quality candidates that were previously unidentified, indicating a degree of orthogonality in our methodology. We report properties of our candidates including apparent magnitude and Einstein radius estimated from the image separation.
- Published
- 2023
- Full Text
- View/download PDF
23. Synchronous Rotation in the (136199) Eris–Dysnomia System
- Author
-
Gary M. Bernstein, Bryan J. Holler, Rosario Navarro-Escamilla, Pedro H. Bernardinelli, T. M. C. Abbott, M. Aguena, S. Allam, O. Alves, F. Andrade-Oliveira, J. Annis, D. Bacon, D. Brooks, D. L. Burke, A. Carnero Rosell, J. Carretero, L. N. da Costa, M. E. S. Pereira, J. De Vicente, S. Desai, P. Doel, A. Drlica-Wagner, S. Everett, I. Ferrero, J. Frieman, J. García-Bellido, D. W. Gerdes, D. Gruen, G. Gutierrez, K. Herner, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, N. Kuropatkin, J. L. Marshall, J. Mena-Fernández, R. Miquel, R. L. C. Ogando, A. Pieres, A. A. Plazas Malagón, M. Raveri, K. Reil, E. Sanchez, I. Sevilla-Noarbe, M. Smith, M. Soares-Santos, E. Suchyta, M. E. C. Swanson, P. Wiseman, and The DES Collaboration
- Subjects
Trans-Neptunian objects ,Small Solar System bodies ,Tidal friction ,Dwarf planets ,Asteroid rotation ,Astronomy ,QB1-991 - Abstract
We combine photometry of Eris from a 6 month campaign on the Palomar 60 inch telescope in 2015, a 1 month Hubble Space Telescope WFC3 campaign in 2018, and Dark Energy Survey data spanning 2013–2018 to determine a light curve of definitive period 15.771 ± 0.008 days (1 σ formal uncertainties), with nearly sinusoidal shape and peak-to-peak flux variation of 3%. This is consistent at part-per-thousand precision with the P = 15.785 90 ± 0.00005 day sidereal period of Dysnomia’s orbit around Eris, strengthening the recent detection of synchronous rotation of Eris by Szakáts et al. with independent data. Photometry from Gaia are consistent with the same light curve. We detect a slope of 0.05 ± 0.01 mag per degree of Eris’s brightness with respect to illumination phase averaged across g , V , and r bands, intermediate between Pluto’s and Charon’s values. Variations of 0.3 mag are detected in Dysnomia’s brightness, plausibly consistent with a double-peaked light curve at the synchronous period. The synchronous rotation of Eris is consistent with simple tidal models initiated with a giant-impact origin of the binary, but is difficult to reconcile with gravitational capture of Dysnomia by Eris. The high albedo contrast between Eris and Dysnomia remains unexplained in the giant-impact scenario.
- Published
- 2023
- Full Text
- View/download PDF
24. The Dark Energy Survey Supernova Program: Corrections on Photometry Due to Wavelength-dependent Atmospheric Effects
- Author
-
J. Lee, M. Acevedo, M. Sako, M. Vincenzi, D. Brout, B. Sanchez, R. Chen, T. M. Davis, M. Jarvis, D. Scolnic, H. Qu, L. Galbany, R. Kessler, J. Lasker, M. Sullivan, P. Wiseman, M. Aguena, S. Allam, O. Alves, F. Andrade-Oliveira, E. Bertin, S. Bocquet, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, M. Costanzi, L. N. da Costa, M. E. S. Pereira, J. De Vicente, S. Desai, H. T. Diehl, P. Doel, S. Everett, I. Ferrero, D. Friedel, J. Frieman, J. García-Bellido, D. W. Gerdes, D. Gruen, R. A. Gruendl, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, S. Kent, K. Kuehn, N. Kuropatkin, J. Mena-Fernández, R. Miquel, R. L. C. Ogando, A. Palmese, A. Pieres, A. A. Plazas Malagón, M. Raveri, K. Reil, M. Rodriguez-Monroy, E. Sanchez, V. Scarpine, I. Sevilla-Noarbe, M. Smith, E. Suchyta, G. Tarle, C. To, N. Weaverdyck, and DES Collaboration
- Subjects
Type Ia supernovae ,Photometry ,Atmospheric effects ,Cosmology ,Astronomy ,QB1-991 - Abstract
Wavelength-dependent atmospheric effects impact photometric supernova flux measurements for ground-based observations. We present corrections on supernova flux measurements from the Dark Energy Survey Supernova Program’s 5YR sample (DES-SN5YR) for differential chromatic refraction (DCR) and wavelength-dependent seeing, and we show their impact on the cosmological parameters w and Ω _m . We use g − i colors of Type Ia supernovae to quantify astrometric offsets caused by DCR and simulate point-spread functions (PSFs) using the GalSIM package to predict the shapes of the PSFs with DCR and wavelength-dependent seeing. We calculate the magnitude corrections and apply them to the magnitudes computed by the DES-SN5YR photometric pipeline. We find that for the DES-SN5YR analysis, not accounting for the astrometric offsets and changes in the PSF shape cause an average bias of +0.2 mmag and −0.3 mmag, respectively, with standard deviations of 0.7 mmag and 2.7 mmag across all DES observing bands ( griz ) throughout all redshifts. When the DCR and seeing effects are not accounted for, we find that w and Ω _m are lower by less than 0.004 ± 0.02 and 0.001 ± 0.01, respectively, with 0.02 and 0.01 being the 1 σ statistical uncertainties. Although we find that these biases do not limit the constraints of the DES-SN5YR sample, future surveys with much higher statistics, lower systematics, and especially those that observe in the u band will require these corrections as wavelength-dependent atmospheric effects are larger at shorter wavelengths. We also discuss limitations of our method and how they can be better accounted for in future surveys.
- Published
- 2023
- Full Text
- View/download PDF
25. Timing the r-process Enrichment of the Ultra-faint Dwarf Galaxy Reticulum II
- Author
-
Joshua D. Simon, Thomas M. Brown, Burçin Mutlu-Pakdil, Alexander P. Ji, Alex Drlica-Wagner, Roberto J. Avila, Clara E. Martínez-Vázquez, Ting S. Li, Eduardo Balbinot, Keith Bechtol, Anna Frebel, Marla Geha, Terese T. Hansen, David J. James, Andrew B. Pace, M. Aguena, O. Alves, F. Andrade-Oliveira, J. Annis, D. Bacon, E. Bertin, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, M. Costanzi, L. N. da Costa, J. De Vicente, S. Desai, P. Doel, S. Everett, I. Ferrero, J. Frieman, J. García-Bellido, M. Gatti, D. W. Gerdes, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, K. Kuehn, N. Kuropatkin, J. L. Marshall, J. Mena-Fernández, R. Miquel, A. Palmese, F. Paz-Chinchón, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, M. Raveri, M. Rodriguez-Monroy, E. Sanchez, B. Santiago, V. Scarpine, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, C. To, M. Vincenzi, N. Weaverdyck, and R. D. Wilkinson
- Subjects
Dwarf galaxies ,Local Group ,Stellar populations ,Galaxy ages ,HST photometry ,Nucleosynthesis ,Astrophysics ,QB460-466 - Abstract
The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with ${72}_{-12}^{+10}$ % of its stars strongly enhanced in r -process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color–magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization, forming ∼80% of the stars in the galaxy, while the remainder of the stars formed ∼3 Gyr later. When the bursts are allowed to have nonzero durations, we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 ± 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence of r -process-enhanced stars demonstrates that the r -process elements in Ret II must have been synthesized early in its initial star-forming phase. We therefore constrain the delay time between the formation of the first stars in Ret II and the r -process nucleosynthesis to be less than 500 Myr. This measurement rules out an r -process source with a delay time of several Gyr or more, such as GW170817.
- Published
- 2023
- Full Text
- View/download PDF
26. DeepZipper. II. Searching for Lensed Supernovae in Dark Energy Survey Data with Deep Learning
- Author
-
R. Morgan, B. Nord, K. Bechtol, A. Möller, W. G. Hartley, S. Birrer, S. J. González, M. Martinez, R. A. Gruendl, E. J. Buckley-Geer, A. J. Shajib, A. Carnero Rosell, C. Lidman, T. Collett, T. M. C. Abbott, M. Aguena, F. Andrade-Oliveira, J. Annis, D. Bacon, S. Bocquet, D. Brooks, D. L. Burke, M. Carrasco Kind, J. Carretero, F. J. Castander, C. Conselice, L. N. da Costa, M. Costanzi, J. De Vicente, S. Desai, P. Doel, S. Everett, I. Ferrero, B. Flaugher, D. Friedel, J. Frieman, J. García-Bellido, E. Gaztanaga, D. Gruen, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, K. Kuehn, N. Kuropatkin, O. Lahav, M. Lima, F. Menanteau, R. Miquel, A. Palmese, F. Paz-Chinchón, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, J. Prat, M. Rodriguez-Monroy, A. K. Romer, A. Roodman, E. Sanchez, V. Scarpine, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, D. Thomas, and T. N. Varga
- Subjects
Strong gravitational lensing ,Supernovae ,Astrophysics ,QB460-466 - Abstract
Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain 5–10 LSNe in total while next-generation experiments are expected to contain several hundred to a few thousand of these systems. We search for these systems in observed Dark Energy Survey (DES) five year SN fields—10 3 sq. deg. regions of sky imaged in the griz bands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains an LSN recall of 61.13% and a false-positive rate of 0.02% on the DES SN field data. DeepZipper selected 2245 candidates from a magnitude-limited ( m _i < 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields.
- Published
- 2023
- Full Text
- View/download PDF
27. Hundreds of weak lensing shear-selected clusters from the Hyper Suprime-Cam Subaru Strategic Program S19A data
- Author
-
Masamune Oguri, Satoshi Miyazaki, Xiangchong Li, Wentao Luo, Ikuyuki Mitsuishi, Hironao Miyatake, Surhud More, Atsushi J Nishizawa, Nobuhiro Okabe, Naomi Ota, Andrés A Plazas Malagón, and Yousuke Utsumi
- Published
- 2021
- Full Text
- View/download PDF
28. Astronomical spectroscopy with Skipper CCDs: first results from a Skipper CCD focal plane prototype at SIFS
- Author
-
Holland, Andrew D., Minoglou, Kyriaki, Marrufo Villalpando, Edgar, Drlica-Wagner, Alex, Roach, Brandon, Bonati, Marco, Bakshi, Abhishek, Campa, Julia, Cancelo, Gustavo, Cancino, Braulio, Chavez, Claudio R., Chierchie, Fernando, Estrada, Jaun, Fernandez Moroni, Guillermo, Fraga, Luciano, Gaido, Manuel E., Holland, Stephen E., Hur, Rachel, Jonas, Michelle, Moore, Peter, Paolini, Eduardo, Plazas Malagón, Andrés A., Stefanazzi, Leandro, Tiffenberg, Javier, Treptou, Ken, Uemura, Sho, and Wilcer, Neal
- Published
- 2024
- Full Text
- View/download PDF
29. Spectral variability of a sample of extreme variability quasars and implications for the Mg iibroad-line region
- Author
-
Qian Yang, Yue Shen, Yu-Ching Chen, Xin Liu, James Annis, Santiago Avila, Emmanuel Bertin, David Brooks, Elizabeth Buckley-Geer, Aurelio Carnero Rosell, Matias Carrasco Kind, Jorge Carretero, Luiz da Costa, Shantanu Desai, H Thomas Diehl, Peter Doel, Josh Frieman, Juan Garcia-Bellido, Enrique Gaztanaga, David Gerdes, Daniel Gruen, Robert Gruendl, Julia Gschwend, Gaston Gutierrez, Devon L Hollowood, Klaus Honscheid, Ben Hoyle, David James, Elisabeth Krause, Kyler Kuehn, Christopher Lidman, Marcos Lima, Marcio Maia, Jennifer Marshall, Paul Martini, Felipe Menanteau, Ramon Miquel, Andrés Plazas Malagón, Eusebio Sanchez, Vic Scarpine, Rafe Schindler, Michael Schubnell, Santiago Serrano, Ignacio Sevilla, Mathew Smith, Marcelle Soares-Santos, Flavia Sobreira, Eric Suchyta, Molly Swanson, Gregory Tarle, Vinu Vikram, and Alistair Walker
- Published
- 2020
- Full Text
- View/download PDF
30. A sample of dust attenuation laws for Dark Energy Survey supernova host galaxies
- Author
-
Duarte, J., primary, González-Gaitán, S., additional, Mourão, A., additional, Paulino-Afonso, A., additional, Guilherme-Garcia, P., additional, Águas, J., additional, Galbany, L., additional, Kelsey, L., additional, Scolnic, D., additional, Sullivan, M., additional, Brout, D., additional, Palmese, A., additional, Wiseman, P., additional, Aguena, M., additional, Alves, O., additional, Bacon, D., additional, Bertin, E., additional, Bocquet, S., additional, Brooks, D., additional, Burke, D. L., additional, Carnero Rosell, A., additional, Carrasco Kind, M., additional, Carretero, J., additional, Costanzi, M., additional, Pereira, M. E. S., additional, Davis, T. M., additional, De Vicente, J., additional, Desai, S., additional, Diehl, H. T., additional, Doel, P., additional, Everett, S., additional, Ferrero, I., additional, Friedel, D., additional, Frieman, J., additional, García-Bellido, J., additional, Gatti, M., additional, Gerdes, D. W., additional, Gruen, D., additional, Gruendl, R. A., additional, Gutierrez, G., additional, Hinton, S. R., additional, Hollowood, D. L., additional, Honscheid, K., additional, James, D. J., additional, Kuehn, K., additional, Kuropatkin, N., additional, Melchior, P., additional, Miquel, R., additional, Paz-Chinchón, F., additional, Pieres, A., additional, Plazas Malagón, A. A., additional, Raveri, M., additional, Rodriguez-Monroy, M., additional, Sanchez, E., additional, Scarpine, V., additional, Sevilla-Noarbe, I., additional, Smith, M., additional, Suchyta, E., additional, Tarle, G., additional, To, C., additional, and Weaverdyck, N., additional
- Published
- 2023
- Full Text
- View/download PDF
31. Chemical Analysis of the Brightest Star of the Cetus II Ultrafaint Dwarf Galaxy Candidate*
- Author
-
Webber, K. B., primary, Hansen, T. T., additional, Marshall, J. L., additional, Simon, J. D., additional, Pace, A. B., additional, Mutlu-Pakdil, B., additional, Drlica-Wagner, A., additional, Martínez-Vázquez, C. E., additional, Aguena, M., additional, Allam, S. S., additional, Alves, O., additional, Bertin, E., additional, Brooks, D., additional, Carnero Rosell, A., additional, Carretero, J., additional, da Costa, L. N., additional, De Vicente, J., additional, Doel, P., additional, Ferrero, I., additional, Friedel, D., additional, Frieman, J., additional, García-Bellido, J., additional, Giannini, G., additional, Gruen, D., additional, Gruendl, R. A., additional, Hinton, S. R., additional, Hollowood, D. L., additional, Honscheid, K., additional, Kuehn, K., additional, Mena-Fernández, J., additional, Menanteau, F., additional, Miquel, R., additional, Ogando, R. L. C., additional, Pereira, M. E. S., additional, Pieres, A., additional, Plazas Malagón, A. A., additional, Sanchez, E., additional, Santiago, B., additional, Smith, J. Allyn, additional, Smith, M., additional, Suchyta, E., additional, Tarle, G., additional, To, C., additional, Weaverdyck, N., additional, and Yanny, B., additional
- Published
- 2023
- Full Text
- View/download PDF
32. Photometry, Centroid and Point-spread Function Measurements in the LSST Camera Focal Plane Using Artificial Stars
- Author
-
Esteves, Johnny H., primary, Utsumi, Yousuke, additional, Snyder, Adam, additional, Schutt, Theo, additional, Broughton, Alex, additional, Trbalic, Bahrudin, additional, Mau, Sidney, additional, Rasmussen, Andrew, additional, Plazas Malagón, Andrés A., additional, Bradshaw, Andrew, additional, Marshall, Stuart, additional, Digel, Seth, additional, Chiang, James, additional, Rykoff, Eli, additional, Waters, Chris, additional, Soares-Santos, Marcelle, additional, and Roodman, Aaron, additional
- Published
- 2023
- Full Text
- View/download PDF
33. Using host galaxy spectroscopy to explore systematics in the standardization of Type Ia supernovae
- Author
-
M Dixon, C Lidman, J Mould, L Kelsey, D Brout, A Möller, P Wiseman, M Sullivan, L Galbany, T M Davis, M Vincenzi, D Scolnic, G F Lewis, M Smith, R Kessler, A Duffy, E N Taylor, C Flynn, T M C Abbott, M Aguena, S Allam, F Andrade-Oliveira, J Annis, J Asorey, E Bertin, S Bocquet, D Brooks, D L Burke, A Carnero Rosell, D Carollo, M Carrasco Kind, J Carretero, M Costanzi, L N da Costa, M E S Pereira, P Doel, S Everett, I Ferrero, B Flaugher, D Friedel, J Frieman, J García-Bellido, M Gatti, D W Gerdes, K Glazebrook, D Gruen, J Gschwend, G Gutierrez, S R Hinton, D L Hollowood, K Honscheid, D Huterer, D J James, K Kuehn, N Kuropatkin, U Malik, M March, F Menanteau, R Miquel, R Morgan, B Nichol, R L C Ogando, A Palmese, F Paz-Chinchón, A Pieres, A A Plazas Malagón, M Rodriguez-Monroy, A K Romer, E Sanchez, V Scarpine, I Sevilla-Noarbe, M Soares-Santos, E Suchyta, G Tarle, C To, B E Tucker, D L Tucker, T N Varga, Dixon, M., Lidman, C., Mould, J., Kelsey, L., Brout, D., Möller, A., Wiseman, P., Sullivan, M., Galbany, L., Davis, T. M., Vincenzi, M., Scolnic, D., Lewis, G. F., Smith, M., Kessler, R., Duffy, A., Taylor, E. N., Flynn, C., Abbott, T. M. C., Aguena, M., Allam, S., Andrade-Oliveira, F., Annis, J., Asorey, J., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carnero Rosell, A., Carollo, D., Carrasco Kind, M., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Friedel, D., Frieman, J., García-Bellido, J., Gatti, M., Gerdes, D. W., Glazebrook, K., Gruen, D., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Kuehn, K., Kuropatkin, N., Malik, U., March, M., Menanteau, F., Miquel, R., Morgan, R., Nichol, B., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Rodriguez-Monroy, M., Romer, A. K., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Soares-Santos, M., Suchyta, E., Tarle, G., To, C., Tucker, B. E., Tucker, D. L., Varga, T. N., Australian Research Council, Department of Energy (US), National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), Science and Technology Facilities Council (UK), Agencia Estatal de Investigación (España), Generalitat de Catalunya, European Commission, and European Research Council
- Subjects
Galaxies: general ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmology: observations ,cosmology observations ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,Astrophysics - Astrophysics of Galaxies ,Space and Planetary Science ,surveys ,galaxies general ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Solar and Stellar Astrophysics ,survey ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
M. Dixon et al., We use stacked spectra of the host galaxies of photometrically identified Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) to search for correlations between Hubble diagram residuals and the spectral properties of the host galaxies. Utilizing full spectrum fitting techniques on stacked spectra binned by Hubble residual, we find no evidence for trends between Hubble residuals and properties of the host galaxies that rely on spectral absorption features (, MD would like to acknowledge support through an Australian Government Research Training Program Scholarship. This research was supported by the Australian Research Council The Centre of Excellence for Dark Matter Particle Physics (CDM; project number CE200100008) and the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav; project number CE170100004). This project/publication was made possible through the support of a grant from the John Templeton Foundation. The authors gratefully acknowledge this grant ID 61807, Two Standard Models Meet. The opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of the John Templeton Foundation. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NSF’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. Based on data acquired at the Anglo-Australian Telescope, under program A/2013B/012. We acknowledge the traditional custodians of the land on which the AAT stands, the Gamilaraay people, and pay our respects to elders past and present.
- Published
- 2022
- Full Text
- View/download PDF
34. Photometric Properties of Jupiter Trojans Detected by the Dark Energy Survey
- Author
-
Jiaming 嘉明 Pan 潘, Hsing Wen 省文 Lin 林, David W. Gerdes, Kevin J. Napier, Jichi 骥驰 Wang 王, T. M. C. Abbott, M. Aguena, S. Allam, O. Alves, D. Bacon, P. H. Bernardinelli, G. M. Bernstein, E. Bertin, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, M. Costanzi, L. N. da Costa, M. E. S. Pereira, J. De Vicente, S. Desai, P. Doel, I. Ferrero, D. Friedel, J. Frieman, J. García-Bellido, M. Gatti, R. A. Gruendl, J. Gschwend, K. Herner, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, N. Kuropatkin, M. March, F. Menanteau, R. Miquel, F. Paz-Chinchón, A. Pieres, A. A. Plazas Malagón, M. Raveri, M. Rodriguez-Monroy, A. K. Romer, E. Sanchez, M. Schubnell, I. Sevilla-Noarbe, M. Smith, E. Suchyta, G. Tarle, D. Tucker, A. R. Walker, and N. Weaverdyck
- Published
- 2022
- Full Text
- View/download PDF
35. Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. I. Evidence for Thermal Energy Anisotropy Using Oriented Stacking
- Author
-
M. Lokken, R. Hložek, A. van Engelen, M. Madhavacheril, E. Baxter, J. DeRose, C. Doux, S. Pandey, E. S. Rykoff, G. Stein, C. To, T. M. C. Abbott, S. Adhikari, M. Aguena, S. Allam, F. Andrade-Oliveira, J. Annis, N. Battaglia, G. M. Bernstein, E. Bertin, J. R. Bond, D. Brooks, E. Calabrese, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, R. Cawthon, A. Choi, M. Costanzi, M. Crocce, L. N. da Costa, M. E. da Silva Pereira, J. De Vicente, S. Desai, J. P. Dietrich, P. Doel, J. Dunkley, S. Everett, A. E. Evrard, S. Ferraro, B. Flaugher, P. Fosalba, J. Frieman, P. A. Gallardo, J. García-Bellido, E. Gaztanaga, D. W. Gerdes, T. Giannantonio, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez, J. C. Hill, M. Hilton, A. D. Hincks, S. R. Hinton, D. L. Hollowood, K. Honscheid, B. Hoyle, Z. Huang, J. P. Hughes, D. Huterer, B. Jain, D. J. James, T. Jeltema, K. Kuehn, M. Lima, M. A. G. Maia, J. L. Marshall, J. McMahon, P. Melchior, F. Menanteau, R. Miquel, J. J. Mohr, K. Moodley, R. Morgan, F. Nati, L. Page, R. L. C. Ogando, A. Palmese, F. Paz-Chinchón, A. A. Plazas Malagón, A. Pieres, A. K. Romer, E. Rozo, E. Sanchez, V. Scarpine, A. Schillaci, M. Schubnell, S. Serrano, I. Sevilla-Noarbe, E. Sheldon, T. Shin, C. Sifón, M. Smith, M. Soares-Santos, E. Suchyta, M. E. C. Swanson, G. Tarle, D. Thomas, D. L. Tucker, T. N. Varga, J. Weller, R. H. Wechsler, R. D. Wilkinson, E. J. Wollack, and Z. Xu
- Published
- 2022
- Full Text
- View/download PDF
36. Kinematic Sunyaev-Zel’dovich effect with ACT, DES, and BOSS: A novel hybrid estimator
- Author
-
Mallaby-Kay, M., primary, Amodeo, S., additional, Hill, J. C., additional, Aguena, M., additional, Allam, S., additional, Alves, O., additional, Annis, J., additional, Battaglia, N., additional, Battistelli, E. S., additional, Baxter, E. J., additional, Bechtol, K., additional, Becker, M. R., additional, Bertin, E., additional, Bond, J. R., additional, Brooks, D., additional, Calabrese, E., additional, Carnero Rosell, A., additional, Carrasco Kind, M., additional, Carretero, J., additional, Choi, A., additional, Crocce, M., additional, da Costa, L. N., additional, Pereira, M. E. S., additional, De Vicente, J., additional, Desai, S., additional, Dietrich, J. P., additional, Doel, P., additional, Doux, C., additional, Drlica-Wagner, A., additional, Dunkley, J., additional, Elvin-Poole, J., additional, Everett, S., additional, Ferraro, S., additional, Ferrero, I., additional, Frieman, J., additional, Gallardo, P. A., additional, García-Bellido, J., additional, Giannini, G., additional, Gruen, D., additional, Gruendl, R. A., additional, Gutierrez, G., additional, Hinton, S. R., additional, Hollowood, D. L., additional, James, D. J., additional, Kosowsky, A., additional, Kuehn, K., additional, Lokken, M., additional, Louis, T., additional, Marshall, J. L., additional, McMahon, J., additional, Mena-Fernández, J., additional, Menanteau, F., additional, Miquel, R., additional, Moodley, K., additional, Mroczkowski, T., additional, Naess, S., additional, Niemack, M. D., additional, Ogando, R. L. C., additional, Page, L., additional, Pandey, S., additional, Pieres, A., additional, Plazas Malagón, A. A., additional, Raveri, M., additional, Rodriguez-Monroy, M., additional, Rykoff, E. S., additional, Samuroff, S., additional, Sanchez, E., additional, Schaan, E., additional, Sevilla-Noarbe, I., additional, Sheldon, E., additional, Sifón, C., additional, Smith, M., additional, Soares-Santos, M., additional, Sobreira, F., additional, Suchyta, E., additional, Tarle, G., additional, To, C., additional, Vargas, C., additional, Vavagiakis, E. M., additional, Weaverdyck, N., additional, Weller, J., additional, Wiseman, P., additional, and Yanny, B., additional
- Published
- 2023
- Full Text
- View/download PDF
37. Consistent lensing and clustering in a low-S8 Universe with BOSS, DES Year 3, HSC Year 1, and KiDS-1000
- Author
-
A Amon, N C Robertson, H Miyatake, C Heymans, M White, J DeRose, S Yuan, R H Wechsler, T N Varga, S Bocquet, A Dvornik, S More, A J Ross, H Hoekstra, A Alarcon, M Asgari, J Blazek, A Campos, R Chen, A Choi, M Crocce, H T Diehl, C Doux, K Eckert, J Elvin-Poole, S Everett, A Ferté, M Gatti, G Giannini, D Gruen, R A Gruendl, W G Hartley, K Herner, H Hildebrandt, S Huang, E M Huff, B Joachimi, S Lee, N MacCrann, J Myles, A Navarro-Alsina, T Nishimichi, J Prat, L F Secco, I Sevilla-Noarbe, E Sheldon, T Shin, T Tröster, M A Troxel, I Tutusaus, A H Wright, B Yin, M Aguena, S Allam, J Annis, D Bacon, M Bilicki, D Brooks, D L Burke, A Carnero Rosell, J Carretero, F J Castander, R Cawthon, M Costanzi, L N da Costa, M E S Pereira, J de Jong, J De Vicente, S Desai, J P Dietrich, P Doel, I Ferrero, J Frieman, J García-Bellido, D W Gerdes, J Gschwend, G Gutierrez, S R Hinton, D L Hollowood, K Honscheid, D Huterer, A Kannawadi, K Kuehn, N Kuropatkin, O Lahav, M Lima, M A G Maia, J L Marshall, F Menanteau, R Miquel, J J Mohr, R Morgan, J Muir, F Paz-Chinchón, A Pieres, A A Plazas Malagón, A Porredon, M Rodriguez-Monroy, A Roodman, E Sanchez, S Serrano, H Shan, E Suchyta, M E C Swanson, G Tarle, D Thomas, C To, Y Zhang, Amon, A., Robertson, N. C., Miyatake, H., Heymans, C., White, M., Derose, J., Yuan, S., Wechsler, R. H., Varga, T. N., Bocquet, S., Dvornik, A., More, S., Ross, A. J., Hoekstra, H., Alarcon, A., Asgari, M., Blazek, J., Campos, A., Chen, R., Choi, A., Crocce, M., Diehl, H. T., Doux, C., Eckert, K., Elvin-Poole, J., Everett, S., Ferté, A., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Hartley, W. G., Herner, K., Hildebrandt, H., Huang, S., Huff, E. M., Joachimi, B., Lee, S., Maccrann, N., Myles, J., Navarro-Alsina, A., Nishimichi, T., Prat, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Tröster, T., Troxel, M. A., Tutusaus, I., Wright, A. H., Yin, B., Aguena, M., Allam, S., Annis, J., Bacon, D., Bilicki, M., Brooks, D., Burke, D. L., Carnero Rosell, A., Carretero, J., Castander, F. J., Cawthon, R., Costanzi, M., da Costa, L. N., Pereira, M. E. S., de Jong, J., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Ferrero, I., Frieman, J., García-Bellido, J., Gerdes, D. W., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., Kannawadi, A., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Muir, J., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Porredon, A., Rodriguez-Monroy, M., Roodman, A., Sanchez, E., Serrano, S., Shan, H., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., and Zhang, Y.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,cosmology observations ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,gravitational lensing weak ,large-scale structure of Universe ,Cosmology and Nongalactic Astrophysics ,Astrophysic ,Space and Planetary Science ,cosmology observation ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We evaluate the consistency between lensing and clustering probes of large-scale structure based on measurements of projected galaxy clustering from BOSS combined with overlapping galaxy-galaxy lensing from three surveys: DES Y3, HSC Y1, and KiDS-1000. An intra-lensing-survey study finds good agreement between these lensing data. We model the observations using the Dark Emulator and fit the data at two fixed cosmologies: Planck, with $S_8=0.83$, and a Lensing cosmology with $S_8=0.76$. For a joint analysis limited to scales with $R>5.25h^{-1}$Mpc, we find that both cosmologies provide an acceptable fit to the data. Full utilisation of the small-scale clustering and lensing measurements is hindered by uncertainty in the impact of baryon feedback and assembly bias, which we account for with a reasoned theoretical error budget. We incorporate a systematic scaling parameter for each redshift bin, $A$, that decouples the lensing and clustering to capture any inconsistency. When a wide range of scales ($0.15, Comment: 28 pages, 11 figures
- Published
- 2023
38. The Dark Energy Survey supernova program: cosmological biases from supernova photometric classification
- Author
-
Vincenzi, M., Sullivan, M., Möller, A., Armstrong, P., Bassett, B. A., Brout, D., Carollo, D., Carr, A., Davis, T. M., Frohmaier, C., Galbany, L., Glazebrook, K., Graur, O., Kelsey, L., Kessler, R., Kovacs, E., Lewis, G. F., Lidman, C., Malik, U., Nichol, R. C., Popovic, B., Sako, M., Scolnic, D., Smith, M., Taylor, G., Tucker, B. E., Wiseman, P., Aguena, M., Allam, S., Annis, J., Asorey, J., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., T. S., Li, Lima, M., Maia, M. A. G., Marshall, J. L., Miquel, R., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Reil, K., Roodman, A., Sanchez, E., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., To, C., Varga, T. N., Weller, J., Wilkinson, R. D., Des, Collaboration, Vincenzi, M., Sullivan, M., Möller, A., Armstrong, P., Bassett, B. A., Brout, D., Carollo, D., Carr, A., Davis, T. M., Frohmaier, C., Galbany, L., Glazebrook, K., Graur, O., Kelsey, L., Kessler, R., Kovacs, E., Lewis, G. F., Lidman, C., Malik, U., Nichol, R. C., Popovic, B., Sako, M., Scolnic, D., Smith, M., Taylor, G., Tucker, B. E., Wiseman, P., Aguena, M., Allam, S., Annis, J., Asorey, J., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., T. S., Li, Lima, M., Maia, M. A. G., Marshall, J. L., Miquel, R., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Reil, K., Roodman, A., Sanchez, E., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., To, C., Varga, T. N., Weller, J., Wilkinson, R. D., Des, Collaboration, UAM. Departamento de Física Teórica, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,cosmology observations ,FOS: Physical sciences ,Física ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,Astrophysics Cosmology and Nongalactic Astrophysics ,Cosmology: Observations ,Supernovae: General ,surveys ,supernovae general ,Space and Planetary Science ,survey ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmology observation ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboración, si lo hubiere, This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record Monthly Notices of the Royal Astronomical Society Volume 518.1 (2023): 1106-1127 is available online at: https://academic.oup.com/mnras/article-abstract/518/1/1106/6601453, Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects of ‘contamination’ from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such ‘non-Ia’ contamination in the Dark Energy Survey (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7–99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC (‘BEAMS with Bias Correction’), we produce a redshift-binned Hubble diagram marginalized over contamination and corrected for selection effects, and use it to constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian ΩM prior of 0.311 ± 0.010, we show that biases on w are, This work was supported by the Science and Technology Facilities Council [grant number ST/P006760/1] through the DISCnet Cen¬tre for Doctoral Training. MS acknowledges support from EU/FP7¬ERC grant 615929, and PW acknowledges support from STFC grant ST/R000506/1. TMD acknowledges support from ARC grant FL180100168. LG acknowledges financial support from the Span¬ish Ministry of Science, Innovation and Universities (MICIU) un¬der the 2019 Ramón y Cajal program RYC2019-027683 and from the Spanish MICIU project PID2020-115253GA-I00. RH and MS were supported by DOE grant DE-FOA-0001781 and NASA grant NNH15ZDA001N-WFIRST. The material is based upon work sup¬ported by NASA under award number 80GSFC17M0002. LK thanks the UKRI Future Leaders Fellowship for support through the grant MR/T01881X/1. This paper has gone through internal review by the DES collab¬oration. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the Uni¬versity of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fun¬damental Physics and Astronomy at Texas A&M University, Finan¬ciadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemein¬schaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cam¬bridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University Col¬lege London, the DES-Brazil Consortium, the University of Edin¬burgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State Uni-versity, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the Uni¬versity of Sussex, Texas A&M University, and the OzDES Member¬ship Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the Na¬tional Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016¬-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these re¬sults has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciên¬cia e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014¬2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. De¬partment of Energy, Office of Science, Office of High Energy Physics. This work was completed in part with resources provided by the University of Chicago’s Research Computing Center. Finally, this work was based in part on data acquired at the Anglo-Australian Telescope, under program A/2013B/012. We acknowledge the traditional owners of the land on which the AAT stands, the Gamilaraay people, and pay our respects to elders past and present
- Published
- 2023
- Full Text
- View/download PDF
39. OzDES Reverberation Mapping Programme: Mg ii lags and R−L relation
- Author
-
Yu, Zhefu, primary, Martini, Paul, additional, Penton, A, additional, Davis, T M, additional, Kochanek, C S, additional, Lewis, G F, additional, Lidman, C, additional, Malik, U, additional, Sharp, R, additional, Tucker, B E, additional, Aguena, M, additional, Annis, J, additional, Bertin, E, additional, Bocquet, S, additional, Brooks, D, additional, Carnero Rosell, A, additional, Carollo, D, additional, Carrasco Kind, M, additional, Carretero, J, additional, Costanzi, M, additional, da Costa, L N, additional, Pereira, M E S, additional, De Vicente, J, additional, Diehl, H T, additional, Doel, P, additional, Everett, S, additional, Ferrero, I, additional, García-Bellido, J, additional, Gatti, M, additional, Gerdes, D W, additional, Gruen, D, additional, Gruendl, R A, additional, Gschwend, J, additional, Gutierrez, G, additional, Hinton, S R, additional, Hollowood, D L, additional, Honscheid, K, additional, James, D J, additional, Kuehn, K, additional, Mena-Fernández, J, additional, Menanteau, F, additional, Miquel, R, additional, Nichol, B, additional, Paz-Chinchón, F, additional, Pieres, A, additional, Plazas Malagón, A A, additional, Raveri, M, additional, Romer, A K, additional, Sanchez, E, additional, Scarpine, V, additional, Sevilla-Noarbe, I, additional, Smith, M, additional, Suchyta, E, additional, Swanson, M E C, additional, Tarle, G, additional, Vincenzi, M, additional, Walker, A R, additional, and Weaverdyck, N, additional
- Published
- 2023
- Full Text
- View/download PDF
40. Non-local contribution from small scales in galaxy–galaxy lensing: comparison of mitigation schemes
- Author
-
Prat, J., Zacharegkas, G., Park, Y., MacCrann, N., Switzer, E. R., Pandey, S., Chang, C., Blazek, J., Miquel, R., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Bechtol, K., Becker, M. R., Bernstein, G. M., Chen, R., Choi, A., Camacho, H., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Cawthon, R., Cordero, J., Crocce, M., Davis, C., DeRose, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Fosalba, P., Friedrich, O., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Jarvis, M., Krause, E., Kuropatkin, N., Leget, P.-F., McCullough, J., Myles, J., Navarro-Alsina, A., Porredon, A., Raveri, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Sánchez, C., Sanchez, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Aguena, M., Allam, S., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Costanzi, M., Pereira, M. E. S., De Vicente, J., Desai, S., Ferrero, I., Flaugher, B., Gerdes, D. W., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Lima, M., Menanteau, F., Mena-Fernández, J., Palmese, A., Paterno, M., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Rodriguez-Monroy, M., Sanchez, E., Schubnell, M., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Weaverdyck, N., and Weller, J.
- Abstract
Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3 × 2pt, had to discard a lot of signal to noise from small scales due to our inability to accurately model non-linearities and baryonic effects. Galaxy–galaxy lensing, or the position–shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale θ or physical scale R carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently, there have been a few independent efforts that aim to mitigate the non-locality of the galaxy–galaxy lensing signal. Here, we perform a comparison of the different methods, including the Y-transformation, the point-mass marginalization methodology, and the annular differential surface density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy–galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like set-up and also when applied to DES Y3 data. With the LSST Y1 set-up, we find that the mitigation schemes yield ∼1.3 times more constraining S8 results than applying larger scale cuts without using any mitigation scheme.
- Published
- 2023
41. The Dark Energy Survey Bright Arcs Survey: Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey 5000 Square Degree Footprint
- Author
-
O’Donnell, JH, Wilkinson, RD, Diehl, HT, Aros-Bunster, C, Bechtol, K, Birrer, S, Buckley-Geer, EJ, Carnero Rosell, A, Carrasco Kind, M, Da Costa, LN, Gonzalez Lozano, SJ, Gruendl, RA, Hilton, M, Lin, H, Lindgren, KA, Martin, J, Pieres, A, Rykoff, ES, Sevilla-Noarbe, I, Sheldon, E, Sifón, C, Tucker, DL, Yanny, B, Abbott, TMC, Aguena, M, Allam, S, Andrade-Oliveira, F, Annis, J, Bertin, E, Brooks, D, Burke, DL, Carretero, J, Costanzi, M, De Vicente, J, Desai, S, Dietrich, JP, Eckert, K, Everett, S, Ferrero, I, Flaugher, B, Fosalba, P, Frieman, J, García-Bellido, J, Gaztanaga, E, Gerdes, DW, Gruen, D, Gschwend, J, Gill, MSS, Gutierrez, G, Hinton, Hollowood, DL, Honscheid, K, James, DJ, Jeltema, T, Kuehn, K, Lahav, O, Lima, M, Maia, MAG, Marshall, JL, Melchior, P, Menanteau, F, Miquel, R, Morgan, R, Nord, B, Ogando, RLC, Paz-Chinchón, F, Pereira, MES, Plazas Malagón, AA, Rodriguez-Monroy, M, Romer, AK, Roodman, A, Sanchez, E, Scarpine, V, Schubnell, M, Serrano, S, Smith, M, Suchyta, E, Swanson, MEC, Tarle, G, Thomas, D, To, C, Varga, TN, O’Donnell, JH [0000-0003-4083-1530], Wilkinson, RD [0000-0002-3908-7313], Diehl, HT [0000-0002-8357-7467], Aros-Bunster, C [0000-0002-9441-3193], Birrer, S [0000-0003-3195-5507], Buckley-Geer, EJ [0000-0002-3304-0733], Carnero Rosell, A [0000-0003-3044-5150], Carrasco Kind, M [0000-0002-4802-3194], da Costa, LN [0000-0002-7731-277X], Gonzalez Lozano, SJ [0000-0001-7282-3864], Gruendl, RA [0000-0002-4588-6517], Hilton, M [0000-0002-8490-8117], Lin, H [0000-0002-7825-3206], Lindgren, KA [0000-0002-8414-7776], Pieres, A [0000-0001-9186-6042], Rykoff, ES [0000-0001-9376-3135], Sevilla-Noarbe, I [0000-0002-1831-1953], Sheldon, E [0000-0001-9194-0441], Sifón, C [0000-0002-8149-1352], Tucker, DL [0000-0001-7211-5729], Yanny, B [0000-0002-9541-2678], Abbott, TMC [0000-0003-1587-3931], Aguena, M [0000-0001-5679-6747], Annis, J [0000-0002-0609-3987], Bertin, E [0000-0002-3602-3664], Brooks, D [0000-0002-8458-5047], Burke, DL [0000-0003-1866-1950], Carretero, J [0000-0002-3130-0204], Costanzi, M [0000-0001-8158-1449], De Vicente, J [0000-0001-8318-6813], Desai, S [0000-0002-0466-3288], Eckert, K [0000-0002-1407-4700], Ferrero, I [0000-0002-1295-1132], Flaugher, B [0000-0002-2367-5049], Fosalba, P [0000-0002-1510-5214], Frieman, J [0000-0003-4079-3263], García-Bellido, J [0000-0002-9370-8360], Gaztanaga, E [0000-0001-9632-0815], Gerdes, DW [0000-0001-6942-2736], Gruen, D [0000-0003-3270-7644], Gschwend, J [0000-0003-3023-8362], Gill, MSS [0000-0003-2524-5154], Gutierrez, G [0000-0003-0825-0517], Hinton, SR [0000-0003-2071-9349], Hollowood, DL [0000-0002-9369-4157], Honscheid, K [0000-0002-6550-2023], James, DJ [0000-0001-5160-4486], Jeltema, T [0000-0001-6089-0365], Kuehn, K [0000-0003-0120-0808], Lahav, O [0000-0002-1134-9035], Lima, M [0000-0002-4719-3781], Maia, MAG [0000-0001-9856-9307], Marshall, JL [0000-0003-0710-9474], Melchior, P [0000-0002-8873-5065], Menanteau, F [0000-0002-1372-2534], Miquel, R [0000-0002-6610-4836], Morgan, R [0000-0002-7016-5471], Nord, B [0000-0001-6706-8972], Ogando, RLC [0000-0003-2120-1154], Paz-Chinchón, F [0000-0003-1339-2683], Plazas Malagón, AA [0000-0002-2598-0514], Rodriguez-Monroy, M [0000-0001-6163-1058], Romer, AK [0000-0002-9328-879X], Roodman, A [0000-0001-5326-3486], Sanchez, E [0000-0002-9646-8198], Schubnell, M [0000-0001-9504-2059], Smith, M [0000-0002-3321-1432], Suchyta, E [0000-0002-7047-9358], Swanson, MEC [0000-0002-1488-8552], Tarle, G [0000-0003-1704-0781], Thomas, D [0000-0002-6325-5671], To, C [0000-0001-7836-2261], Apollo - University of Cambridge Repository, Department of Energy (US), National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, European Commission, European Research Council, UAM. Departamento de Física Teórica, University of California at Santa Cruz, University of Sussex, Fermi National Accelerator Laboratory, Pontificia Universidad Católica de Valparaíso, University of Wisconsin-Madison, Stanford University, 382 Via Pueblo Mall, University of Chicago, Laboratório Interinstitucional de E-Astronomia - LIneA, Observatório Nacional, University of Illinois at Urbana-Champaign, National Center for Supercomputing Applications, Westville Campus, Brookhaven National Laboratory, Half Hollow Hills High School East, SLAC National Accelerator Laboratory, Medioambientales y Tecnológicas (CIEMAT), NSF's National Optical-Infrared Astronomy Research Laboratory, Universidade Estadual Paulista (UNESP), Institut d'Astrophysique de Paris, University College London, The Barcelona Institute of Science and Technology, University of Trieste, INAF-Osservatorio Astronomico di Trieste, Institute for Fundamental Physics of the Universe, IIT Hyderabad, Ludwig-Maximilians-Universität, University of Pennsylvania, Santa Cruz Institute for Particle Physics, University of Oslo, Institut d'Estudis Espacials de Catalunya (IEEC), Institute of Space Sciences (ICE-CSIC), Universidad Autonoma de Madrid, University of Michigan, University of Queensland, The Ohio State University, Center for Astrophysics|Harvard and Smithsonian, Macquarie University, Lowell Observatory, Universidade de São Paulo (USP), Texas AandM University, Peyton Hall, Institució Catalana de Recerca i Estudis Avançats, University of Cambridge, Universität Hamburg, University of Southampton, Oak Ridge National Laboratory, University of Portsmouth, Giessenbachstrasse, Ludwig-Maximilians Universität München, A O'Donnell, J. H., Wilkinson, R. D., Diehl, H. T., Aros-Bunster, C., Bechtol, K., Birrer, S., Buckley-Geer, E. J., Carnero Rosell, A., Carrasco Kind, M., da Costa, L. N., Gonzalez Lozano, S. J., Gruendl, R. A., Hilton, M., Lin, H., Lindgren, K. A., Martin, J., Pieres, A., Rykoff, E. S., Sevilla-Noarbe, I., Sheldon, E., Sifón, C., Tucker, D. L., Yanny, B., Abbott, T. M. C., Aguena, M., Allam, S., Andrade- Oliveira, F., Annis, J., Bertin, E., Brooks, D., Burke, D. L., Carretero, J., Costanzi, M., De Vicente, J., Desai, S., Dietrich, J. P., Eckert, K., Everett, S., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gschwend, J., Gill, M. S. S., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Jeltema, T., Kuehn, K., Lahav, O., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Nord, B., Ogando, R. L. C., Paz- Chinchón, F., Pereira, M. E. S., Plazas Malagón, A. A., Rodriguez- Monroy, M., Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., and Varga, T. N.
- Subjects
Física ,Astronomy and Astrophysics ,GALÁXIAS ,5109 Space Sciences ,Galaxies ,High-redshift galaxie ,Lens ,Space and Planetary Science ,Strong gravitational lensing ,High-redshift galaxies ,51 Physical Sciences ,Quasars ,Eye Disease and Disorders of Vision - Abstract
DES Collaboration: O’Donnell et al., We report the combined results of eight searches for strong gravitational lens systems in the full 5000 square degrees of Dark Energy Survey (DES) observations. The observations accumulated by the end of the third observing season fully covered the DES footprint in five filters (grizY), with an i-band limiting magnitude (at 10σ) of 23.44. In four searches, a list of potential candidates was identified using a color and magnitude selection from the object catalogs created from the first three observing seasons. Three other searches were conducted at the locations of previously identified galaxy clusters. Cutout images of potential candidates were then visually scanned using an object viewer. An additional set of candidates came from a data-quality check of a subset of the color–coadd tiles created from the full DES six-season data set. A short list of the most promising strong-lens candidates was then numerically ranked according to whether or not we judged them to be bona fide strong gravitational lens systems. These searches discovered a diverse set of 247 strong-lens candidate systems, of which 81 are identified for the first time. We provide the coordinates, magnitudes, and photometric properties of the lens and source objects, and an estimate of the Einstein radius for 81 new systems and 166 previously reported systems. This catalog will be of use for selecting interesting systems for detailed follow up, studies of galaxy cluster and group mass profiles, as well as a training/validation set for automated strong-lens searches., Funding for the DES projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at The Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l'Espai (IEEC/CSIC), the Institut de Física d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NSF's NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF's NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant nos. AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2).
- Published
- 2022
42. From the fire: a deeper look at the Phoenix stream
- Author
-
K. Tavangar, P. Ferguson, N. Shipp, A. Drlica-Wagner, S. Koposov, D. Erkal, E. Balbinot, J. García-Bellido, K. Kuehn, G. F. Lewis, T. S. Li, S. Mau, A. B. Pace, A. H. Riley, T. M. C. Abbott, M. Aguena, S. Allam, F. Andrade-Oliveira, J. Annis, E. Bertin, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, M. Costanzi, L. N. da Costa, M. E. S. Pereira, J. De Vicente, H. T. Diehl, S. Everett, I. Ferrero, B. Flaugher, J. Frieman, E. Gaztanaga, D. W. Gerdes, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, N. Kuropatkin, M. A. G. Maia, J. L. Marshall, F. Menanteau, R. Miquel, R. Morgan, R. L. C. Ogando, A. Palmese, F. Paz-Chinchón, A. Pieres, A. A. Plazas Malagón, M. Rodriguez-Monroy, E. Sanchez, V. Scarpine, S. Serrano, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, C. To, T. N. Varga, A. R. Walker, UAM. Departamento de Física Teórica, Tavangar, K [0000-0001-6584-6144], Ferguson, P [0000-0001-6957-1627], Shipp, N [0000-0003-2497-091X], Drlica-Wagner, A [0000-0001-8251-933X], Koposov, S [0000-0003-2644-135X], Erkal, D [0000-0002-8448-5505], Balbinot, E [0000-0002-1322-3153], García-Bellido, J [0000-0002-9370-8360], Kuehn, K [0000-0003-0120-0808], Lewis, GF [0000-0003-3081-9319], Li, TS [0000-0002-9110-6163], Mau, S [0000-0003-3519-4004], Pace, AB [0000-0002-6021-8760], Riley, AH [0000-0001-5805-5766], Aguena, M [0000-0001-5679-6747], Allam, S [0000-0002-7069-7857], Annis, J [0000-0002-0609-3987], Bertin, E [0000-0002-3602-3664], Brooks, D [0000-0002-8458-5047], Burke, DL [0000-0003-1866-1950], Carnero Rosell, A [0000-0003-3044-5150], Carrasco Kind, M [0000-0002-4802-3194], Carretero, J [0000-0002-3130-0204], Costanzi, M [0000-0001-8158-1449], De Vicente, J [0000-0001-8318-6813], Diehl, HT [0000-0002-8357-7467], Flaugher, B [0000-0002-2367-5049], Frieman, J [0000-0003-4079-3263], Gaztanaga, E [0000-0001-9632-0815], Gerdes, DW [0000-0001-6942-2736], Gruen, D [0000-0003-3270-7644], Gschwend, J [0000-0003-3023-8362], Gutierrez, G [0000-0003-0825-0517], Honscheid, K [0000-0002-6550-2023], James, DJ [0000-0001-5160-4486], Kuropatkin, N [0000-0003-2511-0946], Maia, MAG [0000-0001-9856-9307], Marshall, JL [0000-0003-0710-9474], Menanteau, F [0000-0002-1372-2534], Miquel, R [0000-0002-6610-4836], Ogando, RLC [0000-0003-2120-1154], Palmese, A [0000-0002-6011-0530], Paz-Chinchón, F [0000-0003-1339-2683], Pieres, A [0000-0001-9186-6042], Plazas Malagón, AA [0000-0002-2598-0514], Sanchez, E [0000-0002-9646-8198], Sevilla-Noarbe, I [0000-0002-1831-1953], Smith, M [0000-0002-3321-1432], Suchyta, E [0000-0002-7047-9358], Tarle, G [0000-0003-1704-0781], To, C [0000-0001-7836-2261], Walker, AR [0000-0002-7123-8943], Apollo - University of Cambridge Repository, Astronomy, University of Chicago, University of Wisconsin-Madison, Texas AandM University, MIT Kavli Institute for Astrophysics and Space Research, Fermi National Accelerator Laboratory, Royal Observatory, University of Cambridge, University of Surrey, University of Groningen, Universidad Autonoma de Madrid, Lowell Observatory, Macquarie University, The University of Sydney, University of Toronto, Observatories of the Carnegie Institution for Science, Princeton University, Stanford University, Carnegie Mellon University, NSF's National Optical-Infrared Astronomy Research Laboratory, Laboratório Interinstitucional de E-Astronomia-LIneA, Universidade Estadual Paulista (UNESP), Institut d'Astrophysique de Paris, University College London, SLAC National Accelerator Laboratory, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, The Barcelona Institute of Science and Technology, University of Trieste, Osservatorio Astronomico di Trieste, Institute for Fundamental Physics of the Universe, Observatório Nacional, University of Michigan, Universität Hamburg, Medioambientales y Tecnológicas (CIEMAT), Santa Cruz Institute for Particle Physics, University of Oslo, Institut d'Estudis Espacials de Catalunya (IEEC), CSIC), Ludwig-Maximilians-Universität, University of Queensland, The Ohio State University, Center for Astrophysics | Harvard and Smithsonian, Institució Catalana de Recerca i Estudis Avançats, University of Southampton, Oak Ridge National Laboratory, Max Planck Institute for Extraterrestrial Physics, Ludwig-Maximilians Universität München, National Science Foundation (US), Department of Energy (US), German Research Foundation, Ministerio de Economía y Competitividad (España), European Commission, European Research Council, Generalitat de Catalunya, Tavangar, K., Ferguson, P., Shipp, N., Drlica-Wagner, A., Koposov, S., Erkal, D., Balbinot, E., García-Bellido, J., Kuehn, K., Lewis, G. F., T. S., Li, Mau, S., Pace, A. B., Riley, A. H., Abbott, T. M. C., Aguena, M., Allam, S., Andrade-Oliveira, F., Annis, J., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Diehl, H. T., Everett, S., Ferrero, I., Flaugher, B., Frieman, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuropatkin, N., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Rodriguez-Monroy, M., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Varga, T. N., and Walker, A. R.
- Subjects
Galaxy structure ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Stellar stream ,Stellar streams ,FOS: Physical sciences ,Física ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxies and Cosmology ,Cosmology ,Dark matter ,Astronomy data modeling ,Milky Way dynamics ,Milky way dynamics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Tavangar et al., We use 6 yr of data from the Dark Energy Survey to perform a detailed photometric characterization of the Phoenix stellar stream, a 15° long, thin, dynamically cold, low-metallicity stellar system in the Southern Hemisphere. We use natural splines, a nonparametric modeling technique, to simultaneously fit the stream track, width, and linear density. This updated stream model allows us to improve measurements of the heliocentric distance (17.4 ± 0.1 (stat.) ±0.8 (sys.) kpc) and distance gradient (−0.009 ± 0.006 kpc deg−1) of Phoenix, which corresponds to a small change of 0.13 ± 0.09 kpc in heliocentric distance along the length of the stream. We measure linear intensity variations on degree scales, as well as deviations in the stream track on ∼2° scales, suggesting that the stream may have been disturbed during its formation and/or evolution. We recover three peaks and one gap in linear intensity along with fluctuations in the stream track. Compared to other thin streams, the Phoenix stream shows more fluctuations and, consequently, the study of Phoenix offers a unique perspective on gravitational perturbations of stellar streams. We discuss possible sources of perturbations to Phoenix, including baryonic structures in the Galaxy and dark matter subhalos., Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at The Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the LudwigMaximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. The DES data management system is supported by the National Science Foundation under grant Nos. AST-1138766 and AST1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-20160597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007–2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project No. CE110001020, and the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2).
- Published
- 2022
- Full Text
- View/download PDF
43. Velocity dispersions of clusters in the Dark Energy Survey Y3 redMaPPer catalogue
- Author
-
A Wetzell, V., Jeltema, T. E., Hegland, B., Everett, S., Giles, P. A., Wilkinson, R., Farahi, A., Costanzi, M., Hollowood, D. L., Upsdell, E., Saro, A., Myles, J., Bermeo, A., Bhargava, S., Collins, C. A., Cross, D., Eiger, O., Gardner, G., Hilton, M., Jobel, J., Kelly, P., Laubner, D., Liddle, A. R., Mann, R. G., Martinez, V., Mayers, J., Mcdaniel, A., Romer, A. K., Rooney, P., Sahlen, M., Stott, J., Swart, A., Turner, D. J., Viana, P. T. P., Abbott, T. M. C., Aguena, M., Allam, S., Andrade- Oliveira, F., Annis, J., Asorey, J., Bertin, E., Burke, D. L., Calcino, J., Carnero Rosell, A., Carollo, D., Carrasco Kind, M., Carretero, J., Choi, A., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Evrard, A. E., Ferrero, I., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Glazebrook, K., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lewis, G. F., Lidman, C., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchón, F., Plazas Malagón, A. A., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., Tucker, B. E., Tucker, D. L., Varga, T. N., Weller, J., Des, Collaboration, UAM. Departamento de Física Teórica, A Wetzell, V., Jeltema, T. E., Hegland, B., Everett, S., Giles, P. A., Wilkinson, R., Farahi, A., Costanzi, M., Hollowood, D. L., Upsdell, E., Saro, A., Myles, J., Bermeo, A., Bhargava, S., Collins, C. A., Cross, D., Eiger, O., Gardner, G., Hilton, M., Jobel, J., Kelly, P., Laubner, D., Liddle, A. R., Mann, R. G., Martinez, V., Mayers, J., Mcdaniel, A., Romer, A. K., Rooney, P., Sahlen, M., Stott, J., Swart, A., Turner, D. J., Viana, P. T. P., Abbott, T. M. C., Aguena, M., Allam, S., Andrade- Oliveira, F., Annis, J., Asorey, J., Bertin, E., Burke, D. L., Calcino, J., Carnero Rosell, A., Carollo, D., Carrasco Kind, M., Carretero, J., Choi, A., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Evrard, A. E., Ferrero, I., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Glazebrook, K., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lewis, G. F., Lidman, C., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchón, F., Plazas Malagón, A. A., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., Tucker, B. E., Tucker, D. L., Varga, T. N., Weller, J., Des, Collaboration, Department of Energy (US), European Commission, European Research Council, Ministero dell'Istruzione, dell'Università e della Ricerca, Ministerio de Ciencia, Innovación y Universidades (España), Fundação para a Ciência e a Tecnologia (Portugal), Agencia Estatal de Investigación (España), National Science Foundation (US), Generalitat de Catalunya, and Ministerio de Economía y Competitividad (España)
- Subjects
X-Rays: Galaxies: Clusters ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Física ,Astronomy and Astrophysics ,galaxies: clusters: general ,X-rays: galaxies: clusters ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Space and Planetary Science ,clusters: general [galaxies] ,galaxies: clusters [X-rays] ,CLUSTERS ,QC ,Astrophysics - Cosmology and Nongalactic Astrophysics ,QB ,Galaxies: Clusters: General - Abstract
DES Collaboration: V. Wetzell et al., We measure the velocity dispersions of clusters of galaxies selected by the red-sequence Matched-filter Probabilistic Percolation (redMaPPer) algorithm in the first three years of data from the Dark Energy Survey (DES), allowing us to probe cluster selection and richness estimation, λ, in light of cluster dynamics. Our sample consists of 126 clusters with sufficient spectroscopy for individual velocity dispersion estimates. We examine the correlations between cluster velocity dispersion, richness, X-ray temperature, and luminosity, as well as central galaxy velocity offsets. The velocity dispersion–richness relation exhibits a bimodal distribution. The majority of clusters follow scaling relations between velocity dispersion, richness, and X-ray properties similar to those found for previous samples; however, there is a significant population of clusters with velocity dispersions that are high for their richness. These clusters account for roughly 22 per cent of the λ < 70 systems in our sample, but more than half (55 per cent) of λ < 70 clusters at z > 0.5. A couple of these systems are hot and X-ray bright as expected for massive clusters with richnesses that appear to have been underestimated, but most appear to have high velocity dispersions for their X-ray properties likely due to line-of-sight structure. These results suggest that projection effects contribute significantly to redMaPPer selection, particularly at higher redshifts and lower richnesses. The redMaPPer determined richnesses for the velocity dispersion outliers are consistent with their X-ray properties, but several are X-ray undetected and deeper data are needed to understand their nature., This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Numbers DE-SC0010107 and A00-1465-001. AS is supported by the ERC-StG ‘ClustersXCosmo’ grant agreement 716762, by the FARE-MIUR grant ’ClustersXEuclid’ R165SBKTMA, and by INFN InDark Grant. PTPV was supported by Fundação para a Ciência e a Tecnologia (FCT) through research grants UIDB/04434/2020andUIDP/04434/2020. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the University of Illinois at Urbana-Champaign - National Center for Supercomputing Applications, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California, Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas – Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians-Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. This study is based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the EU Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This paper has been authored by Fermi Research Alliance, LLC under contract no. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2022
- Full Text
- View/download PDF
44. Concerning Colour: The Effect of Environment on Type Ia Supernova Colour in the Dark Energy Survey
- Author
-
Kelsey, Lisa, Sullivan, Mark, Wiseman, Philip, Armstrong, Patrick, Chen, Rebecca, Brout, D., Davis, Tamara M., Dixon, M., Frohmaier, C., Galbany, L., Graur, Or, Kessler, R., Lidman, C., Möller, A., Popovic, B., Rose, B., Scolnic, Daniel, Smith, Mathew, Vincenzi, M., Abbott, Timothy M. C., Aguena, Michel, Allam, Sahar, Alves, O., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, David L., Carnero Rosell, Aurelio, Carrasco Kind, Matias, Carretero, J., Costanzi, M., da Costa, Luiz N., Pereira, Maria Elidaiana da Silva, Desai, Shantanu, Diehl, Herman T., Everett, S., Ferrero, Ismael, Frieman, Josh, García-Bellido, Juan, Gruen, Daniel, Gruendl, Robert A., Gschwend, J., Gutierrez, G., Hinton, Samuel R., Hollowood, Devon L., Honscheid, Klaus, James, David J., Kuehn, Kyler, Kuropatkin, Nikolay, Lewis, Geraint F., Mena-Fernández, J., Miquel, R., Palmese, A., Paz-Chinchón, Francisco, Pieres, A., Plazas Malagón, Andrés A., Raveri, M., Rodríguez-Monroy, M., Romer, A. K., Sanchez, E., Scarpine, Vic, Schubnell, M., Sevilla-Noarbe, Ignacio, Suchyta, Eric, Swanson, Molly E. C., Tarlé, Gregory, Tucker, D. L., Weaverdyck, Noah, HEP, INSPIRE, Kelsey, L., Sullivan, M., Wiseman, P., Armstrong, P., Chen, R., Brout, D., Davis, T. M., Dixon, M., Frohmaier, C., Galbany, L., Graur, O., Kessler, R., Lidman, C., Möller, A., Popovic, B., Rose, B., Scolnic, D., Smith, M., Vincenzi, M., Abbott, T. M. C., Aguena, M., Allam, S., Alves, O., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Desai, S., Diehl, H. T., Everett, S., Ferrero, I., Frieman, J., García-Bellido, J., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lewis, G. F., Mena-Fernández, J., Miquel, R., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Raveri, M., Rodriguez-Monroy, M., Romer, A. K., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., and Weaverdyck, N.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astronomy and Astrophysics ,distance scale ,Astrophysics - Astrophysics of Galaxies ,supernovae: general ,surveys ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,cosmology: observations ,survey ,Astrophysics - Cosmology and Nongalactic Astrophysic ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,general [supernovae] ,Astrophysics - Cosmology and Nongalactic Astrophysics ,observation [cosmology] - Abstract
Recent analyses have found intriguing correlations between the colour ($c$) of type Ia supernovae (SNe Ia) and the size of their 'mass-step', the relationship between SN Ia host galaxy stellar mass ($M_\mathrm{stellar}$) and SN Ia Hubble residual, and suggest that the cause of this relationship is dust. Using 675 photometrically-classified SNe Ia from the Dark Energy Survey 5-year sample, we study the differences in Hubble residual for a variety of global host galaxy and local environmental properties for SN Ia subsamples split by their colour. We find a $3\sigma$ difference in the mass-step when comparing blue ($c0$) SNe. We observe the lowest r.m.s. scatter ($\sim0.14$ mag) in the Hubble residual for blue SNe in low mass/blue environments, suggesting that this is the most homogeneous sample for cosmological analyses. By fitting for $c$-dependent relationships between Hubble residuals and $M_\mathrm{stellar}$, approximating existing dust models, we remove the mass-step from the data and find tentative $\sim 2\sigma$ residual steps in rest-frame galaxy $U-R$ colour. This indicates that dust modelling based on $M_\mathrm{stellar}$ may not fully explain the remaining dispersion in SN Ia luminosity. Instead, accounting for a $c$-dependent relationship between Hubble residuals and global $U-R$, results in $\leq1\sigma$ residual steps in $M_\mathrm{stellar}$ and local $U-R$, suggesting that $U-R$ provides different information about the environment of SNe Ia compared to $M_\mathrm{stellar}$, and motivating the inclusion of galaxy $U-R$ colour in SN Ia distance bias correction., Comment: 19 pages, 8 figures. Published in MNRAS
- Published
- 2022
45. OzDES Reverberation Mapping Program: Hβ lags from the 6-yr survey
- Author
-
Malik, U, primary, Sharp, R, additional, Penton, A, additional, Yu, Z, additional, Martini, P, additional, Lidman, C, additional, Tucker, B E, additional, Davis, T M, additional, Lewis, G F, additional, Aguena, M, additional, Allam, S, additional, Alves, O, additional, Andrade-Oliveira, F, additional, Asorey, J, additional, Bacon, D, additional, Bertin, E, additional, Bocquet, S, additional, Brooks, D, additional, Burke, D L, additional, Carnero Rosell, A, additional, Carollo, D, additional, Carrasco Kind, M, additional, Carretero, J, additional, Costanzi, M, additional, da Costa, L N, additional, Pereira, M E S, additional, De Vicente, J, additional, Desai, S, additional, Diehl, H T, additional, Doel, P, additional, Everett, S, additional, Ferrero, I, additional, Frieman, J, additional, García-Bellido, J, additional, Gerdes, D W, additional, Gruen, D, additional, Gruendl, R A, additional, Gschwend, J, additional, Hinton, S R, additional, Hollowood, D L, additional, Honscheid, K, additional, James, D J, additional, Kuehn, K, additional, Marshall, J L, additional, Mena-Fernández, J, additional, Menanteau, F, additional, Miquel, R, additional, Ogando, R L C, additional, Palmese, A, additional, Paz-Chinchón, F, additional, Pieres, A, additional, Plazas Malagón, A A, additional, Raveri, M, additional, Rodriguez-Monroy, M, additional, Romer, A K, additional, Sanchez, E, additional, Scarpine, V, additional, Sevilla-Noarbe, I, additional, Smith, M, additional, Soares-Santos, M, additional, Suchyta, E, additional, Swanson, M E C, additional, Tarle, G, additional, Taylor, G, additional, Tucker, D L, additional, Weaverdyck, N, additional, and Wilkinson, R D, additional
- Published
- 2023
- Full Text
- View/download PDF
46. Optical Variability of Quasars with 20-Year Photometric Light Curves
- Author
-
Zachary Stone, Yue Shen, Colin J. Burke, Yu-Ching Chen, Qian Yang, Xin Liu, Robert Gruendl, Monika Adamów, Felipe Andrade-Oliveira, James Annis, David Bacon, Emmanuel Bertin, Sebastian Bocquet, David Brooks, David Burke, Aurelio Carnero Rosell, Matias Carrasco-Kind, Jorge Carretero, Luiz da Costa, Maria Elidaiana da Silva Pereira, Juan De Vicente, Shantanu Desai, H. Thomas Diehl, Peter Doel, Ismael Ferrero, Douglas Friedel, Joshua Frieman, Juan García-Bellido, Enrique Gaztanaga, Daniel Gruen, Gaston Gutierrez, Samuel Hinton, Devon L. Hollowood, Klaus Honscheid, David James, Kyler Kuehn, Nikolay Kuropatkin, Chrostopher Lidman, Marcio Maia, Felipe Menanteau, Ramon Miquel, Robert Morgan, Francisco Paz-Chinchón, Adriano Pieres, Andrés Plazas-Malagón, Martin Rodriguez-Monroy, Eusebio Sanchez, Vic Scarpine, Santiago Serrano, Ignacio Sevilla-Noarbe, Mathew Smith, Eric Suchyta, Molly Swanson, Gregory Tarlé, Chun-Hao To, National Science Foundation (US), European Commission, Agenzia Spaziale Italiana, Alfred P. Sloan Foundation, Department of Energy (US), National Aeronautics and Space Administration (US), Max Planck Society, Higher Education Funding Council for England, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Research Council, Instituto Nacional de Ciência e Tecnologia (Brasil), Generalitat de Catalunya, Conselho Nacional das Fundaçôes Estaduais de Amparo à Pesquisa (Brasil), and UAM. Departamento de Física Teórica
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,quasars ,supermassive black holes ,Física ,FOS: Physical sciences ,Quasars: supermassive black holes ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,Astrophysics - Astrophysics of Galaxies ,Quasars: general ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Galaxy Astrophysics - Abstract
Z. Stone et al., We study the optical gri photometric variability of a sample of 190 quasars within the SDSS Stripe 82 region that have long-term photometric coverage during ∼1998−2020 with SDSS, PanSTARRS-1, the Dark Energy Survey, and dedicated follow-up monitoring with Blanco 4m/DECam. With on average ∼200 nightly epochs per quasar per filter band, we improve the parameter constraints from a Damped Random Walk (DRW) model fit to the light curves over previous studies with 10–15 yr baselines and ≲ 100 epochs. We find that the average damping time-scale τDRW continues to rise with increased baseline, reaching a median value of ∼750 d (g band) in the rest frame of these quasars using the 20-yr light curves. Some quasars may have gradual, long-term trends in their light curves, suggesting that either the DRW fit requires very long baselines to converge, or that the underlying variability is more complex than a single DRW process for these quasars. Using a subset of quasars with better-constrained τDRW (less than 20 per cent of the baseline), we confirm a weak wavelength dependence of τDRW∝λ0.51 ± 0.20. We further quantify optical variability of these quasars over days to decades time-scales using structure function (SF) and power spectrum density (PSD) analyses. The SF and PSD measurements qualitatively confirm the measured (hundreds of days) damping time-scales from the DRW fits. However, the ensemble PSD is steeper than that of a DRW on time-scales less than ∼ a month for these luminous quasars, and this second break point correlates with the longer DRW damping time-scale., ZS and YS acknowledge support from NSF grants AST-1715579 and AST-2009947, and NASA grant 80NSSC21K0775. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA programme of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2).
- Published
- 2023
- Full Text
- View/download PDF
47. Dark Energy Survey Year 3 results: Constraints on extensions to Λ CDM with weak lensing and galaxy clustering
- Author
-
Abbott, T. M. C., Aguena, M., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Annis, J., Avila, S., Bacon, D., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Birrer, S., Blazek, J., Bocquet, S., Brandao-Souza, A., Bridle, S. L., Brooks, D., Burke, D. L., Camacho, H., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, A., Chen, R., Choi, A., Conselice, C., Cordero, J., Costanzi, M., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, C., Davis, T. M., Derose, J., Desai, S., Di Valentino, E., Diehl, H. T., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Farahi, A., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., Friedel, D., Friedrich, O., Frieman, J., García-Bellido, J., Gatti, M., Giani, L., Giannantonio, T., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hamaus, N., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huang, H., Huff, E. M., Huterer, D., Jain, B., James, D. J., Jarvis, M., Jeffrey, N., Jeltema, T., Kovacs, A., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Lee, S., Leget, P. -F., Lemos, P., Leonard, C. D., Liddle, A. R., Lima, M., Lin, H., Maccrann, N., Marshall, J. L., Mccullough, J., Mena-Fernández, J., Menanteau, F., Miquel, R., Miranda, V., Mohr, J. J., Muir, J., Myles, J., Nadathur, S., Navarro-Alsina, A., Nichol, R. C., Ogando, R. L. C., Omori, Y., Palmese, A., Pandey, S., Park, Y., Paterno, M., Paz-Chinchón, F., Percival, W. J., Pieres, A., Plazas Malagón, A. A., Porredon, A., Prat, J., Raveri, M., Rodriguez-Monroy, M., Rogozenski, P., Rollins, R. P., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Sanchez Cid, D., Scarpine, V., Scolnic, D., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Smith, M., Soares-Santos, M., Suchyta, E., Tabbutt, M., Tarle, G., Thomas, D., To, C., Troja, A., Troxel, M. A., Tutusaus, I., Varga, T. N., Vincenzi, M., Walker, A. R., Weaverdyck, N., Wechsler, R. H., Weller, J., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., and Des, Collaboration
- Published
- 2023
48. SOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO-Virgo Event GW190814
- Author
-
D. L. Tucker, M. P. Wiesner, S. S. Allam, M. Soares-Santos, C. R. Bom, M. Butner, A. Garcia, R. Morgan, F. Olivares E., A. Palmese, L. Santana-Silva, A. Shrivastava, J. Annis, J. García-Bellido, M. S. S. Gill, K. Herner, C. D. Kilpatrick, M. Makler, N. Sherman, A. Amara, H. Lin, M. Smith, E. Swann, I. Arcavi, T. G. Bachmann, K. Bechtol, F. Berlfein, C. Briceño, D. Brout, R. E. Butler, R. Cartier, J. Casares, H.-Y. Chen, C. Conselice, C. Contreras, E. Cook, J. Cooke, K. Dage, C. D’Andrea, T. M. Davis, R. de Carvalho, H. T. Diehl, J. P. Dietrich, Z. Doctor, A. Drlica-Wagner, M. Drout, B. Farr, D. A. Finley, M. Fishbach, R. J. Foley, F. Förster-Burón, P. Fosalba, D. Friedel, J. Frieman, C. Frohmaier, R. A. Gruendl, W. G. Hartley, D. Hiramatsu, D. E. Holz, D. A. Howell, A. Kawash, R. Kessler, N. Kuropatkin, O. Lahav, A. Lundgren, M. Lundquist, U. Malik, A. W. Mann, J. Marriner, J. L. Marshall, C. E. Martínez-Vázquez, C. McCully, F. Menanteau, N. Meza, G. Narayan, E. Neilsen, C. Nicolaou, R. Nichol, F. Paz-Chinchón, M. E. S. Pereira, J. Pineda, S. Points, J. Quirola-Vásquez, S. Rembold, A. Rest, Ó. Rodriguez, A. K. Romer, M. Sako, S. Salim, D. Scolnic, J. A. Smith, J. Strader, M. Sullivan, M. E. C. Swanson, D. Thomas, S. Valenti, T. N. Varga, A. R. Walker, J. Weller, M. L. Wood, B. Yanny, A. Zenteno, M. Aguena, F. Andrade-Oliveira, E. Bertin, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, M. Costanzi, L. N. da Costa, J. De Vicente, S. Desai, S. Everett, I. Ferrero, B. Flaugher, E. Gaztanaga, D. W. Gerdes, D. Gruen, J. Gschwend, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, M. Lima, M. A. G. Maia, R. Miquel, R. L. C. Ogando, A. Pieres, A. A. Plazas Malagón, M. Rodriguez-Monroy, E. Sanchez, V. Scarpine, M. Schubnell, S. Serrano, I. Sevilla-Noarbe, E. Suchyta, G. Tarle, C. To, Y. Zhang, Tucker, DL [0000-0001-7211-5729], Wiesner, MP [0000-0001-8653-7738], Allam, SS [0000-0002-7069-7857], Soares-Santos, M [0000-0001-6082-8529], Bom, CR [0000-0003-4383-2969], Garcia, A [0000-0001-9578-6322], Morgan, R [0000-0002-7016-5471], Olivares E., F [0000-0002-5115-6377], Palmese, A [0000-0002-6011-0530], Santana-Silva, L [0000-0003-3402-6164], Shrivastava, A [0000-0002-2854-6713], Annis, J [0000-0002-0609-3987], García-Bellido, J [0000-0002-9370-8360], Gill, MSS [0000-0003-2524-5154], Herner, K [0000-0001-6718-2978], Makler, M [0000-0003-2206-2651], Lin, H [0000-0002-7825-3206], Smith, M [0000-0002-3321-1432], Arcavi, I [0000-0001-7090-4898], Bechtol, K [0000-0001-8156-0429], Briceño, C [0000-0001-7124-4094], Brout, D [0000-0001-5201-8374], Butler, RE [0000-0003-2789-3817], Casares, J [0000-0001-5031-0128], Chen, H-Y [0000-0001-5403-3762], Conselice, C [0000-0003-1949-7638], Cooke, J [0000-0001-5703-2108], Dage, K [0000-0002-8532-4025], Davis, TM [0000-0002-4213-8783], Diehl, HT [0000-0002-8357-7467], Dietrich, JP [0000-0002-8134-9591], Doctor, Z [0000-0002-2077-4914], Drlica-Wagner, A [0000-0001-8251-933X], Drout, M [0000-0001-7081-0082], Finley, DA [0000-0003-3870-8445], Fishbach, M [0000-0002-1980-5293], Foley, RJ [0000-0002-2445-5275], Fosalba, P [0000-0002-1510-5214], Frieman, J [0000-0003-4079-3263], Frohmaier, C [0000-0001-9553-4723], Gruendl, RA [0000-0002-4588-6517], Hiramatsu, D [0000-0002-1125-9187], Holz, DE [0000-0002-0175-5064], Howell, DA [0000-0003-4253-656X], Kawash, A [0000-0003-0071-1622], Kessler, R [0000-0003-3221-0419], Kuropatkin, N [0000-0003-2511-0946], Lundquist, M [0000-0001-9589-3793], Mann, AW [0000-0003-3654-1602], Marriner, J [0000-0001-9359-6752], Marshall, JL [0000-0003-0710-9474], Martínez-Vázquez, CE [0000-0002-9144-7726], McCully, C [0000-0001-5807-7893], Menanteau, F [0000-0002-1372-2534], Neilsen, E [0000-0002-7357-0317], Nicolaou, C [0000-0001-7474-0544], Paz-Chinchón, F [0000-0003-1339-2683], Points, S [0000-0002-4596-1337], Rest, A [0000-0002-4410-5387], Rodriguez, Ó [0000-0001-8651-8772], Romer, AK [0000-0002-9328-879X], Sako, M [0000-0003-2764-7093], Salim, S [0000-0003-2342-7501], Smith, JA [0000-0002-6261-4601], Strader, J [0000-0002-1468-9668], Sullivan, M [0000-0001-9053-4820], Swanson, MEC [0000-0002-1488-8552], Thomas, D [0000-0002-6325-5671], Valenti, S [0000-0001-8818-0795], Walker, AR [0000-0002-7123-8943], Weller, J [0000-0002-8282-2010], Wood, ML [0000-0001-7336-7725], Yanny, B [0000-0002-9541-2678], Aguena, M [0000-0001-5679-6747], Bertin, E [0000-0002-3602-3664], Brooks, D [0000-0002-8458-5047], Rosell, A Carnero [0000-0003-3044-5150], Kind, M Carrasco [0000-0002-4802-3194], Carretero, J [0000-0002-3130-0204], Costanzi, M [0000-0001-8158-1449], De Vicente, J [0000-0001-8318-6813], Desai, S [0000-0002-0466-3288], Ferrero, I [0000-0002-1295-1132], Flaugher, B [0000-0002-2367-5049], Gaztanaga, E [0000-0001-9632-0815], Gerdes, DW [0000-0001-6942-2736], Gruen, D [0000-0003-3270-7644], Gschwend, J [0000-0003-3023-8362], Gutierrez, G [0000-0003-0825-0517], Hinton, SR [0000-0003-2071-9349], Hollowood, DL [0000-0002-9369-4157], Honscheid, K [0000-0002-6550-2023], James, DJ [0000-0001-5160-4486], Kuehn, K [0000-0003-0120-0808], Maia, MAG [0000-0001-9856-9307], Miquel, R [0000-0002-6610-4836], Ogando, RLC [0000-0003-2120-1154], Pieres, A [0000-0001-9186-6042], Plazas Malagón, AA [0000-0002-2598-0514], Sanchez, E [0000-0002-9646-8198], Schubnell, M [0000-0001-9504-2059], Serrano, S [0000-0002-0211-2861], Sevilla-Noarbe, I [0000-0002-1831-1953], Suchyta, E [0000-0002-7047-9358], Tarle, G [0000-0003-1704-0781], To, C [0000-0001-7836-2261], Apollo - University of Cambridge Repository, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, Ministerio de Economía y Competitividad (España), European Research Council, A Tucker, D. L., Wiesner, M. P., Allam, S. S., Soares-Santos, M., Bom, C. R., Butner, M., Garcia, A., Morgan, R., Olivares E., F., Palmese, A., Santana-Silva, L., Shrivastava, A., Annis, J., García-Bellido, J., Gill, M. S. S., Herner, K., Kilpatrick, C. D., Makler, M., Sherman, N., Amara, A., Lin, H., Smith, M., Swann, E., Arcavi, I., Bachmann, T. G., Bechtol, K., Berlfein, F., Briceño, C., Brout, D., Butler, R. E., Cartier, R., Casares, J., Chen, H. -Y., Conselice, C., Contreras, C., Cook, E., Cooke, J., Dage, K., D'Andrea, C., Davis, T. M., de Carvalho, R., Diehl, H. T., Dietrich, J. P., Doctor, Z., Drlica-Wagner, A., Drout, M., Farr, B., Finley, D. A., Fishbach, M., Foley, R. J., Förster-Burón, F., Fosalba, P., Friedel, D., Frieman, J., Frohmaier, C., Gruendl, R. A., Hartley, W. G., Hiramatsu, D., Holz, D. E., Howell, D. A., Kawash, A., Kessler, R., Kuropatkin, N., Lahav, O., Lundgren, A., Lundquist, M., Malik, U., Mann, A. W., Marriner, J., Marshall, J. L., Martínez-Vázquez, C. E., Mccully, C., Menanteau, F., Meza, N., Narayan, G., Neilsen, E., Nicolaou, C., Nichol, R., Paz-Chinchón, F., Pereira, M. E. S., Pineda, J., Points, S., Quirola-Vásquez, J., Rembold, S., Rest, A., Rodriguez, Ó., Romer, A. K., Sako, M., Salim, S., Scolnic, D., Smith, J. A., Strader, J., Sullivan, M., Swanson, M. E. C., Thomas, D., Valenti, S., Varga, T. N., Walker, A. R., Weller, J., Wood, M. L., Yanny, B., Zenteno, A., Aguena, M., Andrade-Oliveira, F., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Everett, S., Ferrero, I., Flaugher, B., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lima, M., Maia, M. A. G., Miquel, R., Ogando, R. L. C., Pieres, A., Plazas Malagón, A. A., Rodriguez-Monroy, M., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla- Noarbe, I., Suchyta, E., Tarle, G., To, C., and Zhang, Y.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Gravitational waves ,Spectroscopy ,Neutron stars ,Black holes ,Neutron star ,FOS: Physical sciences ,Astronomy and Astrophysics ,BURACOS NEGROS ,Space and Planetary Science ,5101 Astronomical Sciences ,Astrophysics - High Energy Astrophysical Phenomena ,51 Physical Sciences ,Gravitational wave ,High-Energy Phenomena and Fundamental Physics - Abstract
Tucker et al., On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star–black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory. Target of Opportunity interrupts were issued on eight separate nights to observe 11 candidates using the 4.1 m Southern Astrophysical Research (SOAR) telescope's Goodman High Throughput Spectrograph in order to assess whether any of these transients was likely to be an optical counterpart of the possible NSBH merger. Here, we describe the process of observing with SOAR, the analysis of our spectra, our spectroscopic typing methodology, and our resultant conclusion that none of the candidates corresponded to the gravitational wave merger event but were all instead other transients. Finally, we describe the lessons learned from this effort. Application of these lessons will be critical for a successful community spectroscopic follow-up program for LVC observing run 4 (O4) and beyond., Funding for the DES Projects has been provided by the DOE and NSF(USA), MEC/MICINN/MINECO (Spain), STFC (UK), HEFCE(UK). NCSA (UIUC), KICP (U. Chicago), CCAPP (Ohio State), MIFPA (Texas A&M), CNPQ, FAPERJ, FINEP (Brazil), DFG (Germany) and the Collaborating Institutions in the Dark Energy Survey. The DES Data Management System is supported by the NSF under grant Nos. AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-88861, FPA2015-68048, and Centro de Excelencia SEV-2016-0588, SEV-2016-0597 and MDM-2015-0509. Research leading to these results has received funding from the ERC under the EU's 7th Framework Programme including grants ERC 240672, 291329 and 306478. I.A. is a CIFAR Azrieli Global Scholar in the Gravity and the Extreme Universe Program and acknowledges support from that program, from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (grant agreement number 852097), from the Israel Science Foundation (grant number 2752/19), from the United States–Israel Binational Science Foundation (BSF), and from the Israeli Council for Higher Education Alon Fellowship.
- Published
- 2021
49. The Dark Energy Survey Year 3 high redshift sample: Selection, characterization and analysis of galaxy clustering
- Author
-
Sánchez, C., Alarcon, A., Bernstein, G. M., Sanchez, J., Pandey, S., Raveri, M., Prat, J., Weaverdyck, N., Sevilla-Noarbe, I., Chang, C., Baxter, E., Omori, Y., Jain, B., Alves, O., Amon, A., Bechtol, K., Becker, M. R., Blazek, J., Choi, A., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Crocce, M., Cross, D., Derose, J., Diehl, H. T., Dodelson, S., Drlicawagner, A., Eckert, K., Eifler, T. F., Elvin-Poole, J., Everett, S., Xiao Fang, Fosalba, P., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Huang, H., Huff, E. M., Kuropatkin, N., Maccrann, N., Mccullough, J., Myles, J., Krause, E., Porredon, A., Rodriguezmonroy, M., Rykoff, E. S., Secco, L. F., Sheldon, E., Troxel, M. A., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Andrade-Oliveira, F., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Castander, F. J., Cawthon, R., Conselice, C., Costanzi, M., Pereira, M. E. S., Desai, S., Doel, P., Doux, C., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gutierrez, G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Sanchez, E., Scarpine, V., Schubnell, M., Smith, M., Suchyta, E., Tarle, G., Thomas, D., To, C., and HEP, INSPIRE
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The fiducial cosmological analyses of imaging galaxy surveys like the Dark Energy Survey (DES) typically probe the Universe at redshifts $z < 1$. This is mainly because of the limited depth of these surveys, and also because such analyses rely heavily on galaxy lensing, which is more efficient at low redshifts. In this work we present the selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around $z \sim 0.9$, $1.2$ and $1.5$, which significantly extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal-to-noise $S/N \sim 70$ after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe $\Omega_m$ and the Hubble parameter $h$, $\Omega_m h = 0.195^{+0.023}_{-0.018}$, and 2-3% measurements of the amplitude of the galaxy clustering signals, probing galaxy bias and the amplitude of matter fluctuations, $b \sigma_8$. A companion paper $\textit{(in preparation)}$ will present the cross-correlations of these high-$z$ samples with CMB lensing from Planck and SPT, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work., Comment: 28 pages, 25 figures. To be submitted to MNRAS. Comments welcome
- Published
- 2022
50. Lessons learned from the two largest Galaxy morphological classification catalogues built by convolutional neural networks
- Author
-
T-Y Cheng, H Domínguez Sánchez, J Vega-Ferrero, C J Conselice, M Siudek, A Aragón-Salamanca, M Bernardi, R Cooke, L Ferreira, M Huertas-Company, J Krywult, A Palmese, A Pieres, A A Plazas Malagón, A Carnero Rosell, D Gruen, D Thomas, D Bacon, D Brooks, D J James, D L Hollowood, D Friedel, E Suchyta, E Sanchez, F Menanteau, F Paz-Chinchón, G Gutierrez, G Tarle, I Sevilla-Noarbe, I Ferrero, J Annis, J Frieman, J García-Bellido, J Mena-Fernández, K Honscheid, K Kuehn, L N da Costa, M Gatti, M Raveri, M E S Pereira, M Rodriguez-Monroy, M Smith, M Carrasco Kind, M Aguena, M E C Swanson, N Weaverdyck, P Doel, R Miquel, R L C Ogando, R A Gruendl, S Allam, S R Hinton, S Dodelson, S Bocquet, S Desai, S Everett, V Scarpine, and UAM. Departamento de Física Teórica
- Subjects
Methods: Statistical ,Methods: Data Analysis ,Galaxies: Structure ,Space and Planetary Science ,Physics - Data Analysis, Statistics and Probability ,Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,Física ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Data Analysis, Statistics and Probability (physics.data-an) - Abstract
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboración, si lo hubiere, This is an electronic version of an article published in Monthly Notices of the Royal Astronomical Society. T. Y. Cheng, H. Domínguez Sánchez, J. Vega-Ferrero, C. J. Conselice, M. Siudek, A. Aragón-Salamanca, M. Bernardi, R. Cooke, L. Ferreira, M. Huertas-Company , J. Krywult, A. Palmese , A. Pieres , A. A. Plazas Malagón, A. Carnero Rosell , D. Gruen, D. Thomas , D. Bacon, D. Brooks, D. J. James, D. L. Hollowood, D. Friedel, E. Suchyta, E. Sánchez, F. Menanteau, F. Paz-Chinchón, G. Gutiérrez, G. Tarle, I. Sevilla-Noarbe, I. Ferrero, J. Annis, J. Frieman, J. García-Bellido, J. Mena-Fernández, K. Honscheid, K. Kuehn, L. N. da Costa, M. Gatti, M. Raveri, M. E. S. Pereira, M. Rodríguez-Monroy, M. Smith, M. Carrasco Kind, M. Aguena, M. E. C. Swanson, N. Weaverdyck, P. Doel, R. Miquel, R. L. C. Ogando, R. A. Gruendl, S. Allam, S. R. Hinton, S. Dodelson, S. Bocquet, S. Desai, S. Everett and V. Scarpine in “Lessons learned from the two largest Galaxy morphological classification catalogues built by convolutional neural networks”. Monthly Notices of the Royal Astronomical Society 518.2 (2023): 2794-2809, We compare the two largest galaxy morphology catalogues, which separate early- and late-type galaxies at intermediate redshift. The two catalogues were built by applying supervised deep learning (convolutional neural networks, CNNs) to the Dark Energy Survey data down to a magnitude limit of ∼21 mag. The methodologies used for the construction of the catalogues include differences such as the cutout sizes, the labels used for training, and the input to the CNN – monochromatic images versus gri-band normalized images. In addition, one catalogue is trained using bright galaxies observed with DES (i < 18), while the other is trained with bright galaxies (r < 17.5) and ‘emulated’ galaxies up to r-band magnitude 22.5. Despite the different approaches, the agreement between the two catalogues is excellent up to i < 19, demonstrating that CNN predictions are reliable for samples at least one magnitude fainter than the training sample limit. It also shows that morphological classifications based on monochromatic images are comparable to those based on gri-band images, at least in the bright regime. At fainter magnitudes, i > 19, the overall agreement is good (∼95 per cent), but is mostly driven by the large spiral fraction in the two catalogues. In contrast, the agreement within the elliptical population is not as good, especially at faint magnitudes. By studying the mismatched cases, we are able to identify lenticular galaxies (at least up to i < 19), which are difficult to distinguish using standard classification approaches. The synergy of both catalogues provides an unique opportunity to select a population of unusual galaxies
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.