2,321 results on '"Poole, J"'
Search Results
2. Dark Energy Survey Year 3: Blue Shear
- Author
-
McCullough, J., Amon, A., Legnani, E., Gruen, D., Roodman, A., Friedrich, O., MacCrann, N., Becker, M. R., Myles, J., Dodelson, S., Samuroff, S., Blazek, J., Prat, J., Honscheid, K., Pieres, A., Ferté, A., Alarcon, A., Drlica-Wagner, A., Choi, A., Navarro-Alsina, A., Campos, A., Malagón, A. A. Plazas, Porredon, A., Farahi, A., Ross, A. J., Rosell, A. Carnero, Yin, B., Flaugher, B., Yanny, B., Sánchez, C., Chang, C., Davis, C., To, C., Doux, C., Brooks, D., James, D. J., Cid, D. Sanchez, Hollowood, D. L., Huterer, D., Rykoff, E. S., Gaztanaga, E., Huff, E. M., Suchyta, E., Sheldon, E., Sanchez, E., Tarsitano, F., Andrade-Oliveira, F., Castander, F. J., Bernstein, G. M., Gutierrez, G., Giannini, G., Tarle, G., Diehl, H. T., Huang, H., Harrison, I., Sevilla-Noarbe, I., Tutusaus, I., Ferrero, I., Elvin-Poole, J., Marshall, J. L., Muir, J., Weller, J., Zuntz, J., Carretero, J., DeRose, J., Frieman, J., Cordero, J., De Vicente, J., García-Bellido, J., Mena-Fernández, J., Eckert, K., Romer, A. K., Bechtol, K., Herner, K., Kuehn, K., Secco, L. F., da Costa, L. N., Paterno, M., Soares-Santos, 21 M., Gatti, M., Raveri, M., Yamamoto, M., Smith, M., Kind, M. Carrasco, Troxel, M. A., Aguena, M., Jarvis, M., Swanson, M. E. C., Weaverdyck, N., Lahav, O., Doel, P., Wiseman, P., Miquel, R., Gruendl, R. A., Cawthon, R., Allam, S., Hinton, S. R., Bridle, S. L., Bocquet, S., Desai, S., Pandey, S., Everett, S., Lee, S., Shin, T., Palmese, A., Conselice, C., Burke, D. L., Buckley-Geer, E., Lima, M., Vincenzi, M., Pereira, M. E. S., Crocce, M., Schubnell, M., Jeffrey, N., Alves, O., Vikram, V., Zhang, Y., and Collaboration, DES
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Modeling the intrinsic alignment (IA) of galaxies poses a challenge to weak lensing analyses. The Dark Energy Survey is expected to be less impacted by IA when limited to blue, star-forming galaxies. The cosmological parameter constraints from this blue cosmic shear sample are stable to IA model choice, unlike passive galaxies in the full DES Y3 sample, the goodness-of-fit is improved and the $\Omega_{m}$ and $S_8$ better agree with the cosmic microwave background. Mitigating IA with sample selection, instead of flexible model choices, can reduce uncertainty in $S_8$ by a factor of 1.5., Comment: Data access available at https://jamiemccullough.github.io/data/blueshear/
- Published
- 2024
3. Enhancing weak lensing redshift distribution characterization by optimizing the Dark Energy Survey Self-Organizing Map Photo-z method
- Author
-
Campos, A., Yin, B., Dodelson, S., Amon, A., Alarcon, A., Sánchez, C., Bernstein, G. M., Giannini, G., Myles, J., Samuroff, S., Alves, O., Andrade-Oliveira, F., Bechtol, K., Becker, M. R., Blazek, J., Camacho, H., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chang, C., Chen, R., Choi, A., Cordero, J., Davis, C., DeRose, J., Diehl, H. T., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Friedrich, O., Gatti, M., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Jarvis, M., Krause, E., Kuropatkin, N., Leget, P. -F., MacCrann, N., McCullough, J., Navarro-Alsina, A., Pandey, S., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Sanchez, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Wechsler, R. H., Yanny, B., Zhang, Y., Zuntz, J., Aguena, M., Annis, J., Bacon, D., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., De Vicente, J., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lima, M., Lin, H., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Paterno, M., Pereira, M. E. S., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Sanchez, E., Cid, D. Sanchez, Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Vikram, V., and Weaverdyck, N.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Characterization of the redshift distribution of ensembles of galaxies is pivotal for large scale structure cosmological studies. In this work, we focus on improving the Self-Organizing Map (SOM) methodology for photometric redshift estimation (SOMPZ), specifically in anticipation of the Dark Energy Survey Year 6 (DES Y6) data. This data set, featuring deeper and fainter galaxies than DES Year 3 (DES Y3), demands adapted techniques to ensure accurate recovery of the underlying redshift distribution. We investigate three strategies for enhancing the existing SOM-based approach used in DES Y3: 1) Replacing the Y3 SOM algorithm with one tailored for redshift estimation challenges; 2) Incorporating $\textit{g}$-band flux information to refine redshift estimates (i.e. using $\textit{griz}$ fluxes as opposed to only $\textit{riz}$); 3) Augmenting redshift data for galaxies where available. These methods are applied to DES Y3 data, and results are compared to the Y3 fiducial ones. Our analysis indicates significant improvements with the first two strategies, notably reducing the overlap between redshift bins. By combining strategies 1 and 2, we have successfully managed to reduce redshift bin overlap in DES Y3 by up to 66$\%$. Conversely, the third strategy, involving the addition of redshift data for selected galaxies as an additional feature in the method, yields inferior results and is abandoned. Our findings contribute to the advancement of weak lensing redshift characterization and lay the groundwork for better redshift characterization in DES Year 6 and future stage IV surveys, like the Rubin Observatory.
- Published
- 2024
4. Weak Gravitational Lensing around Low Surface Brightness Galaxies in the DES Year 3 Data
- Author
-
Chicoine, N., Prat, J., Zacharegkas, G., Chang, C., Tanoglidis, D., Drlica-Wagner, A., Anbajagane, D., Adhikari, S., Amon, A., Wechsler, R. H., Alarcon, A., Bechtol, K., Becker, M. R., Bernstein, G. M., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chen, R., Choi, A., Cordero, J., Davis, C., DeRose, J., Dodelson, S., Doux, C., Eckert, K., Elvin-Poole, J., Everett, S., Ferté, A., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Herner, K., Jarvis, M., Leget, P. -F., MacCrann, N., McCullough, J., Myles, J., Navarro-Alsina, A., Pandey, S., Raveri, M., Rollins, R. P., Roodman, A., Ross, A. J., Rykoff, E. S., Sánchez, C., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Yanny, B., Yin, B., Zuntz, J., Aguena, M., Alves, O., Bacon, D., Brooks, D., Carretero, J., Castander, F. J., Conselice, C., Desai, S., De Vicente, J., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lee, S., Lidman, C., Lima, M., Marshall, J. L., Mena-Fernández, J., Miquel, R., Muir, J., Ogando, R. L. C., Palmese, A., Pereira, M. E. S., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Walker, A. R., Samuroff, S., Sanchez, E., Cid, D. Sanchez, Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Tucker, D. L., Vikram, V., Weaverdyck, N., and Wiseman, P.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present galaxy-galaxy lensing measurements using a sample of low surface brightness galaxies (LSBGs) drawn from the Dark Energy Survey Year 3 (Y3) data as lenses. LSBGs are diffuse galaxies with a surface brightness dimmer than the ambient night sky. These dark-matter-dominated objects are intriguing due to potentially unusual formation channels that lead to their diffuse stellar component. Given the faintness of LSBGs, using standard observational techniques to characterize their total masses proves challenging. Weak gravitational lensing, which is less sensitive to the stellar component of galaxies, could be a promising avenue to estimate the masses of LSBGs. Our LSBG sample consists of 23,790 galaxies separated into red and blue color types at $g-i\ge 0.60$ and $g-i< 0.60$, respectively. Combined with the DES Y3 shear catalog, we measure the tangential shear around these LSBGs and find signal-to-noise ratios of 6.67 for the red sample, 2.17 for the blue sample, and 5.30 for the full sample. We use the clustering redshifts method to obtain redshift distributions for the red and blue LSBG samples. Assuming all red LSBGs are satellites, we fit a simple model to the measurements and estimate the host halo mass of these LSBGs to be $\log(M_{\rm host}/M_{\odot}) = 12.98 ^{+0.10}_{-0.11}$. We place a 95% upper bound on the subhalo mass at $\log(M_{\rm sub}/M_{\odot})<11.51$. By contrast, we assume the blue LSBGs are centrals, and place a 95% upper bound on the halo mass at $\log(M_\mathrm{host}/M_\odot) < 11.84$. We find that the stellar-to-halo mass ratio of the LSBG samples is consistent with that of the general galaxy population. This work illustrates the viability of using weak gravitational lensing to constrain the halo masses of LSBGs., Comment: 20 pages, 14 figures
- Published
- 2024
- Full Text
- View/download PDF
5. Dark Energy Survey Year 3 Results: Cosmology from galaxy clustering and galaxy-galaxy lensing in harmonic space
- Author
-
Faga, L., Andrade-Oliveira, F., Camacho, H., Rosenfeld, R., Lima, M., Doux, C., Fang, X., Prat, J., Porredon, A., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., Avila, S., Bacon, D., Bechtol, K., Becker, M. R., Bernstein, G. M., Bocquet, S., Brooks, D., Buckley-Geer, E., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, R., Choi, A., Cordero, J., Crocce, M., da Costa, L. N., Pereira, M. E. S., DeRose, J., Diehl, H. T., Dodelson, S., Drlica-Wagner, A., Elvin-Poole, J., Everett, S., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Giannini, G., Gruen, D., Gruendl, R. A., Gutierrez, G., Harrison, I., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Jarvis, M., Jeltema, T., Kuehn, K., Lahav, O., Lee, S., Lidman, C., MacCrann, N., Marshall, J. L., McCullough, J., Mena-Fernández, J., Miquel, R., Myles, J., Navarro-Alsina, A., Palmese, A., Pandey, S., Paterno, M., Pieres, A., Malagón, A. A. Plazas, Raveri, M., Rodriguez-Monroy, M., Rollins, R. P., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Cid, D. Sanchez, Schubnell, M., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Troxel, M. A., Tutusaus, I., Weaverdyck, N., Wiseman, P., Yanny, B., and Yin, B.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the joint tomographic analysis of galaxy-galaxy lensing and galaxy clustering in harmonic space, using galaxy catalogues from the first three years of observations by the Dark Energy Survey (DES Y3). We utilise the redMaGiC and MagLim catalogues as lens galaxies and the METACALIBRATION catalogue as source galaxies. The measurements of angular power spectra are performed using the pseudo-$C_\ell$ method, and our theoretical modelling follows the fiducial analyses performed by DES Y3 in configuration space, accounting for galaxy bias, intrinsic alignments, magnification bias, shear magnification bias and photometric redshift uncertainties. We explore different approaches for scale cuts based on non-linear galaxy bias and baryonic effects contamination. Our fiducial covariance matrix is computed analytically, accounting for mask geometry in the Gaussian term, and including non-Gaussian contributions and super-sample covariance terms. To validate our harmonic space pipelines and covariance matrix, we used a suite of 1800 log-normal simulations. We also perform a series of stress tests to gauge the robustness of our harmonic space analysis. In the $\Lambda$CDM model, the clustering amplitude $S_8 =\sigma_8(\Omega_m/0.3)^{0.5}$ is constrained to $S_8 = 0.704\pm 0.029$ and $S_8 = 0.753\pm 0.024$ ($68\%$ C.L.) for the redMaGiC and MagLim catalogues, respectively. For the $w$CDM, the dark energy equation of state is constrained to $w = -1.28 \pm 0.29$ and $w = -1.26^{+0.34}_{-0.27}$, for redMaGiC and MagLim catalogues, respectively. These results are compatible with the corresponding DES Y3 results in configuration space and pave the way for harmonic space analyses using the DES Y6 data., Comment: To be submitted to MNRAS
- Published
- 2024
6. Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps II. Cosmological results
- Author
-
Gatti, M., Campailla, G., Jeffrey, N., Whiteway, L., Porredon, A., Prat, J., Williamson, J., Raveri, M., Jain, B., Ajani, V., Giannini, G., Yamamoto, M., Zhou, C., Blazek, J., Anbajagane, D., Samuroff, S., Kacprzak, T., Alarcon, A., Amon, A., Bechtol, K., Becker, M., Bernstein, G., Campos, A., Chang, C., Chen, R., Choi, A., Davis, C., Derose, J., Diehl, H. T., Dodelson, S., Doux, C., Eckert, K., Elvin-Poole, J., Everett, S., Ferte, A., Gruen, D., Gruendl, R., Harrison, I., Hartley, W. G., Herner, K., Huff, E. M., Jarvis, M., Kuropatkin, N., Leget, P. F., MacCrann, N., McCullough, J., Myles, J., Navarro-Alsina, A., Pandey, S., Rollins, R. P., Roodman, A., Sanchez, C., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M., Tutusaus, I., Varga, T. N., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S. S., Alves, O., Andrade-Oliveira, F., Bacon, D., Bocquet, S., Brooks, D., Rosell, A. Carnero, Carretero, J., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Ferrero, I., Frieman, J., García-Bellido, J., Gaztanaga, E., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Lee, S., Marshall, J. L., Mena-Fernández, J., Miquel, R., Pieres, A., Malagón, A. A. Plazas, Sanchez, E., Cid, D. Sanchez, Schubnell, M., Smith, M., Suchyta, E., Tarle, G., Weaverdyck, N., Weller, J., and Wiseman, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a simulation-based cosmological analysis using a combination of Gaussian and non-Gaussian statistics of the weak lensing mass (convergence) maps from the first three years (Y3) of the Dark Energy Survey (DES). We implement: 1) second and third moments; 2) wavelet phase harmonics; 3) the scattering transform. Our analysis is fully based on simulations, spans a space of seven $\nu w$CDM cosmological parameters, and forward models the most relevant sources of systematics inherent in the data: masks, noise variations, clustering of the sources, intrinsic alignments, and shear and redshift calibration. We implement a neural network compression of the summary statistics, and we estimate the parameter posteriors using a simulation-based inference approach. Including and combining different non-Gaussian statistics is a powerful tool that strongly improves constraints over Gaussian statistics (in our case, the second moments); in particular, the Figure of Merit $\textrm{FoM}(S_8, \Omega_{\textrm{m}})$ is improved by 70 percent ($\Lambda$CDM) and 90 percent ($w$CDM). When all the summary statistics are combined, we achieve a 2 percent constraint on the amplitude of fluctuations parameter $S_8 \equiv \sigma_8 (\Omega_{\textrm{m}}/0.3)^{0.5}$, obtaining $S_8 = 0.794 \pm 0.017$ ($\Lambda$CDM) and $S_8 = 0.817 \pm 0.021$ ($w$CDM). The constraints from different statistics are shown to be internally consistent (with a $p$-value>0.1 for all combinations of statistics examined). We compare our results to other weak lensing results from the DES Y3 data, finding good consistency; we also compare with results from external datasets, such as \planck{} constraints from the Cosmic Microwave Background, finding statistical agreement, with discrepancies no greater than $<2.2\sigma$., Comment: 24 pages, 13 figures, to be submitted to PRD. Comments welcome!
- Published
- 2024
7. Weak lensing combined with the kinetic Sunyaev Zel'dovich effect: A study of baryonic feedback
- Author
-
Bigwood, L., Amon, A., Schneider, A., Salcido, J., McCarthy, I. G., Preston, C., Sanchez, D., Sijacki, D., Schaan, E., Ferraro, S., Battaglia, N., Chen, A., Dodelson, S., Roodman, A., Pieres, A., Ferte, A., Alarcon, A., Drlica-Wagner, A., Choi, A., Navarro-Alsina, A., Campos, A., Ross, A. J., Rosell, A. Carnero, Yin, B., Yanny, B., Sanchez, C., Chang, C., Davis, C., Doux, C., Gruen, D., Rykoff, E. S., Huff, E. M., Sheldon, E., Tarsitano, F., Andrade-Oliveira, F., Bernstein, G. M., Giannini, G., Diehl, H. T., Huang, H., Harrison, I., Sevilla-Noarbe, I., Tutusaus, I., Elvin-Poole, J., McCullough, J., Zuntz, J., Blazek, J., DeRose, J., Cordero, J., Prat, J., Myles, J., Eckert, K., Bechtol, K., Herner, K., Secco, L. F., Gatti, M., Raveri, M., Kind, M. Carrasco, Becker, M. R., Troxel, M. A., Jarvis, M., MacCrann, N., Friedrich, O., Alves, O., Leget, P. -F., Chen, R., Rollins, R. P., Wechsler, R. H., Gruendl, R. A., Cawthon, R., Allam, S., Bridle, S. L., Pandey, S., Everett, S., Shin, T., Hartley, W. G., Fang, X., Zhang, Y., Aguena, M., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Carretero, J., Castander, F. J., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., Garcia-Bellido, J., Gaztanaga, E., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Kuehn, K., Lahav, O., Lee, S., Marshall, J. L., Mena-Fernandez, J., Miquel, R., Muir, J., Paterno, M., Malagon, A. A. Plazas, Porredon, A., Romer, A. K., Samuroff, S., Sanchez, E., Cid, D. Sanchez, Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Weaverdyck, N., Weller, J., Wiseman, P., and Yamamoto, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
Extracting precise cosmology from weak lensing surveys requires modelling the non-linear matter power spectrum, which is suppressed at small scales due to baryonic feedback processes. However, hydrodynamical galaxy formation simulations make widely varying predictions for the amplitude and extent of this effect. We use measurements of Dark Energy Survey Year 3 weak lensing (WL) and Atacama Cosmology Telescope DR5 kinematic Sunyaev-Zel'dovich (kSZ) to jointly constrain cosmological and astrophysical baryonic feedback parameters using a flexible analytical model, `baryonification'. First, using WL only, we compare the $S_8$ constraints using baryonification to a simulation-calibrated halo model, a simulation-based emulator model and the approach of discarding WL measurements on small angular scales. We find that model flexibility can shift the value of $S_8$ and degrade the uncertainty. The kSZ provides additional constraints on the astrophysical parameters and shifts $S_8$ to $S_8=0.823^{+0.019}_{-0.020}$, a higher value than attained using the WL-only analysis. We measure the suppression of the non-linear matter power spectrum using WL + kSZ and constrain a mean feedback scenario that is more extreme than the predictions from most hydrodynamical simulations. We constrain the baryon fractions and the gas mass fractions and find them to be generally lower than inferred from X-ray observations and simulation predictions. We conclude that the WL + kSZ measurements provide a new and complementary benchmark for building a coherent picture of the impact of gas around galaxies across observations.
- Published
- 2024
8. Dark Energy Survey: Galaxy Sample for the Baryonic Acoustic Oscillation Measurement from the Final Dataset
- Author
-
Mena-Fernández, J., Rodríguez-Monroy, M., Avila, S., Porredon, A., Chan, K. C., Camacho, H., Weaverdyck, N., Sevilla-Noarbe, I., Sanchez, E., Cipriano, L. Toribio San, De Vicente, J., Ferrero, I., Cawthon, R., Rosell, A. Carnero, Elvin-Poole, J., Giannini, G., Adamow, M., Bechtol, K., Drlica-Wagner, A., Gruendl, R. A., Hartley, W. G., Pieres, A., Ross, A. J., Rykoff, E. S., Sheldon, E., Yanny, B., Abbott, T. M. C., Aguena, M., Allam, S., Alves, O., Amon, A., Andrade-Oliveira, F., Annis, J., Bacon, D., Blazek, J., Bocquet, S., Brooks, D., Carretero, J., Castander, F. J., Conselice, C., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., Deiosso, N., Desai, S., Diehl, H. T., Dodelson, S., Doux, C., Everett, S., Frieman, J., García-Bellido, J., Gaztanaga, E., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., Kuehn, K., Lahav, O., Lee, S., Lidman, C., Lin, H., Marshall, J. L., Menanteau, F., Miquel, R., Myles, J., Ogando, R. L. C., Palmese, A., Percival, W. J., Malagón, A. A. Plazas, Roodman, A., Rosenfeld, R., Samuroff, S., Cid, D. Sanchez, Santiago, B., Schubnell, M., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Tucker, D. L., Walker, A. R., Weller, J., Wiseman, P., and Yamamoto, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In this paper we present and validate the galaxy sample used for the analysis of the baryon acoustic oscillation (BAO) signal in the Dark Energy Survey (DES) Y6 data. The definition is based on a color and redshift-dependent magnitude cut optimized to select galaxies at redshifts higher than 0.6, while ensuring a high-quality photo-$z$ determination. The optimization is performed using a Fisher forecast algorithm, finding the optimal $i$-magnitude cut to be given by $i$<19.64+2.894$z_{\rm ph}$. For the optimal sample, we forecast an increase in precision in the BAO measurement of $\sim$25% with respect to the Y3 analysis. Our BAO sample has a total of 15,937,556 galaxies in the redshift range 0.6<$z_{\rm ph}$<1.2, and its angular mask covers 4,273.42 deg${}^2$ to a depth of $i$=22.5. We validate its redshift distributions with three different methods: directional neighborhood fitting algorithm (DNF), which is our primary photo-$z$ estimation; direct calibration with spectroscopic redshifts from VIPERS; and clustering redshift using SDSS galaxies. The fiducial redshift distribution is a combination of these three techniques performed by modifying the mean and width of the DNF distributions to match those of VIPERS and clustering redshift. In this paper we also describe the methodology used to mitigate the effect of observational systematics, which is analogous to the one used in the Y3 analysis. This paper is one of the two dedicated to the analysis of the BAO signal in DES Y6. In its companion paper, we present the angular diameter distance constraints obtained through the fitting to the BAO scale., Comment: 23 pages, 10 figures. Submitted to PRD
- Published
- 2024
9. Dark Energy Survey: A 2.1% measurement of the angular Baryonic Acoustic Oscillation scale at redshift $z_{\rm eff}$=0.85 from the final dataset
- Author
-
DES Collaboration, Abbott, T. M. C., Adamow, M., Aguena, M., Allam, S., Alves, O., Amon, A., Andrade-Oliveira, F., Asorey, J., Avila, S., Bacon, D., Bechtol, K., Bernstein, G. M., Bertin, E., Blazek, J., Bocquet, S., Brooks, D., Burke, D. L., Camacho, H., Rosell, A. Carnero, Carollo, D., Carretero, J., Castander, F. J., Cawthon, R., Chan, K. C., Chang, C., Conselice, C., Costanzi, M., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Deiosso, N., Desai, S., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Elvin-Poole, J., Everett, S., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Giannini, G., Gruendl, R. A., Gutierrez, G., Hartley, W. G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Kent, S., Kuehn, K., Lahav, O., Lee, S., Lidman, C., Lin, H., Marshall, J. L., Martini, P., Mena-Fernández, J., Menanteau, F., Miquel, R., Mohr, J. J., Myles, J., Nichol, R. C., Ogando, R. L. C., Palmese, A., Percival, W. J., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Prat, J., Rodríguez-Monroy, M., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Sako, M., Samuroff, S., Sánchez, C., Sanchez, E., Cid, D. Sanchez, Santiago, B., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Cipriano, L. Toribio San, Troxel, M. A., Tucker, B. E., Tucker, D. L., Walker, A. R., Weaverdyck, N., Weller, J., Wiseman, P., and Yanny, B.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the angular diameter distance measurement obtained with the Baryonic Acoustic Oscillation feature from galaxy clustering in the completed Dark Energy Survey, consisting of six years (Y6) of observations. We use the Y6 BAO galaxy sample, optimized for BAO science in the redshift range 0.6<$z$<1.2, with an effective redshift at $z_{\rm eff}$=0.85 and split into six tomographic bins. The sample has nearly 16 million galaxies over 4,273 square degrees. Our consensus measurement constrains the ratio of the angular distance to sound horizon scale to $D_M(z_{\rm eff})/r_d$ = 19.51$\pm$0.41 (at 68.3% confidence interval), resulting from comparing the BAO position in our data to that predicted by Planck $\Lambda$CDM via the BAO shift parameter $\alpha=(D_M/r_d)/(D_M/r_d)_{\rm Planck}$. To achieve this, the BAO shift is measured with three different methods, Angular Correlation Function (ACF), Angular Power Spectrum (APS), and Projected Correlation Function (PCF) obtaining $\alpha=$ 0.952$\pm$0.023, 0.962$\pm$0.022, and 0.955$\pm$0.020, respectively, which we combine to $\alpha=$ 0.957$\pm$0.020, including systematic errors. When compared with the $\Lambda$CDM model that best fits Planck data, this measurement is found to be 4.3% and 2.1$\sigma$ below the angular BAO scale predicted. To date, it represents the most precise angular BAO measurement at $z$>0.75 from any survey and the most precise measurement at any redshift from photometric surveys. The analysis was performed blinded to the BAO position and it is shown to be robust against analysis choices, data removal, redshift calibrations and observational systematics., Comment: Submitted to PRD, 39 pages, 12 figures
- Published
- 2024
10. The SRG/eROSITA All-Sky Survey: Dark Energy Survey Year 3 Weak Gravitational Lensing by eRASS1 selected Galaxy Clusters
- Author
-
Grandis, S., Ghirardini, V., Bocquet, S., Garrel, C., Mohr, J. J., Liu, A., Kluge, M., Kimmig, L., Reiprich, T. H., Alarcon, A., Amon, A., Artis, E., Bahar, Y. E., Balzer, F., Bechtol, K., Becker, M. R., Bernstein, G., Bulbul, E., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chang, C., Chen, R., Chiu, I., Choi, A., Clerc, N., Comparat, J., Cordero, J., Davis, C., Derose, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Elvin-Poole, J., Everett, S., Ferte, A., Gatt, M., Giannini, G., Giles, P., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huf, E. M., Kleinebreil, F., Kuropatkin, N., Leget, P. F., Maccrann, N., Mccullough, J., Merloni, A., Myles, J., Nandra, K., Navarro-Alsina, A., Okabe, N., Pacaud, F., Pandey, S., Prat, J., Predehl, P., Ramos, M., Raveri, M., Rollins, R. P., Roodman, A., Ross, A. J., Rykoff, E. S., Sanchez, C., Sanders, J., Schrabback, T., Secco, L. F., Seppi, R., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M., Tutusaus, I., Varga, T. N., Wu, H., Yanny, B., Yin, B., Zhang, X., Zhang, Y., Alves, O., Bhargava, S., Brooks, D., Burke, D. L., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Doel, P., Ferrero, I., Flaugher, B., Friedel, D., Frieman, J., García-Bellido, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Jeffrey, N., Lahav, O., Lee, S., Marshall, J. L., Menanteau, F., Ogando, R. L. C., Pieres, A., Malagón, A. A. Plazas, Romer, A. K., Sanchez, E., Schubnell, M., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Weaverdyck, N., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Number counts of galaxy clusters across redshift are a powerful cosmological probe, if a precise and accurate reconstruction of the underlying mass distribution is performed -- a challenge called mass calibration. With the advent of wide and deep photometric surveys, weak gravitational lensing by clusters has become the method of choice to perform this measurement. We measure and validate the weak gravitational lensing (WL) signature in the shape of galaxies observed in the first 3 years of the DES Y3 caused by galaxy clusters selected in the first all-sky survey performed by SRG/eROSITA. These data are then used to determine the scaling between X-ray photon count rate of the clusters and their halo mass and redshift. We empirically determine the degree of cluster member contamination in our background source sample. The individual cluster shear profiles are then analysed with a Bayesian population model that self-consistently accounts for the lens sample selection and contamination, and includes marginalization over a host of instrumental and astrophysical systematics. To quantify the accuracy of the mass extraction of that model, we perform mass measurements on mock cluster catalogs with realistic synthetic shear profiles. This allows us to establish that hydro-dynamical modelling uncertainties at low lens redshifts ($z<0.6$) are the dominant systematic limitation. At high lens redshift the uncertainties of the sources' photometric redshift calibration dominate. With regard to the X-ray count rate to halo mass relation, we constrain all its parameters. This work sets the stage for a joint analysis with the number counts of eRASS1 clusters to constrain a host of cosmological parameters. We demonstrate that WL mass calibration of galaxy clusters can be performed successfully with source galaxies whose calibration was performed primarily for cosmic shear experiments., Comment: 27 pages, 18 figures, 2 appendices, submitted to A\&A
- Published
- 2024
- Full Text
- View/download PDF
11. The Dark Energy Survey: Cosmology Results With ~1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset
- Author
-
DES Collaboration, Abbott, T. M. C., Acevedo, M., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., Andrade-Oliveira, F., Annis, J., Armstrong, P., Asorey, J., Avila, S., Bacon, D., Bassett, B. A., Bechtol, K., Bernardinelli, P. H., Bernstein, G. M., Bertin, E., Blazek, J., Bocquet, S., Brooks, D., Brout, D., Buckley-Geer, E., Burke, D. L., Camacho, H., Camilleri, R., Campos, A., Rosell, A. Carnero, Carollo, D., Carr, A., Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, R., Choi, A., Conselice, C., Costanzi, M., da Costa, L. N., Crocce, M., Davis, T. M., DePoy, D. L., Desai, S., Diehl, H. T., Dixon, M., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Elvin-Poole, J., Everett, S., Ferrero, I., Ferté, A., Flaugher, B., Foley, R. J., Fosalba, P., Friedel, D., Frieman, J., Frohmaier, C., Galbany, L., García-Bellido, J., Gatti, M., Gaztanaga, E., Giannini, G., Glazebrook, K., Graur, O., Gruen, D., Gruendl, R. A., Gutierrez, G., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., Jain, B., James, D. J., Jeffrey, N., Kasai, E., Kelsey, L., Kent, S., Kessler, R., Kim, A. G., Kirshner, R. P., Kovacs, E., Kuehn, K., Lahav, O., Lee, J., Lee, S., Lewis, G. F., Li, T. S., Lidman, C., Lin, H., Malik, U., Marshall, J. L., Martini, P., Mena-Fernández, J., Menanteau, F., Miquel, R., Mohr, J. J., Mould, J., Muir, J., Möller, A., Neilsen, E., Nichol, R. C., Nugent, P., Ogando, R. L. C., Palmese, A., Pan, Y. -C., Paterno, M., Percival, W. J., Pereira, M. E. S., Pieres, A., Malagón, A. A. Plazas, Popovic, B., Porredon, A., Prat, J., Qu, H., Raveri, M., Rodríguez-Monroy, M., Romer, A. K., Roodman, A., Rose, B., Sako, M., Sanchez, E., Cid, D. Sanchez, Schubnell, M., Scolnic, D., Sevilla-Noarbe, I., Shah, P., Smith, J. Allyn., Smith, M., Soares-Santos, M., Suchyta, E., Sullivan, M., Suntzeff, N., Swanson, M. E. C., Sánchez, B. O., Tarle, G., Taylor, G., Thomas, D., To, C., Toy, M., Troxel, M. A., Tucker, B. E., Tucker, D. L., Uddin, S. A., Vincenzi, M., Walker, A. R., Weaverdyck, N., Wechsler, R. H., Weller, J., Wester, W., Wiseman, P., Yamamoto, M., Yuan, F., Zhang, B., and Zhang, Y.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological constraints from the sample of Type Ia supernovae (SN Ia) discovered during the full five years of the Dark Energy Survey (DES) Supernova Program. In contrast to most previous cosmological samples, in which SN are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being a SN Ia, we find 1635 DES SNe in the redshift range $0.10
0.5$ SNe compared to the previous leading compilation of Pantheon+, and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints we combine the DES supernova data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning $0.025 - Published
- 2024
12. SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos
- Author
-
Bocquet, S., Grandis, S., Bleem, L. E., Klein, M., Mohr, J. J., Schrabback, T., Abbott, T. M. C., Ade, P. A. R., Aguena, M., Alarcon, A., Allam, S., Allen, S. W., Alves, O., Amon, A., Anderson, A. J., Annis, J., Ansarinejad, B., Austermann, J. E., Avila, S., Bacon, D., Bayliss, M., Beall, J. A., Bechtol, K., Becker, M. R., Bender, A. N., Benson, B. A., Bernstein, G. M., Bhargava, S., Bianchini, F., Brodwin, M., Brooks, D., Bryant, L., Campos, A., Canning, R. E. A., Carlstrom, J. E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Chang, C. L., Chang, C., Chaubal, P., Chen, R., Chiang, H. C., Choi, A., Chou, T-L., Citron, R., Moran, C. Corbett, Cordero, J., Costanzi, M., Crawford, T. M., Crites, A. T., da Costa, L. N., Pereira, M. E. S., Davis, C., Davis, T. M., DeRose, J., Desai, S., de Haan, T., Diehl, H. T., Dobbs, M. A., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Elvin-Poole, J., Everett, S., Everett, W., Ferrero, I., Ferté, A., Flores, A. M., Frieman, J., Gallicchio, J., García-Bellido, J., Gatti, M., George, E. M., Giannini, G., Gladders, M. D., Gruen, D., Gruendl, R. A., Gupta, N., Gutierrez, G., Halverson, N. W., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Holder, G. P., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Hrubes, J. D., Huang, N., Hubmayr, J., Huff, E. M., Huterer, D., Irwin, K. D., James, D. J., Jarvis, M., Khullar, G., Kim, K., Knox, L., Kraft, R., Krause, E., Kuehn, K., Kuropatkin, N., Kéruzoré, F., Lahav, O., Lee, A. T., Leget, P. -F., Li, D., Lin, H., Lowitz, A., MacCrann, N., Mahler, G., Mantz, A., Marshall, J. L., McCullough, J., McDonald, M., McMahon, J. J., Mena-Fernández, J., Menanteau, F., Meyer, S. S., Miquel, R., Montgomery, J., Myles, J., Natoli, T., Navarro-Alsina, A., Nibarger, J. P., Noble, G. I., Novosad, V., Ogando, R. L. C., Omori, Y., Padin, S., Pandey, S., Paschos, P., Patil, S., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Prat, J., Pryke, C., Raveri, M., Reichardt, C. L., Roberson, J., Rollins, R. P., Romero, C., Roodman, A., Ruhl, J. E., Rykoff, E. S., Saliwanchik, B. R., Salvati, L., Sánchez, C., Sanchez, E., Cid, D. Sanchez, Saro, A., Schaffer, K. K., Secco, L. F., Sevilla-Noarbe, I., Sharon, K., Sheldon, E., Shin, T., Sievers, C., Smecher, G., Smith, M., Somboonpanyakul, T., Sommer, M., Stalder, B., Stark, A. A., Stephen, J., Strazzullo, V., Suchyta, E., Tarle, G., To, C., Troxel, M. A., Tucker, C., Tutusaus, I., Varga, T. N., Veach, T., Vieira, J. D., Vikhlinin, A., von der Linden, A., Wang, G., Weaverdyck, N., Weller, J., Whitehorn, N., Wu, W. L. K., Yanny, B., Yefremenko, V., Yin, B., Young, M., Zebrowski, J. A., Zhang, Y., Zohren, H., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel'dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d surveys, and comprises 1,005 confirmed clusters in the redshift range $0.25-1.78$ over a total sky area of 5,200 deg$^2$. We use DES Year 3 weak-lensing data for 688 clusters with redshifts $z<0.95$ and HST weak-lensing data for 39 clusters with $0.6
- Published
- 2024
13. Quantifying the Value of Information Transfer in Population-Based SHM
- Author
-
Hughes, A. J., Poole, J., Dervilis, N., Gardner, P., Worden, K., Zimmerman, Kristin B., Series Editor, Matarazzo, Thomas, editor, Hemez, François, editor, Tronci, Eleonora Maria, editor, and Downey, Austin, editor
- Published
- 2025
- Full Text
- View/download PDF
14. Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps I: validation on simulations
- Author
-
Gatti, M., Jeffrey, N., Whiteway, L., Williamson, J., Jain, B., Ajani, V., Anbajagane, D., Giannini, G., Zhou, C., Porredon, A., Prat, J., Yamamoto, M., Blazek, J., Kacprzak, T., Samuroff, S., Alarcon, A., Amon, A., Bechtol, K., Becker, M., Bernstein, G., Campos, A., Chang, C., Chen, R., Choi, A., Davis, C., Derose, J., Diehl, H. T., Dodelson, S., Doux, C., Eckert, K., Elvin-Poole, J., Everett, S., Ferte, A., Gruen, D., Gruendl, R., Harrison, I., Hartley, W. G., Herner, K., Huff, E. M., Jarvis, M., Kuropatkin, N., Leget, P. F., MacCrann, N., McCullough, J., Myles, J., Navarro-Alsina, A., Pandey, S., Raveri, M., Rollins, R. P., Roodman, A., Sanchez, C., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M., Tutusaus, I., Varga, T. N., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Aguena, M., Alves, O., Annis, J., Brooks, D., Carretero, J., Castander, F. J., Cawthon, R., da Costa, L. N., De Vicente, J., Desai, S., Ferrero, I., Flaugher, B., Friedel, D., Frieman, J., García-Bellido, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Lee, S., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Pereira, M. E. S., Pieres, A., Malagón, A. A. Plazas, Sanchez, E., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Weaverdyck, N., Weller, J., and Wiseman, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Beyond-two-point statistics contain additional information on cosmological as well as astrophysical and observational (systematics) parameters. In this methodology paper we provide an end-to-end simulation-based analysis of a set of Gaussian and non-Gaussian weak lensing statistics using detailed mock catalogues of the Dark Energy Survey. We implement: 1) second and third moments; 2) wavelet phase harmonics (WPH); 3) the scattering transform (ST). Our analysis is fully based on simulations, it spans a space of seven $\nu w$CDM cosmological parameters, and it forward models the most relevant sources of systematics of the data (masks, noise variations, clustering of the sources, intrinsic alignments, and shear and redshift calibration). We implement a neural network compression of the summary statistics, and we estimate the parameter posteriors using a likelihood-free-inference approach. We validate the pipeline extensively, and we find that WPH exhibits the strongest performance when combined with second moments, followed by ST. and then by third moments. The combination of all the different statistics further enhances constraints with respect to second moments, up to 25 per cent, 15 per cent, and 90 per cent for $S_8$, $\Omega_{\rm m}$, and the Figure-Of-Merit ${\rm FoM_{S_8,\Omega_{\rm m}}}$, respectively. We further find that non-Gaussian statistics improve constraints on $w$ and on the amplitude of intrinsic alignment with respect to second moments constraints. The methodological advances presented here are suitable for application to Stage IV surveys from Euclid, Rubin-LSST, and Roman with additional validation on mock catalogues for each survey. In a companion paper we present an application to DES Year 3 data., Comment: 25 pages, 18 figures. Comments welcome!
- Published
- 2023
15. SPT Clusters with DES and HST Weak Lensing. I. Cluster Lensing and Bayesian Population Modeling of Multi-Wavelength Cluster Datasets
- Author
-
Bocquet, S., Grandis, S., Bleem, L. E., Klein, M., Mohr, J. J., Aguena, M., Alarcon, A., Allam, S., Allen, S. W., Alves, O., Amon, A., Ansarinejad, B., Bacon, D., Bayliss, M., Bechtol, K., Becker, M. R., Benson, B. A., Bernstein, G. M., Brodwin, M., Brooks, D., Campos, A., Canning, R. E. A., Carlstrom, J. E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cawthon, R., Chang, C., Chen, R., Choi, A., Cordero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, C., de Haan, T., DeRose, J., Desai, S., Diehl, H. T., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Elvin-Poole, J., Everett, S., Ferrero, I., Ferté, A., Flores, A. M., Frieman, J., García-Bellido, J., Gatti, M., Giannini, G., Gladders, M. D., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Huang, N., Huff, E. M., James, D. J., Jarvis, M., Kéruzoré, F., Khullar, G., Kim, K., Kraft, R., Kuehn, K., Kuropatkin, N., Lee, S., Leget, P. -F., MacCrann, N., Mahler, G., Mantz, A., Marshall, J. L., McCullough, J., McDonald, M., Mena-Fernández, J., Miquel, R., Myles, J., Navarro-Alsina, A., Ogando, R. L. C., Palmese, A., Pandey, S., Pieres, A., Malagón, A. A. Plazas, Prat, J., Raveri, M., Reichardt, C. L., Roberson, J., Rollins, R. P., Romer, A. K., Romero, C., Roodman, A., Ross, A. J., Rykoff, E. S., Salvati, L., Sánchez, C., Sanchez, E., Cid, D. Sanchez, Saro, A., Schrabback, T., Schubnell, M., Secco, L. F., Sevilla-Noarbe, I., Sharon, K., Sheldon, E., Shin, T., Smith, M., Somboonpanyakul, T., Stalder, B., Stark, A. A., Strazzullo, V., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Troxel, M. A., Tutusaus, I., Varga, T. N., von der Linden, A., Weaverdyck, N., Weller, J., Wiseman, P., Yanny, B., Yin, B., Young, M., Zhang, Y., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a Bayesian population modeling method to analyze the abundance of galaxy clusters identified by the South Pole Telescope (SPT) with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). We discuss and validate the modeling choices with a particular focus on a robust, weak-lensing-based mass calibration using DES data. For the DES Year 3 data, we report a systematic uncertainty in weak-lensing mass calibration that increases from 1% at $z=0.25$ to 10% at $z=0.95$, to which we add 2% in quadrature to account for uncertainties in the impact of baryonic effects. We implement an analysis pipeline that joins the cluster abundance likelihood with a multi-observable likelihood for the Sunyaev-Zel'dovich effect, optical richness, and weak-lensing measurements for each individual cluster. We validate that our analysis pipeline can recover unbiased cosmological constraints by analyzing mocks that closely resemble the cluster sample extracted from the SPT-SZ, SPTpol ECS, and SPTpol 500d surveys and the DES Year 3 and HST-39 weak-lensing datasets. This work represents a crucial prerequisite for the subsequent cosmological analysis of the real dataset., Comment: Accepted for publication in Phys. Rev. D. arXiv v2 corresponds to published article
- Published
- 2023
16. Cosmological shocks around galaxy clusters: A coherent investigation with DES, SPT & ACT
- Author
-
Anbajagane, D., Chang, C., Baxter, E. J., Charney, S., Lokken, M., Aguena, M., Allam, S., Alves, O., Amon, A., An, R., Andrade-Oliveira, F., Bacon, D., Battaglia, N., Bechtol, K., Becker, M. R., Benson, B. A., Bernstein, G. M., Bleem, L., Bocquet, S., Bond, J. R., Brooks, D., Rosell, A. Carnero, Kind, M. Carrasco, Chen, R., Choi, A., Costanzi, M., Crawford, T. M., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Desai, S., Devlin, M. J., Diehl, H. T., Doel, P., Doux, C., Drlica-Wagner, A., Elvin-Poole, J., Ferrero, I., Ferte, A., Flaugher, B., Fosalba, P., Friedel, D., Frieman, J., Garcia-Bellido, J., Gatti, M., Giannini, G., Grandis, S., Gruen, D., Gruendl, R. A., Gutierrez, G., Harrison, I., Hill, J. C., Hilton, M., Hinton, S. R., Hollowood, D. L., Honscheid, K., Jain, B., James, D. J., Jarvis, M., Kuehn, K., Lin, M., MacCrann, N., Marshall, J. L., McCullough, J., McMahon, J. J., Mena-Fernandez, J., Menanteau, F., Miquel, R., Moodley, K., Mroczkowski, T., Myles, J., Naess, S., Navarro-Alsina, A., Ogando, R. L. C., Page, L. A., Palmese, A., Pandey, S., Patridge, B., Pieres, A., Malagon, A. A. Plazas, Porredon, A., Prat, J., Reichardt, C., Reil, K., Rodriguez-Monroy, M., Rollins, R. P., Romer, A. K., Rykoff, E. S., Sanchez, E., Sanchez, C., Cid, D. Sanchez, Schaan, E., Schubnell, M., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Sifon, C., Smith, M., Staggs, S. T., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Troxel, M. A., Tutusaus, I., Vavagiakis, E. M., Weaverdyck, N., Weller, J., Wiseman, P., Wollack, E. J., and Yanny, B.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogs from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev-Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around $10^5$ clusters with mass and redshift ranges $10^{13.7} < M_{\rm 200m}/M_\odot < 10^{15.5}$ and $0.1 < z < 2$, and the total sky coverage of the maps is $\approx 15,000 \,\,{\rm deg}^2$. We find a clear pressure deficit at $R/R_{\rm 200m}\approx 1.1$ in SZ profiles around both ACT and SPT clusters, estimated at $6\sigma$ significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2-5 compared to predictions, and we discuss possible interpretations of this behavior. An oriented stacking of clusters -- where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogs -- shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius., Comment: [v2]: Version accepted to MNRAS
- Published
- 2023
17. Cosmology from Cross-Correlation of ACT-DR4 CMB Lensing and DES-Y3 Cosmic Shear
- Author
-
Shaikh, S., Harrison, I., van Engelen, A., Marques, G. A., Abbott, T. M. C., Aguena, M., Alves, O., Amon, A., An, R., Bacon, D., Battaglia, N., Becker, M. R., Bernstein, G. M., Bertin, E., Blazek, J., Bond, J. R., Brooks, D., Burke, D. L., Calabrese, E., Rosell, A. Carnero, Carretero, J., Cawthon, R., Chang, C., Chen, R., Choi, A., Choi, S. K., da Costa, L. N., Pereira, M. E. S., Darwish, O., Davis, T. M., Desai, S., Devlin, M., Diehl, H. T., Doel, P., Doux, C., Elvin-Poole, J., Farren, G. S., Ferraro, S., Ferrero, I., Ferté, A., Flaugher, B., Frieman, J., Gatti, M., Giannini, G., Giardiello, S., Gruen, D., Gruendl, R. A., Gutierrez, G., Hill, J. C., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huffenberger, K. M., Huterer, D., James, D. J., Jarvis, M., Jeffrey, N., Jense, H. T., Knowles, K., Kim, J., Kramer, D., Lahav, O., Lee, S., Lima, M., MacCrann, N., Madhavacheril, M. S., Marshall, J. L., McCullough, J., Mehta, Y., Mena-Fernández, J., Miquel, R., Mohr, J. J., Moodley, K., Myles, J., Navarro-Alsina, A., Newburgh, L., Niemack, M. D., Omori, Y., Pandey, S., Partridge, B., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Prat, J., Qu, F. J., Robertson, N., Rollins, R. P., Roodman, A., Samuroff, S., Sánchez, C., Sanchez, E., Cid, D. Sanchez, Secco, L. F., Sehgal, N., Sheldon, E., Sherwin, B. D., Shin, T., Smith, C. Sifón M., Suchyta, E., Swanson, M. E. C., Tarle, G., Troxel, M. A., Tutusaus, I., Vargas, C., Weaverdyck, N., Wiseman, P., Yamamoto, M., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and $\textit{Planck}$ data, where most of the contamination due to the thermal Sunyaev Zel'dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio $= 7.1$ and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution ($S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} = 0.782\pm 0.059$) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6x2pt analysis between DES and ACT., Comment: 26 pages, 30 figures (including appendices). Data associated with this article is available at https://github.com/itrharrison/actdr4kappa-x-desy3gamma-data
- Published
- 2023
- Full Text
- View/download PDF
18. Beyond the 3rd moment: A practical study of using lensing convergence CDFs for cosmology with DES Y3
- Author
-
Anbajagane, D., Chang, C., Banerjee, A., Abel, T., Gatti, M., Ajani, V., Alarcon, A., Amon, A., Baxter, E. J., Bechtol, K., Becker, M. R., Bernstein, G. M., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Chen, R., Choi, A., Davis, C., DeRose, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Elvin-Poole, J., Everett, S., Fert'e, A., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Huff, E. M., Jain, B., Jarvis, M., Jeffrey, N., Kacprzak, T., Kokron, N., Kuropatkin, N., Leget, P. -F., MacCrann, N., McCullough, J., Myles, J., Navarro-Alsina, A., Pandey, S., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Rykoff, E. S., Sanchez, C., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Whiteway, L., Yanny, B., Yin, B., Zhang, Y., Abbott, T. M. C., Allam, S., Aguena, M., Alves, O., Andrade-Oliveira, F., Annis, J., Bacon, D., Blazek, J., Brooks, D., Cawthon, R., da Costa, L. N., Pereira, M. E. S., Davis, T. M., Desai, S., Doel, P., Ferrero, I., Frieman, J., Giannini, G., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Marshall, J. L., Mena-Fernandez, J., Menanteau, F., Miquel, R., Palmese, A., Pieres, A., Malag'on, A. A. Plazas, Reil, K., Sanchez, E., Smith, M., Swanson, M. E. C., Tarle, G., and Wiseman, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Widefield surveys of the sky probe many clustered scalar fields -- such as galaxy counts, lensing potential, gas pressure, etc. -- that are sensitive to different cosmological and astrophysical processes. Our ability to constrain such processes from these fields depends crucially on the statistics chosen to summarize the field. In this work, we explore the cumulative distribution function (CDF) at multiple scales as a summary of the galaxy lensing convergence field. Using a suite of N-body lightcone simulations, we show the CDFs' constraining power is modestly better than that of the 2nd and 3rd moments of the field, as they approximately capture the information from all moments of the field in a concise data vector. We then study the practical aspects of applying the CDFs to observational data, using the first three years of the Dark Energy Survey (DES Y3) data as an example, and compute the impact of different systematics on the CDFs. The contributions from the point spread function are 2-3 orders of magnitude below the cosmological signal, while those from reduced shear approximation contribute $\lesssim 1\%$ to the signal. Source clustering effects and baryon imprints contribute $1-10\%$. Enforcing scale cuts to limit systematics-driven biases in parameter constraints degrades these constraints a noticeable amount, and this degradation is similar for the CDFs and the moments. We also detect correlations between the observed convergence field and the shape noise field at $13\sigma$. We find that the non-Gaussian correlations in the noise field must be modeled accurately to use the CDFs, or other statistics sensitive to all moments, as a rigorous cosmology tool., Comment: 21 pages, 12 figures
- Published
- 2023
19. Detection of the significant impact of source clustering on higher-order statistics with DES Year 3 weak gravitational lensing data
- Author
-
Gatti, M., Jeffrey, N., Whiteway, L., Ajani, V., Kacprzak, T., Zürcher, D., Chang, C., Jain, B., Blazek, J., Krause, E., Alarcon, A., Amon, A., Bechtol, K., Becker, M., Bernstein, G., Campos, A., Chen, R., Choi, A., Davis, C., Derose, J., Diehl, H. T., Dodelson, S., Doux, C., Eckert, K., Elvin-Poole, J., Everett, S., Ferte, A., Gruen, D., Gruendl, R., Harrison, I., Hartley, W. G., Herner, K., Huff, E. M., Jarvis, M., Kuropatkin, N., Leget, P. F., MacCrann, N., McCullough, J., Myles, J., Navarro-Alsina, A., Pandey, S., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Sanchez, C., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M., Tutusaus, I., Varga, T. N., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Allam, S. S., Alves, O., Aguena, M., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Carretero, J., Cawthon, R., da Costa, L. N., Davis, T. M., De Vicente, J., Desai, S., Doel, P., García-Bellido, J., Giannini, G., Gutierrez, G., Ferrero, I., Frieman, J., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Marshall, J. L., Mena-Fernández, J., Miquel, R., Ogando, R. L. C., Palmese, A., Pereira, M. E. S., Malagón, A. A. Plazas, Rodriguez-Monroy, M., Samuroff, S., Sanchez, E., Schubnell, M., Smith, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Weaverdyck, N., and Wiseman, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We demonstrate and measure the impact of source galaxy clustering on higher-order summary statistics of weak gravitational lensing data. By comparing simulated data with galaxies that either trace or do not trace the underlying density field, we show this effect can exceed measurement uncertainties for common higher-order statistics for certain analysis choices. Source clustering effects are larger at small scales and for statistics applied to combinations of low and high redshift samples, and diminish at high redshift. We evaluate the impact on different weak lensing observables, finding that third moments and wavelet phase harmonics are more affected than peak count statistics. Using Dark Energy Survey Year 3 data we construct null tests for the source-clustering-free case, finding a $p$-value of $p=4\times10^{-3}$ (2.6 $\sigma$) using third-order map moments and $p=3\times10^{-11}$ (6.5 $\sigma$) using wavelet phase harmonics. The impact of source clustering on cosmological inference can be either be included in the model or minimized through \textit{ad-hoc} procedures (e.g. scale cuts). We verify that the procedures adopted in existing DES Y3 cosmological analyses (using map moments and peaks) were sufficient to render this effect negligible. Failing to account for source clustering can significantly impact cosmological inference from higher-order gravitational lensing statistics, e.g. higher-order N-point functions, wavelet-moment observables (including phase harmonics and scattering transforms), and deep learning or field level summary statistics of weak lensing maps. We provide recipes both to minimise the impact of source clustering and to incorporate source clustering effects into forward-modelled mock data., Comment: 5 pages, 2 figures, submitted to MNRAS Letters
- Published
- 2023
20. Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4
- Author
-
Marques, G. A., Madhavacheril, M. S., Darwish, O., Shaikh, S., Aguena, M., Alves, O., Avila, S., Bacon, D., Baxter, E. J., Bechtol, K., Becker, M. R., Bertin, E., Blazek, J., Bond, J. Richard, Brooks, D., Cai, H., Calabrese, E., Rosell, A. Carnero, Carretero, M. Carrasco Kind J., Cawthon, R., Crocce, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Doux, C., Drlica-Wagner, A., Dunkley, J., Elvin-Poole, J., Everett, S., Ferraro, Simone, Ferrero, I., Flaugher, B., Fosalba, P., García-Bellido, J., Gatti, M., Giannini, G., Gluscevic, V., Gruen, D., Gruendl, R. A., Gutierrez, G., Harrison, I., Hill, J. Colin, Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., Jeffrey, N., Kim, J., Kuehn, K., Lahav, O., Lemos, P., Lima, M., Huffenberger, K. M., MacCrann, N., Marshall, J. L., Mena-Fernández, J., Miquel, R., Mohr, J. J., Moodley, K., Muir, J., Naess, S., Nati, F., Page, L. A., Palmese, A., Malagón, A. A. Plazas, Porredon, A., Prat, J., Qu, F. J., Raveri, M., Ross, A. J., Rykoff, E. S., Farren, G. S., Samuroff, S., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Sherwin, B. D., Sifón, C., Smith, M., Spergel, D. N., Staggs, S. T., Suchyta, E., Tarle, G., To, C., Van Engelen, A., Weaverdyck, N., Weller, J., Wenzl, L., Wiseman, P., Wollack, E. J., and Yanny, B.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a measurement of the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over $\sim 436$ sq.deg. of the sky. Our galaxy sample, which covers $\sim 4143$ sq.deg., is divided into six redshift bins spanning the redshift range of $0.20
- Published
- 2023
21. The Dark Energy Survey Year 3 high-redshift sample: selection, characterization, and analysis of galaxy clustering
- Author
-
Sánchez, C, Alarcon, A, Bernstein, GM, Sanchez, J, Pandey, S, Raveri, M, Prat, J, Weaverdyck, N, Sevilla-Noarbe, I, Chang, C, Baxter, E, Omori, Y, Jain, B, Alves, O, Amon, A, Bechtol, K, Becker, MR, Blazek, J, Choi, A, Campos, A, Rosell, A Carnero, Kind, M Carrasco, Crocce, M, Cross, D, DeRose, J, Diehl, HT, Dodelson, S, Drlica-Wagner, A, Eckert, K, Eifler, TF, Elvin-Poole, J, Everett, S, Fang, X, Fosalba, P, Gruen, D, Gruendl, RA, Harrison, I, Hartley, WG, Huang, H, Huff, EM, Kuropatkin, N, MacCrann, N, McCullough, J, Myles, J, Krause, E, Porredon, A, Rodriguez-Monroy, M, Rykoff, ES, Secco, LF, Sheldon, E, Troxel, MA, Yanny, B, Yin, B, Zhang, Y, Zuntz, J, Abbott, TMC, Aguena, M, Allam, S, Andrade-Oliveira, F, Bertin, E, Bocquet, S, Brooks, D, Burke, DL, Carretero, J, Castander, FJ, Cawthon, R, Conselice, C, Costanzi, M, Pereira, MES, Desai, S, Doel, P, Doux, C, Ferrero, I, Flaugher, B, Frieman, J, García-Bellido, J, Gutierrez, G, Herner, K, Hinton, SR, Hollowood, DL, Honscheid, K, James, DJ, Kuehn, K, Marshall, JL, Mena-Fernández, J, Menanteau, F, Miquel, R, Ogando, RLC, Palmese, A, Paz-Chinchón, F, Pieres, A, Malagón, AA Plazas, Sanchez, E, Scarpine, V, Schubnell, M, Smith, M, Suchyta, E, Tarle, G, Thomas, D, and To, C
- Subjects
Astronomical Sciences ,Physical Sciences ,galaxies: high-redshift ,cosmological parameters ,large-scale structure of Universe ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
The fiducial cosmological analyses of imaging surveys like DES typically probe the Universe at redshifts z < 1. We present the selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around z ∼0.9, 1.2, and 1.5, which extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal to noise S/N ∼70 after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe
- Published
- 2023
22. DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys
- Author
-
Survey, Dark Energy, Collaboration, Kilo-Degree Survey, Abbott, T. M. C., Aguena, M., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Asgari, M., Avila, S., Bacon, D., Bechtol, K., Becker, M. R., Bernstein, G. M., Bertin, E., Bilicki, M., Blazek, J., Bocquet, S., Brooks, D., Burger, P., Burke, D. L., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, R., Choi, A., Conselice, C., Cordero, J., Crocce, M., da Costa, L. N., Pereira, M. E. da Silva, Dalal, R., Davis, C., de Jong, J. T. A., DeRose, J., Desai, S., Diehl, H. T., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Dvornik, A., Eckert, K., Eifler, T. F., Elvin-Poole, J., Everett, S., Fang, X., Ferrero, I., Ferté, A., Flaugher, B., Friedrich, O., Frieman, J., García-Bellido, J., Gatti, M., Giannini, G., Giblin, B., Gruen, D., Gruendl, R. A., Gutierrez, G., Harrison, I., Hartley, W. G., Herner, K., Heymans, C., Hildebrandt, H., Hinton, S. R., Hoekstra, H., Hollowood, D. L., Honscheid, K., Huang, H., Huff, E. M., Huterer, D., James, D. J., Jarvis, M., Jeffrey, N., Jeltema, T., Joachimi, B., Joudaki, S., Kannawadi, A., Krause, E., Kuehn, K., Kuijken, K., Kuropatkin, N., Lahav, O., Leget, P. -F., Lemos, P., Li, S. -S., Li, X., Liddle, A. R., Lima, M., Lin, C. -A, Lin, H., MacCrann, N., Mahony, C., Marshall, J. L., McCullough, J., Mena-Fernández, J., Menanteau, F., Miquel, R., Mohr, J. J., Muir, J., Myles, J., Napolitano, N., Navarro-Alsina, A., Ogando, R. L. C., Palmese, A., Pandey, S., Park, Y., Paterno, M., Peacock, J. A., Petravick, D., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Prat, J., Radovich, M., Raveri, M., Reischke, R., Robertson, N. C., Rollins, R. P., Romer, A. K., Roodman, A., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Schneider, P., Secco, L. F., Sevilla-Noarbe, I., Shan, H. -Y., Sheldon, E., Shin, T., Sifón, C., Smith, M., Soares-Santos, M., Stölzner, B., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Troxel, M. A., Tröster, T., Tutusaus, I., Busch, J. L. van den, Varga, T. N., Walker, A. R., Weaverdyck, N., Wechsler, R. H., Weller, J., Wiseman, P., Wright, A. H., Yanny, B., Yin, B., Yoon, M., Zhang, Y., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a joint cosmic shear analysis of the Dark Energy Survey (DES Y3) and the Kilo-Degree Survey (KiDS-1000) in a collaborative effort between the two survey teams. We find consistent cosmological parameter constraints between DES Y3 and KiDS-1000 which, when combined in a joint-survey analysis, constrain the parameter $S_8 = \sigma_8 \sqrt{\Omega_{\rm m}/0.3}$ with a mean value of $0.790^{+0.018}_{-0.014}$. The mean marginal is lower than the maximum a posteriori estimate, $S_8=0.801$, owing to skewness in the marginal distribution and projection effects in the multi-dimensional parameter space. Our results are consistent with $S_8$ constraints from observations of the cosmic microwave background by Planck, with agreement at the $1.7\sigma$ level. We use a Hybrid analysis pipeline, defined from a mock survey study quantifying the impact of the different analysis choices originally adopted by each survey team. We review intrinsic alignment models, baryon feedback mitigation strategies, priors, samplers and models of the non-linear matter power spectrum., Comment: 40 pages, 21 figures, 15 tables, accepted Open Journal of Astrophysics. Download the chains from https://des.ncsa.illinois.edu/releases/y3a2/Y3key-joint-des-kids or create your own chains with CosmoSIS using https://github.com/joezuntz/cosmosis-standard-library/blob/main/examples/des-y3_and_kids-1000.ini Watch the core team discuss this analysis at https://cosmologytalks.com/2023/05/26/des-kids
- Published
- 2023
- Full Text
- View/download PDF
23. The Kinematic Sunyaev-Zel'dovich Effect with ACT, DES, and BOSS: a Novel Hybrid Estimator
- Author
-
Mallaby-Kay, M., Amodeo, S., Hill, J. C., Aguena, M., Allam, S., Alves, O., Annis, J., Battaglia, N., Battistelli, E. S., Baxter, E. J., Bechtol, K., Becker, M. R., Bertin, E., Bond, J. R., Brooks, D., Calabrese, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Choi, A., Crocce, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Doux, C., Drlica-Wagner, A., Dunkley, J., Elvin-Poole, J., Everett, S., Ferraro, S., Ferrero, I., Frieman, J., Gallardo, P. A., García-Bellido, J., Giannini, G., Gruen, D., Gruendl, R. A., Gutierrez, G., Hinton, S. R., Hollowood, D. L., James, D. J., Kosowsky, A., Kuehn, K., Lokken, M., Louis, T., Marshall, J. L., McMahon, J., Mena-Fernández, J., Menanteau, F., Miquel, R., Moodley, K., Mroczkowski, T., Naess, S., Niemack, M. D., Ogando, R. L. C., Page, L., Pandey, S., Pieres, A., Malagón, A. A. Plazas, Raveri, M., Rodriguez-Monroy, M., Rykoff, E. S., Samuroff, S., Sanchez, E., Schaan, E., Sevilla-Noarbe, I., Sheldon, E., Sifón, C., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., To, C., Vargas, C., Vavagiakis, E. M., Weaverdyck, N., Weller, J., Wiseman, P., and Yanny, B.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The kinematic and thermal Sunyaev-Zel'dovich (kSZ and tSZ) effects probe the abundance and thermodynamics of ionized gas in galaxies and clusters. We present a new hybrid estimator to measure the kSZ effect by combining cosmic microwave background temperature anisotropy maps with photometric and spectroscopic optical survey data. The method interpolates a velocity reconstruction from a spectroscopic catalog at the positions of objects in a photometric catalog, which makes it possible to leverage the high number density of the photometric catalog and the precision of the spectroscopic survey. Combining this hybrid kSZ estimator with a measurement of the tSZ effect simultaneously constrains the density and temperature of free electrons in the photometrically selected galaxies. Using the 1000 deg2 of overlap between the Atacama Cosmology Telescope (ACT) Data Release 5, the first three years of data from the Dark Energy Survey (DES), and the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12, we detect the kSZ signal at 4.8${\sigma}$ and reject the null (no-kSZ) hypothesis at 5.1${\sigma}$. This corresponds to 2.0${\sigma}$ per 100,000 photometric objects with a velocity field based on a spectroscopic survey with 1/5th the density of the photometric catalog. For comparison, a recent ACT analysis using exclusively spectroscopic data from BOSS measured the kSZ signal at 2.1${\sigma}$ per 100,000 objects. Our derived constraints on the thermodynamic properties of the galaxy halos are consistent with previous measurements. With future surveys, such as the Dark Energy Spectroscopic Instrument and the Rubin Observatory Legacy Survey of Space and Time, we expect that this hybrid estimator could result in measurements with significantly better signal-to-noise than those that rely on spectroscopic data alone., Comment: 19 pages, 15 figures - matches published version
- Published
- 2023
- Full Text
- View/download PDF
24. Dark Energy Survey Year 3 results: magnification modelling and impact on cosmological constraints from galaxy clustering and galaxy–galaxy lensing
- Author
-
Elvin-Poole, J, MacCrann, N, Everett, S, Prat, J, Rykoff, ES, De Vicente, J, Yanny, B, Herner, K, Ferté, A, Di Valentino, E, Choi, A, Burke, DL, Sevilla-Noarbe, I, Alarcon, A, Alves, O, Amon, A, Andrade-Oliveira, F, Baxter, E, Bechtol, K, Becker, MR, Bernstein, GM, Blazek, J, Camacho, H, Campos, A, Rosell, A Carnero, Kind, M Carrasco, Cawthon, R, Chang, C, Chen, R, Cordero, J, Crocce, M, Davis, C, DeRose, J, Diehl, HT, Dodelson, S, Doux, C, Drlica-Wagner, A, Eckert, K, Eifler, TF, Elsner, F, Fang, X, Fosalba, P, Friedrich, O, Gatti, M, Giannini, G, Gruen, D, Gruendl, RA, Harrison, I, Hartley, WG, Huang, H, Huff, EM, Huterer, D, Krause, E, Kuropatkin, N, Leget, P-F, Lemos, P, Liddle, AR, McCullough, J, Muir, J, Myles, J, Navarro-Alsina, A, Pandey, S, Park, Y, Porredon, A, Raveri, M, Rodriguez-Monroy, M, Rollins, RP, Roodman, A, Rosenfeld, R, Ross, AJ, Sánchez, C, Sanchez, J, Secco, LF, Sheldon, E, Shin, T, Troxel, MA, Tutusaus, I, Varga, TN, Weaverdyck, N, Wechsler, RH, Yin, B, Zhang, Y, Zuntz, J, Aguena, M, Avila, S, Bacon, D, Bertin, E, Bocquet, S, Brooks, D, García-Bellido, J, Honscheid, K, Jarvis, M, Li, TS, Mena-Fernández, J, To, C, Wilkinson, RD, and Collaboration, DES
- Subjects
Astronomical Sciences ,Physical Sciences ,cosmology: observations ,cosmological parameters ,gravitational lensing: weak ,large-scale structure of Universe ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We study the effect of magnification in the Dark Energy Survey Year 3 analysis of galaxy clustering and galaxy-galaxy lensing, using two different lens samples: a sample of luminous red galaxies, redMaGiC, and a sample with a redshift-dependent magnitude limit, MagLim. We account for the effect of magnification on both the flux and size selection of galaxies, accounting for systematic effects using the Balrog image simulations. We estimate the impact of magnification on the galaxy clustering and galaxy-galaxy lensing cosmology analysis, finding it to be a significant systematic for the MagLim sample. We show cosmological constraints from the galaxy clustering autocorrelation and galaxy-galaxy lensing signal with different magnifications priors, finding broad consistency in cosmological parameters in ΛCDM and wCDM. However, when magnification bias amplitude is allowed to be free, we find the two-point correlation functions prefer a different amplitude to the fiducial input derived from the image simulations. We validate the magnification analysis by comparing the cross-clustering between lens bins with the prediction from the baseline analysis, which uses only the autocorrelation of the lens bins, indicating that systematics other than magnification may be the cause of the discrepancy. We show that adding the cross-clustering between lens redshift bins to the fit significantly improves the constraints on lens magnification parameters and allows uninformative priors to be used on magnification coefficients, without any loss of constraining power or prior volume concerns.
- Published
- 2023
25. The Dark Energy Survey Year 3 and eBOSS: constraining galaxy intrinsic alignments across luminosity and colour space
- Author
-
Samuroff, S., Mandelbaum, R., Blazek, J., Campos, A., MacCrann, N., Zacharegkas, G., Amon, A., Prat, J., Singh, S., Elvin-Poole, J., Ross, A. J., Alarcon, A., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chang, C., Chen, R., Choi, A., Crocce, M., Davis, C., DeRose, J., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Everett, S., Ferté, A., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Herner, K., Huff, E. M., Jarvis, M., Kuropatkin, N., Leget, P. -F., Lemos, P., McCullough, J., Myles, J., Navarro-Alsina, A., Pandey, S., Porredon, A., Raveri, M., Rodriguez-Monroy, M., Rollins, R. P., Roodman, A., Rossi, G., Rykoff, E. S., Sánchez, C., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Weaverdyck, N., Yanny, B., Yin, B., Zhang, Y., Aguena, J. Zuntz M., Alves, O., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Marshall, J. L., Melchior, P., Mena-Fernández, J., Menanteau, F., Miquel, R., Newman, J., Palmese, A., Pieres, A., Malagón, A. A. Plazas, Sanchez, E., Scarpine, V., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., and To, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present direct constraints on galaxy intrinsic alignments using the Dark Energy Survey Year 3 (DES Y3), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) and its precursor, the Baryon Oscillation Spectroscopic Survey (BOSS). Our measurements incorporate photometric red sequence (redMaGiC) galaxies from DES with median redshift $z\sim0.2-1.0$, luminous red galaxies (LRGs) from eBOSS at $z\sim0.8$, and also a SDSS-III BOSS CMASS sample at $z\sim0.5$. We measure two point intrinsic alignment correlations, which we fit using a model that includes lensing, magnification and photometric redshift error. Fitting on scales $6
- Published
- 2022
- Full Text
- View/download PDF
26. Non-local contribution from small scales in galaxy-galaxy lensing: Comparison of mitigation schemes
- Author
-
Prat, J., Zacharegkas, G., Park, Y., MacCrann, N., Switzer, E. R., Pandey, S., Chang, C., Blazek, J., Miquel, R., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Bechtol, K., Becker, M. R., Bernstein, G. M., Chen, R., Choi, A., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Cordero, J., Crocce, M., Davis, C., DeRose, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Fosalba, P., Friedrich, O., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Jarvis, M., Krause, E., Kuropatkin, N., Leget, P. -F., McCullough, J., Myles, J., Navarro-Alsina, A., Porredon, A., Raveri, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Sánchez, C., Sanchez, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Aguena, M., Allam, S., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Costanzi, M., Pereira, M. E. S., De Vicente, J., Desai, S., Ferrero, I., Flaugher, B., Gerdes, D. W., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Lima, M., Menanteau, F., Mena-Fernández, J., Palmese, A., Paterno, M., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Rodriguez-Monroy, M., Sanchez, E., Schubnell, M., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Weaverdyck, N., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3$\times$2pt, had to discard a lot of signal-to-noise from small scales due to our inability to accurately model non-linearities and baryonic effects. Galaxy-galaxy lensing, or the position-shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale $\theta$ or physical scale $R$ carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently there have been a few independent efforts that aim to mitigate the non-locality of the galaxy-galaxy lensing signal. Here we perform a comparison of the different methods, including the Y-transformation, the Point-Mass marginalization methodology and the Annular Differential Surface Density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy-galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like setup and also when applied to DES Y3 data. With the LSST Y1 setup, we find that the mitigation schemes yield $\sim$1.3 times more constraining $S_8$ results than applying larger scale cuts without using any mitigation scheme., Comment: 11+4 pages, 4+4 figures. Matches the accepted version in MNRAS
- Published
- 2022
- Full Text
- View/download PDF
27. Mapping gas around massive galaxies: cross-correlation of DES Y3 galaxies and Compton-y maps from SPT and Planck
- Author
-
Sánchez, J, Omori, Y, Chang, C, Bleem, LE, Crawford, T, Drlica-Wagner, A, Raghunathan, S, Zacharegkas, G, Abbott, TMC, Aguena, M, Alarcon, A, Allam, S, Alves, O, Amon, A, Avila, S, Baxter, E, Bechtol, K, Benson, BA, Bernstein, GM, Bertin, E, Bocquet, S, Brooks, D, Burke, DL, Campos, A, Carlstrom, JE, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, Castander, FJ, Cawthon, R, Chang, CL, Chen, A, Choi, A, Chown, R, Costanzi, M, Crites, AT, Crocce, M, da Costa, LN, Pereira, MES, de Haan, T, De Vicente, J, DeRose, J, Desai, S, Diehl, HT, Dobbs, MA, Dodelson, S, Doel, P, Elvin-Poole, J, Everett, W, Everett, S, Ferrero, I, Flaugher, B, Fosalba, P, Frieman, J, García-Bellido, J, Gatti, M, George, EM, Gerdes, DW, Giannini, G, Gruen, D, Gruendl, RA, Gschwend, J, Gutierrez, G, Halverson, NW, Hinton, SR, Holder, GP, Hollowood, DL, Holzapfel, WL, Honscheid, K, Hrubes, JD, James, DJ, Knox, L, Kuehn, K, Kuropatkin, N, Lahav, O, Lee, AT, Luong-Van, D, MacCrann, N, Marshall, JL, McCullough, J, McMahon, JJ, Melchior, P, Mena-Fernández, J, Menanteau, F, Miquel, R, Mocanu, L, Mohr, JJ, Muir, J, Myles, J, Natoli, T, Padin, S, Palmese, A, Pandey, S, Paz-Chinchón, F, Pieres, A, Malagón, AA Plazas, Porredon, A, Pryke, C, Raveri, M, and Reichardt, CL
- Subjects
Nuclear and Plasma Physics ,Physical Sciences ,galaxies: structure ,large-scale structure of Universe ,cosmology: observations ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We cross-correlate positions of galaxies measured in data from the first three years of the Dark Energy Survey with Compton-y maps generated using data from the South Pole Telescope (SPT) and the Planck mission. We model this cross-correlation measurement together with the galaxy autocorrelation to constrain the distribution of gas in the Universe. We measure the hydrostatic mass bias or, equivalently, the mean halo bias-weighted electron pressure (bh Pe), using large-scale information. We find (bh Pe) to be [0.16+−000403, 0.28+−000504, 0.45+−001006, 0.54+−000708, 0.61+−000608, 0.63+−000807] meV cm−3 at redshifts z ∼ [0.30, 0.46, 0.62, 0.77, 0.89, 0.97]. These values are consistent with previous work where measurements exist in the redshift range. We also constrain the mean gas profile using small-scale information, enabled by the high-resolution of the SPT data. We compare our measurements to different parametrized profiles based on the cosmo-OWLS hydrodynamical simulations. We find that our data are consistent with the simulation that assumes an AGN heating temperature of 108.5 K but are incompatible with the model that assumes an AGN heating temperature of 108.0 K. These comparisons indicate that the data prefer a higher value of electron pressure than the simulations within r500c of the galaxies’ haloes.
- Published
- 2023
28. Non-local contribution from small scales in galaxy–galaxy lensing: comparison of mitigation schemes
- Author
-
Prat, J, Zacharegkas, G, Park, Y, MacCrann, N, Switzer, ER, Pandey, S, Chang, C, Blazek, J, Miquel, R, Alarcon, A, Alves, O, Amon, A, Andrade-Oliveira, F, Bechtol, K, Becker, MR, Bernstein, GM, Chen, R, Choi, A, Camacho, H, Campos, A, Rosell, A Carnero, Kind, M Carrasco, Cawthon, R, Cordero, J, Crocce, M, Davis, C, DeRose, J, Diehl, HT, Dodelson, S, Doux, C, Drlica-Wagner, A, Eckert, K, Eifler, TF, Elvin-Poole, J, Everett, S, Fang, X, Ferté, A, Fosalba, P, Friedrich, O, Gatti, M, Giannini, G, Gruen, D, Gruendl, RA, Harrison, I, Hartley, WG, Herner, K, Huang, H, Huff, EM, Jarvis, M, Krause, E, Kuropatkin, N, Leget, P-F, McCullough, J, Myles, J, Navarro-Alsina, A, Porredon, A, Raveri, M, Rollins, RP, Roodman, A, Rosenfeld, R, Ross, AJ, Rykoff, ES, Sánchez, C, Sanchez, J, Secco, LF, Sevilla-Noarbe, I, Sheldon, E, Shin, T, Troxel, MA, Tutusaus, I, Varga, TN, Yanny, B, Yin, B, Zhang, Y, Zuntz, J, Aguena, M, Allam, S, Annis, J, Bacon, D, Bertin, E, Bocquet, S, Brooks, D, Burke, DL, Carretero, J, Costanzi, M, Pereira, MES, De Vicente, J, Desai, S, Ferrero, I, Flaugher, B, Gerdes, DW, Gutierrez, G, Hinton, SR, Hollowood, DL, Honscheid, K, James, DJ, Lima, M, Menanteau, F, Mena-Fernández, J, and Palmese, A
- Subjects
Astronomical Sciences ,Physical Sciences ,gravitational lensing: weak ,cosmological parameters ,large-scale structure of Universe ,cosmology: theory ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3 × 2pt, had to discard a lot of signal to noise from small scales due to our inability to accurately model non-linearities and baryonic effects. Galaxy–galaxy lensing, or the position–shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale θ or physical scale R carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently, there have been a few independent efforts that aim to mitigate the non-locality of the galaxy–galaxy lensing signal. Here, we perform a comparison of the different methods, including the Y-transformation, the point-mass marginalization methodology, and the annular differential surface density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy–galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like set-up and also when applied to DES Y3 data. With the LSST Y1 set-up, we find that the mitigation schemes yield ∼1.3 times more constraining S8 results than applying larger scale cuts without using any mitigation scheme.
- Published
- 2023
29. The Dark Energy Survey Year 3 high redshift sample: Selection, characterization and analysis of galaxy clustering
- Author
-
Sánchez, C., Alarcon, A., Bernstein, G. M., Sanchez, J., Pandey, S., Raveri, M., Prat, J., Weaverdyck, N., Sevilla-Noarbe, I., Chang, C., Baxter, E., Omori, Y., Jain, B., Alves, O., Amon, A., Bechtol, K., Becker, M. R., Blazek, J., Choi, A., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Crocce, M., Cross, D., DeRose, J., Diehl, H. T., Dodelson, S., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elvin-Poole, J., Everett, S., Fang, X., Fosalba, P., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Huang, H., Huff, E. M., Kuropatkin, N., MacCrann, N., McCullough, J., Myles, J., Krause, E., Porredon, A., Rodriguez-Monroy, M., Rykoff, E. S., Secco, L. F., Sheldon, E., Troxel, M. A., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Andrade-Oliveira, F., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Castander, F. J., Cawthon, R., Conselice, C., Costanzi, M., Pereira, M. E. S., Desai, S., Doel, P., Doux, C., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gutierrez, G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Sanchez, E., Scarpine, V., Schubnell, M., Smith, M., Suchyta, E., Tarle, G., Thomas, D., and To, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The fiducial cosmological analyses of imaging galaxy surveys like the Dark Energy Survey (DES) typically probe the Universe at redshifts $z < 1$. This is mainly because of the limited depth of these surveys, and also because such analyses rely heavily on galaxy lensing, which is more efficient at low redshifts. In this work we present the selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around $z \sim 0.9$, $1.2$ and $1.5$, which significantly extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal-to-noise $S/N \sim 70$ after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe $\Omega_m$ and the Hubble parameter $h$, $\Omega_m h = 0.195^{+0.023}_{-0.018}$, and 2-3% measurements of the amplitude of the galaxy clustering signals, probing galaxy bias and the amplitude of matter fluctuations, $b \sigma_8$. A companion paper $\textit{(in preparation)}$ will present the cross-correlations of these high-$z$ samples with CMB lensing from Planck and SPT, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work., Comment: 28 pages, 25 figures. To be submitted to MNRAS. Comments welcome
- Published
- 2022
30. Mapping gas around massive galaxies: cross-correlation of DES Y3 galaxies and Compton-$y$-maps from SPT and Planck
- Author
-
Sánchez, J., Omori, Y., Chang, C., Bleem, L. E., Crawford, T., Drlica-Wagner, A., Raghunathan, S., Zacharegkas, G., Abbott, T. M. C., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., Avila, S., Baxter, E., Bechtol, K., Benson, B. A., Bernstein, G. M., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Campos, A., Carlstrom, J. E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Chang, C. L., Chen, A., Choi, A., Chown, R., Costanzi, M., Crites, A. T., Crocce, M., da Costa, L. N., Pereira, M. E. S., de Haan, T., De Vicente, J., DeRose, J., Desai, S., Diehl, H. T., Dobbs, M. A., Dodelson, S., Doel, P., Elvin-Poole, J., Everett, W., Everett, S., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gatti, M., George, E. M., Gerdes, D. W., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Halverson, N. W., Hinton, S. R., Holder, G. P., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Hrubes, J. D., James, D. J., Knox, L., Kuehn, K., Kuropatkin, N., Lahav, O., Lee, A. T., Luong-Van, D., MacCrann, N., Marshall, J. L., McCullough, J., McMahon, J. J., Melchior, P., Mena-Fernández, J., Menanteau, F., Miquel, R., Mocanu, L., Mohr, J. J., Muir, J., Myles, J., Natoli, T., Padin, S., Palmese, A., Pandey, S., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Pryke, C., Raveri, M., Reichardt, C. L., Rodriguez-Monroy, M., Ross, A. J., Ruhl, J. E., Rykoff, E., Sánchez, C., Sanchez, E., Scarpine, V., Schaffer, K. K., Sevilla-Noarbe, I., Sheldon, E., Shirokoff, E., Smith, M., Soares-Santos, M., Staniszewski, Z., Stark, A. A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Troxel, M. A., Tucker, D. L., Vieira, J. D., Vincenzi, M., Weaverdyck, N., Williamson, R., Yanny, B., and Yin, B.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We cross-correlate positions of galaxies measured in data from the first three years of the Dark Energy Survey with Compton-$y$-maps generated using data from the South Pole Telescope (SPT) and the {\it Planck} mission. We model this cross-correlation measurement together with the galaxy auto-correlation to constrain the distribution of gas in the Universe. We measure the hydrostatic mass bias or, equivalently, the mean halo bias-weighted electron pressure $\langle b_{h}P_{e}\rangle$, using large-scale information. We find $\langle b_{h}P_{e}\rangle$ to be $[0.16^{+0.03}_{-0.04},0.28^{+0.04}_{-0.05},0.45^{+0.06}_{-0.10},0.54^{+0.08}_{-0.07},0.61^{+0.08}_{-0.06},0.63^{+0.07}_{-0.08}]$ meV cm$^{-3}$ at redshifts $z \sim [0.30, 0.46, 0.62,0.77, 0.89, 0.97]$. These values are consistent with previous work where measurements exist in the redshift range. We also constrain the mean gas profile using small-scale information, enabled by the high-resolution of the SPT data. We compare our measurements to different parametrized profiles based on the cosmo-OWLS hydrodynamical simulations. We find that our data are consistent with the simulation that assumes an AGN heating temperature of $10^{8.5}$K but are incompatible with the model that assumes an AGN heating temperature of $10^{8.0}$K. These comparisons indicate that the data prefer a higher value of electron pressure than the simulations within $r_{500c}$ of the galaxies' halos., Comment: 20 pages, 9 figures. Submitted to MNRAS
- Published
- 2022
- Full Text
- View/download PDF
31. Dark Energy Survey Year 3 Results: Measurement of the Baryon Acoustic Oscillations with Three-dimensional Clustering
- Author
-
Chan, K. C., Avila, S., Rosell, A. Carnero, Ferrero, I., Elvin-Poole, J., Sanchez, E., Camacho, H., Porredon, A., Crocce, M., Abbott, T. M. C., Aguena, M., Allam, S., Andrade-Oliveira, F., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Conselice, C., Costanzi, M., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Gruen, D., Gruendl, R. A., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Kuehn, K., Lahav, O., Lidman, C., Lima, M., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Palmese, A., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Raveri, M., Rodriguez-Monroy, M., Roodman, A., Ross, A. J., Scarpine, V., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D. L., Vincenzi, M., and Weaverdyck, N.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The three-dimensional correlation function offers an effective way to summarize the correlation of the large-scale structure even for imaging galaxy surveys. We have applied the projected three-dimensional correlation function, $\xi_{\rm p}$ to measure the Baryonic Acoustic Oscillations (BAO) scale on the first-three years Dark Energy Survey data. The sample consists of about 7 million galaxies in the redshift range $ 0.6 < z_{\rm p } < 1.1 $ over a footprint of $4108 \, \mathrm{deg}^2 $. Our theory modeling includes the impact of realistic true redshift distributions beyond Gaussian photo-$z$ approximation. To increase the signal-to-noise of the measurements, a Gaussian stacking window function is adopted in place of the commonly used top-hat. Using the full sample, $ D_{\rm M}(z_{\rm eff} ) / r_{\rm s} $, the ratio between the comoving angular diameter distance and the sound horizon, is constrained to be $ 19.00 \pm 0.67 $ (top-hat) and $ 19.15 \pm 0.58 $ (Gaussian) at $z_{\rm eff} = 0.835$. The constraint is weaker than the angular correlation $w$ constraint ($18.84 \pm 0.50$) because the BAO signals are heterogeneous across redshift. When a homogeneous BAO-signal sub-sample in the range $ 0.7 < z_{\rm p } < 1.0 $ ($z_{\rm eff} = 0.845$) is considered, $\xi_{\rm p} $ yields $ 19.80 \pm 0.67 $ (top-hat) and $ 19.84 \pm 0.53 $ (Gaussian). The latter is mildly stronger than the $w$ constraint ($19.86 \pm 0.55 $). We find that the $\xi_{\rm p} $ results are more sensitive to photo-$z$ errors than $w$ because $\xi_{\rm p}$ keeps the three-dimensional clustering information causing it to be more prone to photo-$z$ noise. The Gaussian window gives more robust results than the top-hat as the former is designed to suppress the low signal modes. $\xi_{\rm p}$ and the angular statistics such as $w$ have their own pros and cons, and they serve an important crosscheck with each other., Comment: 20 pages, 12 figures, minor changes to match published version
- Published
- 2022
- Full Text
- View/download PDF
32. Dark Energy Survey Year 3 results: Magnification modeling and impact on cosmological constraints from galaxy clustering and galaxy-galaxy lensing
- Author
-
Elvin-Poole, J., MacCrann, N., Everett, S., Prat, J., Rykoff, E. S., De Vicente, J., Yanny, B., Herner, K., Ferté, A., Di Valentino, E., Choi, A., Burke, D. L., Sevilla-Noarbe, I., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chang, C., Chen, R., Cordero, J., Crocce, M., Davis, C., DeRose, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Fang, X., Fosalba, P., Friedrich, O., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Huang, H., Huff, E. M., Huterer, D., Krause, E., Kuropatkin, N., Leget, P. -F., Lemos, P., Liddle, A. R., McCullough, J., Muir, J., Myles, J., Navarro-Alsina, A., Pandey, S., Park, Y., Porredon, A., Raveri, M., Rodriguez-Monroy, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Sánchez, C., Sanchez, J., Secco, L. F., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Weaverdyck, N., Wechsler, R. H., Yin, B., Zhang, Y., Zuntz, J., Aguena, M., Avila, S., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., García-Bellido, J., Honscheid, K., Jarvis, M., Li, T. S., Mena-Fernández, J., To, C., and Wilkinson, R. D.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the effect of magnification in the Dark Energy Survey Year 3 analysis of galaxy clustering and galaxy-galaxy lensing, using two different lens samples: a sample of Luminous red galaxies, redMaGiC, and a sample with a redshift-dependent magnitude limit, MagLim. We account for the effect of magnification on both the flux and size selection of galaxies, accounting for systematic effects using the Balrog image simulations. We estimate the impact of magnification on the galaxy clustering and galaxy-galaxy lensing cosmology analysis, finding it to be a significant systematic for the MagLim sample. We show cosmological constraints from the galaxy clustering auto-correlation and galaxy-galaxy lensing signal with different magnifications priors, finding broad consistency in cosmological parameters in $\Lambda$CDM and $w$CDM. However, when magnification bias amplitude is allowed to be free, we find the two-point correlations functions prefer a different amplitude to the fiducial input derived from the image simulations. We validate the magnification analysis by comparing the cross-clustering between lens bins with the prediction from the baseline analysis, which uses only the auto-correlation of the lens bins, indicating systematics other than magnification may be the cause of the discrepancy. We show adding the cross-clustering between lens redshift bins to the fit significantly improves the constraints on lens magnification parameters and allows uninformative priors to be used on magnification coefficients, without any loss of constraining power or prior volume concerns., Comment: Version accepted for publication in MNRAS. 21 pages, 13 figures, See this https://www.darkenergysurvey.org/des-year-3-cosmology-results-papers/ URL for the full DES Y3 cosmology release
- Published
- 2022
- Full Text
- View/download PDF
33. Dark Energy Survey Year 3 Results: Redshift Calibration of the MagLim Lens Sample from the combination of SOMPZ and clustering and its impact on Cosmology
- Author
-
Giannini, G., Alarcon, A., Gatti, M., Porredon, A., Crocce, M., Bernstein, G. M., Cawthon, R., Sánchez, C., Doux, C., Elvin-Poole, J., Raveri, M., Myles, J., Amon, A., Allam, S., Alves, O., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Blazek, J., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Choi, A., Cordero, J., De Vicente, J., DeRose, J., Diehl, H. T., Dodelson, S., Drlica-Wagner, A., Eckert, K., Everett, S., Fang, X., Farahi, A., Fosalba, P., Friedrich, O., Gruen, D., Gruendl, R. A., Gschwend, J., Harrison, I., Hartley, W. G., Huff, E. M., Jarvis, M., Krause, E., Kuropatkin, N., Lemos, P., MacCrann, N., McCullough, J., Muir, J., Pandey, S., Prat, J., Rodriguez-Monroy, M., Ross, A. J., Rykoff, E. S., Samuroff, S., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Troxel, M. A., Tucker, D. L., Weaverdyck, N., Yanny, B., Yin, B., Zhang, Y., Abbott, T. M. C., Aguena, M., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Desai, S., Doel, P., Ferrero, I., Flaugher, B., Friedel, D., Frieman, J., García-Bellido, J., Gerdes, D. W., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kent, S., Kuehn, K., Lahav, O., Lidman, C., Lima, M., Melchior, P., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Paterno, M., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Roodman, A., Sanchez, E., Scarpine, V., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., and Vincenzi, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present an alternative calibration of the MagLim lens sample redshift distributions from the Dark Energy Survey (DES) first three years of data (Y3). The new calibration is based on a combination of a Self-Organising Maps based scheme and clustering redshifts to estimate redshift distributions and inherent uncertainties, which is expected to be more accurate than the original DES Y3 redshift calibration of the lens sample. We describe in detail the methodology, we validate it on simulations and discuss the main effects dominating our error budget. The new calibration is in fair agreement with the fiducial DES Y3 redshift distributions calibration, with only mild differences ($<3\sigma$) in the means and widths of the distributions. We study the impact of this new calibration on cosmological constraints, analysing DES Y3 galaxy clustering and galaxy-galaxy lensing measurements, assuming a $\Lambda$CDM cosmology. We obtain $\Omega_{\rm m} = 0.30\pm 0.04$, $\sigma_8 = 0.81\pm 0.07 $ and $S_8 = 0.81\pm 0.04$, which implies a $\sim 0.4\sigma$ shift in the $\Omega_{\rm}-S_8$ plane compared to the fiducial DES Y3 results, highlighting the importance of the redshift calibration of the lens sample in multi-probe cosmological analyses.
- Published
- 2022
- Full Text
- View/download PDF
34. Dark Energy Survey Year 3 Results: Constraints on extensions to $\Lambda$CDM with weak lensing and galaxy clustering
- Author
-
DES Collaboration, Abbott, T. M. C., Aguena, M., Alarcon, A., Alves, O., Amon, A., Annis, J., Avila, S., Bacon, D., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Birrer, S., Blazek, J., Bocquet, S., Brandao-Souza, A., Bridle, S. L., Brooks, D., Burke, D. L., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, A., Chen, R., Choi, A., Conselice, C., Cordero, J., Costanzi, M., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, C., Davis, T. M., DeRose, J., Desai, S., Di Valentino, E., Diehl, H. T., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Farahi, A., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., Friedel, D., Friedrich, O., Frieman, J., García-Bellido, J., Gatti, M., Giani, L., Giannantonio, T., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hamaus, N., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huang, H., Huff, E. M., Huterer, D., Jain, B., James, D. J., Jarvis, M., Jeffrey, N., Jeltema, T., Kovacs, A., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Lee, S., Leget, P. -F., Lemos, P., Leonard, C. D., Liddle, A. R., Lima, M., Lin, H., MacCrann, N., Marshall, J. L., McCullough, J., Mena-Fernández, J., Menanteau, F., Miquel, R., Miranda, V., Mohr, J. J., Muir, J., Myles, J., Nadathur, S., Navarro-Alsina, A., Nichol, R. C., Ogando, R. L. C., Omori, Y., Palmese, A., Pandey, S., Park, Y., Paterno, M., Paz-Chinchón, F., Percival, W. J., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Prat, J., Raveri, M., Rodriguez-Monroy, M., Rogozenski, P., Rollins, R. P., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Cid, D. Sanchez, Scarpine, V., Scolnic, D., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Smith, M., Soares-Santos, M., Suchyta, E., Tabbutt, M., Tarle, G., Thomas, D., To, C., Troja, A., Troxel, M. A., Tutusaus, I., Varga, T. N., Vincenzi, M., Walker, A. R., Weaverdyck, N., Wechsler, R. H., Weller, J., Yanny, B., Yin, B., Zhang, Y., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We constrain extensions to the $\Lambda$CDM model using measurements from the Dark Energy Survey's first three years of observations and external data. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data and blind analyses of real data to validate the robustness of our results. In many cases, constraining power is limited by the absence of nonlinear predictions that are reliable at our required precision. The models are: dark energy with a time-dependent equation of state, non-zero spatial curvature, sterile neutrinos, modifications of gravitational physics, and a binned $\sigma_8(z)$ model which serves as a probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find $(w_{\rm p}, w_a)= (-0.99^{+0.28}_{-0.17},-0.9\pm 1.2)$ at 68% confidence with $z_{\rm p}=0.24$ from the DES measurements alone, and $(w_{\rm p}, w_a)= (-1.03^{+0.04}_{-0.03},-0.4^{+0.4}_{-0.3})$ with $z_{\rm p}=0.21$ for the combination of all data considered. Curvature constraints of $\Omega_k=0.0009\pm 0.0017$ and effective relativistic species $N_{\rm eff}=3.10^{+0.15}_{-0.16}$ are dominated by external data. For massive sterile neutrinos, we improve the upper bound on the mass $m_{\rm eff}$ by a factor of three compared to previous analyses, giving 95% limits of $(\Delta N_{\rm eff},m_{\rm eff})\leq (0.28, 0.20\, {\rm eV})$. We also constrain changes to the lensing and Poisson equations controlled by functions $\Sigma(k,z) = \Sigma_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$ and $\mu(k,z)=\mu_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$ respectively to $\Sigma_0=0.6^{+0.4}_{-0.5}$ from DES alone and $(\Sigma_0,\mu_0)=(0.04\pm 0.05,0.08^{+0.21}_{-0.19})$ for the combination of all data. Overall, we find no significant evidence for physics beyond $\Lambda$CDM., Comment: Updated to match published version and fix a citation reference. 46 pages, 25 figures, data available at https://dev.des.ncsa.illinois.edu/releases/y3a2/Y3key-extensions
- Published
- 2022
- Full Text
- View/download PDF
35. Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck III: Combined cosmological constraints
- Author
-
Abbott, T. M. C., Aguena, M., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Annis, J., Ansarinejad, B., Avila, S., Bacon, D., Baxter, E. J., Bechtol, K., Becker, M. R., Benson, B. A., Bernstein, G. M., Bertin, E., Blazek, J., Bleem, L. E., Bocquet, S., Brooks, D., Buckley-Geer, E., Burke, D. L., Camacho, H., Campos, A., Carlstrom, J. E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cawthon, R., Chang, C., Chang, C. L., Chen, R., Choi, A., Chown, R., Conselice, C., Cordero, J., Costanzi, M., Crawford, T., Crites, A. T., Crocce, M., da Costa, L. N., Davis, C., Davis, T. M., de Haan, T., De Vicente, J., DeRose, J., Desai, S., Diehl, H. T., Dobbs, M. A., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Everett, W., Fang, X., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., Friedrich, O., Frieman, J., García-Bellido, J., Gatti, M., George, E. M., Giannantonio, T., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Halverson, N. W., Harrison, I., Herner, K., Hinton, S. R., Holder, G. P., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Hrubes, J. D., Huang, H., Huff, E. M., Huterer, D., Jain, B., James, D. J., Jarvis, M., Jeltema, T., Kent, S., Knox, L., Kovacs, A., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Lee, A. T., Leget, P. -F., Lemos, P., Liddle, A. R., Lidman, C., Luong-Van, D., McMahon, J. J., MacCrann, N., March, M., Marshall, J. L., Martini, P., McCullough, J., Melchior, P., Menanteau, F., Meyer, S. S., Miquel, R., Mocanu, L., Mohr, J. J., Morgan, R., Muir, J., Myles, J., Natoli, T., Navarro-Alsina, A., Nichol, R. C., Omori, Y., Padin, S., Pandey, S., Park, Y., Paz-Chinchón, F., Pereira, M. E. S., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Prat, J., Pryke, C., Raveri, M., Reichardt, C. L., Rollins, R. P., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Ruhl, J. E., Rykoff, E. S., Sánchez, C., Sanchez, E., Sanchez, J., Schaffer, K. K., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Shirokoff, E., Smith, M., Staniszewski, Z., Stark, A. A., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Troxel, M. A., Tutusaus, I., Varga, T. N., Vieira, J. D., Weaverdyck, N., Wechsler, R. H., Weller, J., Williamson, R., Wu, W. L. K., Yanny, B., Yin, B., Zhang, Y., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological constraints from the analysis of two-point correlation functions between galaxy positions and galaxy lensing measured in Dark Energy Survey (DES) Year 3 data and measurements of cosmic microwave background (CMB) lensing from the South Pole Telescope (SPT) and Planck. When jointly analyzing the DES-only two-point functions and the DES cross-correlations with SPT+Planck CMB lensing, we find $\Omega_{\rm m} = 0.344\pm 0.030$ and $S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} = 0.773\pm 0.016$, assuming $\Lambda$CDM. When additionally combining with measurements of the CMB lensing autospectrum, we find $\Omega_{\rm m} = 0.306^{+0.018}_{-0.021}$ and $S_8 = 0.792\pm 0.012$. The high signal-to-noise of the CMB lensing cross-correlations enables several powerful consistency tests of these results, including comparisons with constraints derived from cross-correlations only, and comparisons designed to test the robustness of the galaxy lensing and clustering measurements from DES. Applying these tests to our measurements, we find no evidence of significant biases in the baseline cosmological constraints from the DES-only analyses or from the joint analyses with CMB lensing cross-correlations. However, the CMB lensing cross-correlations suggest possible problems with the correlation function measurements using alternative lens galaxy samples, in particular the redMaGiC galaxies and high-redshift MagLim galaxies, consistent with the findings of previous studies. We use the CMB lensing cross-correlations to identify directions for further investigating these problems., Comment: 20 pages, 15 figures
- Published
- 2022
- Full Text
- View/download PDF
36. Constraining the Baryonic Feedback with Cosmic Shear Using the DES Year-3 Small-Scale Measurements
- Author
-
Chen, A., Aricò, G., Huterer, D., Angulo, R., Weaverdyck, N., Friedrich, O., Secco, L. F., Hernández-Monteagudo, C., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Brandao-Souza, A., Bridle, S. L., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chang, C., Chen, R., Chintalapati, P., Choi, A., Cordero, J., Crocce, M., Pereira, M. E. S., Davis, C., DeRose, J., Di Valentino, E., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Fosalba, P., Gatti, M., Gaztanaga, E., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Hoffmann, K., Huang, H., Huff, E. M., Jain, B., Jarvis, M., Jeffrey, N., Kacprzak, T., Krause, E., Kuropatkin, N., Leget, P. -F., Lemos, P., Liddle, A. R., MacCrann, N., McCullough, J., Muir, J., Myles, J., Navarro-Alsina, A., Omori, Y., Pandey, S., Park, Y., Porredon, A., Prat, J., Raveri, M., Refregier, A., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, J., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troja, A., Troxel, M. A., Tutusaus, I., Varga, T. N., Wechsler, R. H., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Aguena, M., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Conselice, C., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Paz-Chinchón, F., Pieres, A., Sanchez, E., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., and To, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We use the small scales of the Dark Energy Survey (DES) Year-3 cosmic shear measurements, which are excluded from the DES Year-3 cosmological analysis, to constrain the baryonic feedback. To model the baryonic feedback, we adopt a baryonic correction model and use the numerical package \texttt{Baccoemu} to accelerate the evaluation of the baryonic nonlinear matter power spectrum. We design our analysis pipeline to focus on the constraints of the baryonic suppression effects, utilizing the implication given by a principal component analysis on the Fisher forecasts. Our constraint on the baryonic effects can then be used to better model and ameliorate the effects of baryons in producing cosmological constraints from the next generation large-scale structure surveys. We detect the baryonic suppression on the cosmic shear measurements with a $\sim 2 \sigma$ significance. The characteristic halo mass for which half of the gas is ejected by baryonic feedback is constrained to be $M_c > 10^{13.2} h^{-1} M_{\odot}$ (95\% C.L.). The best-fit baryonic suppression is $\sim 5\%$ at $k=1.0 {\rm Mpc}\ h^{-1}$ and $\sim 15\%$ at $k=5.0 {\rm Mpc} \ h^{-1}$. Our findings are robust with respect to the assumptions about the cosmological parameters, specifics of the baryonic model, and intrinsic alignments., Comment: 20 pages, 10 figures. DES Collaboration, Year-3 analysis
- Published
- 2022
- Full Text
- View/download PDF
37. Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck II: Cross-correlation measurements and cosmological constraints
- Author
-
Chang, C., Omori, Y., Baxter, E. J., Doux, C., Choi, A., Pandey, S., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Bechtol, K., Becker, M. R., Bernstein, G. M., Bianchini, F., Blazek, J., Bleem, L. E., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chen, R., Cordero, J., Crawford, T. M., Crocce, M., Davis, C., DeRose, J., Dodelson, S., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Fosalba, P., Friedrich, O., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Herner, K., Huang, H., Huff, E. M., Huterer, D., Jarvis, M., Kovacs, A., Krause, E., Kuropatkin, N., Leget, P. -F., Lemos, P., Liddle, A. R., MacCrann, N., McCullough, J., Muir, J., Myles, J., Navarro-Alsina, A., Park, Y., Porredon, A., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Sánchez, C., Sanchez, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Weaverdyck, N., Wechsler, R. H., Wu, W. L. K., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Bacon, D., Benson, B. A., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carlstrom, J. E., Carretero, J., Chang, C. L., Chown, R., Costanzi, M., da Costa, L. N., Crites, A. T., Pereira, M. E. S., de Haan, T., De Vicente, J., Desai, S., Diehl, H. T., Dobbs, M. A., Doel, P., Everett, W., Ferrero, I., Flaugher, B., Friedel, D., Frieman, J., García-Bellido, J., Gaztanaga, E., George, E. M., Giannantonio, T., Halverson, N. W., Hinton, S. R., Holder, G. P., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Hrubes, J. D., James, D. J., Knox, L., Kuehn, K., Lahav, O., Lee, A. T., Lima, M., Luong-Van, D., March, M., McMahon, J. J., Melchior, P., Menanteau, F., Meyer, S. S., Miquel, R., Mocanu, L., Mohr, J. J., Morgan, R., Natoli, T., Padin, S., Palmese, A., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Pryke, C., Reichardt, C. L., Rodríguez-Monroy, M., Romer, A. K., Ruhl, J. E., Sanchez, E., Schaffer, K. K., Schubnell, M., Serrano, S., Shirokoff, E., Smith, M., Staniszewski, Z., Stark, A. A., Suchyta, E., Tarle, G., Thomas, D., To, C., Vieira, J. D., Weller, J., and Williamson, R.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the 2500 deg$^2$ SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel'dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of $\Omega_{m} = 0.272^{+0.032}_{-0.052}$ and $S_{8} \equiv \sigma_8 \sqrt{\Omega_{m}/0.3}= 0.736^{+0.032}_{-0.028}$ ($\Omega_{m} = 0.245^{+0.026}_{-0.044}$ and $S_{8} = 0.734^{+0.035}_{-0.028}$) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find $\Omega_{m} = 0.270^{+0.043}_{-0.061}$ and $S_{8} = 0.740^{+0.034}_{-0.029}$. Our constraints on $S_8$ are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck., Comment: 25 pages, 19 figures, submitted to PRD
- Published
- 2022
- Full Text
- View/download PDF
38. Joint analysis of DES Year 3 data and CMB lensing from SPT and Planck I: Construction of CMB Lensing Maps and Modeling Choices
- Author
-
Omori, Y., Baxter, E. J., Chang, C., Friedrich, O., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Bleem, L. E., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chen, R., Choi, A., Cordero, J., Crawford, T. M., Crocce, M., Davis, C., DeRose, J., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Fosalba, P., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Herner, K., Huang, H., Huff, E. M., Huterer, D., Jarvis, M., Krause, E., Kuropatkin, N., Leget, P. -F., Lemos, P., Liddle, A. R., MacCrann, N., McCullough, J., Muir, J., Myles, J., Navarro-Alsina, A., Pandey, S., Park, Y., Porredon, A., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Sánchez, C., Sanchez, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Weaverdyck, N., Wechsler, R. H., Wu, W. L. K., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Bacon, D., Benson, B. A., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carlstrom, J. E., Carretero, J., Chang, C. L., Chown, R., Costanzi, M., da Costa, L. N., Crites, A. T., Pereira, M. E. S., de Haan, T., De Vicente, J., Desai, S., Diehl, H. T., Dobbs, M. A., Doel, P., Everett, W., Ferrero, I., Flaugher, B., Friedel, D., Frieman, J., García-Bellido, J., Gaztanaga, E., George, E. M., Giannantonio, T., Halverson, N. W., Hinton, S. R., Holder, G. P., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Hrubes, J. D., James, D. J., Knox, L., Kuehn, K., Lahav, O., Lee, A. T., Lima, M., Luong-Van, D., March, M., McMahon, J. J., Melchior, P., Menanteau, F., Meyer, S. S., Miquel, R., Mocanu, L., Mohr, J. J., Morgan, R., Natoli, T., Padin, S., Palmese, A., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Pryke, C., Reichardt, C. L., Romer, A. K., Ruhl, J. E., Sanchez, E., Schaffer, K. K., Schubnell, M., Serrano, S., Shirokoff, E., Smith, M., Staniszewski, Z., Stark, A. A., Suchyta, E., Tarle, G., Thomas, D., To, C., Vieira, J. D., Weller, J., and Williamson, R.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint, and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel'dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on $S_8=\sigma_8 \sqrt{\Omega_{\rm m}/0.3}$ at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5 to 10% level., Comment: 30 pages, 20 figures, To be submitted to PRD
- Published
- 2022
- Full Text
- View/download PDF
39. Dark Energy Survey Year 3 results: imprints of cosmic voids and superclusters in the Planck CMB lensing map
- Author
-
Kovács, A., Vielzeuf, P., Ferrero, I., Fosalba, P., Demirbozan, U., Miquel, R., Chang, C., Hamaus, N., Pollina, G., Bechtol, K., Becker, M., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Crocce, M., Drlica-Wagner, A., Elvin-Poole, J., Gatti, M., Giannini, G., Gruendl, R. A., Porredon, A., Ross, A. J., Rykoff, E. S., Sevilla-Noarbe, I., Sheldon, E., Yanny, B., Abbott, T., Aguena, M., Allam, S., Annis, J., Bacon, D., Bernstein, G., Bertin, E., Bocquet, S., Brooks, D., Burke, D., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J., Ferté, A., Flaugher, B., Frieman, J., García-Bellido, J., Gaztañaga, E., Gerdes, D., Giannantonio, T., Gruen, D., Gschwend, J., Gutierrez, G., Hinton, S., Hollowood, D. L., Honscheid, K., Huterer, D., Kuehn, K., Lahav, O., Lima, M., March, M., Marshall, J., Melchior, P., Menanteau, F., Morgan, R., Muir, J., Ogando, R., Palmese, A., Paz-Chinchon, F., Pieres, A., Malagón, A. Plazas, Monroy, M. Rodriguez, Roodman, A., Sanchez, E., Schubnell, M., Serrano, S., Smith, M., Suchyta, E., Tarle, G., Thomas, D., To, C. -H., Varga, T. N., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The CMB lensing signal from cosmic voids and superclusters probes the growth of structure in the low-redshift cosmic web. In this analysis, we cross-correlated the Planck CMB lensing map with voids detected in the Dark Energy Survey Year 3 (Y3) data set ($\sim$5,000 deg$^{2}$), expanding on previous measurements that used Y1 catalogues ($\sim$1,300 deg$^{2}$). Given the increased statistical power compared to Y1 data, we report a $6.6\sigma$ detection of negative CMB convergence ($\kappa$) imprints using approximately 3,600 voids detected from a redMaGiC luminous red galaxy sample. However, the measured signal is lower than expected from the MICE N-body simulation that is based on the $\Lambda$CDM model (parameters $\Omega_{\rm m} = 0.25$, $\sigma_8 = 0.8$), and the discrepancy is associated mostly with the void centre region. Considering the full void lensing profile, we fit an amplitude $A_{\kappa}=\kappa_{\rm DES}/\kappa_{\rm MICE}$ to a simulation-based template with fixed shape and found a moderate $2\sigma$ deviation in the signal with $A_{\kappa}\approx0.79\pm0.12$. We also examined the WebSky simulation that is based on a Planck 2018 $\Lambda$CDM cosmology, but the results were even less consistent given the slightly higher matter density fluctuations than in MICE. We then identified superclusters in the DES and the MICE catalogues, and detected their imprints at the $8.4\sigma$ level; again with a lower-than-expected $A_{\kappa}=0.84\pm0.10$ amplitude. The combination of voids and superclusters yields a $10.3\sigma$ detection with an $A_{\kappa}=0.82\pm0.08$ constraint on the CMB lensing amplitude, thus the overall signal is $2.3\sigma$ weaker than expected from MICE., Comment: 14 pages, 8 figures, accepted by MNRAS after minor corrections
- Published
- 2022
- Full Text
- View/download PDF
40. Dark Energy Survey Year 3 results: cosmological constraints from the analysis of cosmic shear in harmonic space
- Author
-
Doux, C., Jain, B., Zeurcher, D., Lee, J., Fang, X., Rosenfeld, R., Amon, A., Camacho, H., Choi, A., Secco, L. F., Blazek, J., Chang, C., Gatti, M., Gaztanaga, E., Jeffrey, N., Raveri, M., Samuroff, S., Alarcon, A., Alves, O., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chen, R., Cordero, J., Crocce, M., Davis, C., DeRose, J., Dodelson, S., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Ferté, A., Fosalba, P., Friedrich, O., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Huterer, D., Jarvis, M., Krause, E., Kuropatkin, N., Leget, P. -F., Lemos, P., Liddle, A. R., MacCrann, N., McCullough, J., Muir, J., Myles, J., Navarro-Alsina, A., Pandey, S., Park, Y., Porredon, A., Prat, J., Rodriguez-Monroy, M., Rollins, R. P., Roodman, A., Ross, A. J., Rykoff, E. S., Sánchez, C., Sanchez, J., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troja, A., Troxel, M. A., Tutusaus, I., Varga, T. N., Weaverdyck, N., Wechsler, R. H., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kim, A. G., Kuehn, K., Lahav, O., Marshall, J. L., Menanteau, F., Miquel, R., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Reil, K., Sanchez, E., Scarpine, V., Serrano, S., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudo-$C_\ell$ method and offer a view complementary to that of the two-point correlation functions in real space, as the two estimators are known to compress and select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and theoretical uncertainties, such as baryons and intrinsic alignments (IA), making this analysis an important cross-check. In the context of $\Lambda$CDM, and using the same fiducial model as in the DES Y3 real space analysis, we find ${S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3} = 0.793^{+0.038}_{-0.025}}$, which further improves to ${S_8 = 0.784\pm 0.026 }$ when including shear ratios. This constraint is within expected statistical fluctuations from the real space analysis, and in agreement with DES~Y3 analyses of non-Gaussian statistics, but favors a slightly higher value of $S_8$, which reduces the tension with the Planck cosmic microwave background 2018 results from $2.3\sigma$ in the real space analysis to $1.5\sigma$ in this work. We explore less conservative IA models than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include small scales, using an increased Fourier mode cut-off up to $k_{\rm max}={5}{h{\rm Mpc}^{-1}}$, which allows to constrain baryonic feedback while leaving cosmological constraints essentially unchanged. Finally, we present an approximate reconstruction of the linear matter power spectrum at present time, which is found to be about 20\% lower than predicted by Planck 2018, as reflected by the $1.5\sigma$ lower $S_8$ value.
- Published
- 2022
- Full Text
- View/download PDF
41. Consistent lensing and clustering in a low-S8 Universe with BOSS, DES Year 3, HSC Year 1, and KiDS-1000
- Author
-
Amon, A, Robertson, NC, Miyatake, H, Heymans, C, White, M, DeRose, J, Yuan, S, Wechsler, RH, Varga, TN, Bocquet, S, Dvornik, A, More, S, Ross, AJ, Hoekstra, H, Alarcon, A, Asgari, M, Blazek, J, Campos, A, Chen, R, Choi, A, Crocce, M, Diehl, HT, Doux, C, Eckert, K, Elvin-Poole, J, Everett, S, Ferté, A, Gatti, M, Giannini, G, Gruen, D, Gruendl, RA, Hartley, WG, Herner, K, Hildebrandt, H, Huang, S, Huff, EM, Joachimi, B, Lee, S, MacCrann, N, Myles, J, Navarro-Alsina, A, Nishimichi, T, Prat, J, Secco, LF, Sevilla-Noarbe, I, Sheldon, E, Shin, T, Tröster, T, Troxel, MA, Tutusaus, I, Wright, AH, Yin, B, Aguena, M, Allam, S, Annis, J, Bacon, D, Bilicki, M, Brooks, D, Burke, DL, Rosell, A Carnero, Carretero, J, Castander, FJ, Cawthon, R, Costanzi, M, da Costa, LN, Pereira, MES, de Jong, J, De Vicente, J, Desai, S, Dietrich, JP, Doel, P, Ferrero, I, Frieman, J, García-Bellido, J, Gerdes, DW, Gschwend, J, Gutierrez, G, Hinton, SR, Hollowood, DL, Honscheid, K, Huterer, D, Kannawadi, A, Kuehn, K, Kuropatkin, N, Lahav, O, Lima, M, Maia, MAG, Marshall, JL, Menanteau, F, Miquel, R, Mohr, JJ, Morgan, R, Muir, J, Paz-Chinchón, F, Pieres, A, Malagón, AA Plazas, Porredon, A, Rodriguez-Monroy, M, Roodman, A, and Sanchez, E
- Subjects
Astronomical Sciences ,Physical Sciences ,gravitational lensing: weak ,large-scale structure of Universe ,cosmology: observations ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We evaluate the consistency between lensing and clustering based on measurements from Baryon Oscillation Spectroscopic Survey combined with galaxy-galaxy lensing from Dark Energy Survey (DES) Year 3, Hyper Suprime-Cam Subaru Strategic Program (HSC) Year 1, and Kilo-Degree Survey (KiDS)-1000. We find good agreement between these lensing data sets. We model the observations using the Dark Emulator and fit the data at two fixed cosmologies: Planck (S8 = 0.83), and a Lensing cosmology (S8 = 0.76). For a joint analysis limited to large scales, we find that both cosmologies provide an acceptable fit to the data. Full utilization of the higher signal-to-noise small-scale measurements is hindered by uncertainty in the impact of baryon feedback and assembly bias, which we account for with a reasoned theoretical error budget. We incorporate a systematic inconsistency parameter for each redshift bin, A, that decouples the lensing and clustering. With a wide range of scales, we find different results for the consistency between the two cosmologies. Limiting the analysis to the bins for which the impact of the lens sample selection is expected to be minimal, for the Lensing cosmology, the measurements are consistent with A = 1; A = 0.91 ± 0.04 (A = 0.97 ± 0.06) using DES+KiDS (HSC). For the Planck case, we find a discrepancy: A = 0.79 ± 0.03 (A = 0.84 ± 0.05) using DES+KiDS (HSC). We demonstrate that a kinematic Sunyaev-Zeldovich-based estimate for baryonic effects alleviates some of the discrepancy in the Planck cosmology. This analysis demonstrates the statistical power of small-scale measurements; however, caution is still warranted given modelling uncertainties and foreground sample selection effects.
- Published
- 2022
42. Consistent lensing and clustering in a low-$S_8$ Universe with BOSS, DES Year 3, HSC Year 1 and KiDS-1000
- Author
-
Amon, A., Robertson, N. C., Miyatake, H., Heymans, C., White, M., DeRose, J., Yuan, S., Wechsler, R. H., Varga, T. N., Bocquet, S., Dvornik, A., More, S., Ross, A. J., Hoekstra, H., Alarcon, A., Asgari, M., Blazek, J., Campos, A., Chen, R., Choi, A., Crocce, M., Diehl, H. T., Doux, C., Eckert, K., Elvin-Poole, J., Everett, S., Ferté, A., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Hartley, W. G., Herner, K., Hildebrandt, H., Huang, S., Huff, E. M., Joachimi, B., Lee, S., MacCrann, N., Myles, J., Alsina, A. Navarro, Nishimichi, T., Prat, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Trster, T., Troxel, M. A., Tutusaus, I., Wright, A. H., Yin, B., Aguena, M., Allam, S., Annis, J., Bacon, D., Bilicki, M., Brooks, D., Burke, D. L., Rosell, A. Carnero, Carretero, J., Castander, F. J., Cawthon, R., Costanzi, M., da Costa, L. N., Pereira, M. E. S., de Jong, J., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Ferrero, I., Frieman, J., García-Bellido, J., Gerdes, D. W., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., Kannawadi, A., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Muir, J., Paz-Chinchon, F., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Rodriguez-Monroy, M., Roodman, A., Sanchez, E., Serrano, S., Shan, H., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., and Zhang, Y.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We evaluate the consistency between lensing and clustering probes of large-scale structure based on measurements of projected galaxy clustering from BOSS combined with overlapping galaxy-galaxy lensing from three surveys: DES Y3, HSC Y1, and KiDS-1000. An intra-lensing-survey study finds good agreement between these lensing data. We model the observations using the Dark Emulator and fit the data at two fixed cosmologies: Planck, with $S_8=0.83$, and a Lensing cosmology with $S_8=0.76$. For a joint analysis limited to scales with $R>5.25h^{-1}$Mpc, we find that both cosmologies provide an acceptable fit to the data. Full utilisation of the small-scale clustering and lensing measurements is hindered by uncertainty in the impact of baryon feedback and assembly bias, which we account for with a reasoned theoretical error budget. We incorporate a systematic scaling parameter for each redshift bin, $A$, that decouples the lensing and clustering to capture any inconsistency. When a wide range of scales ($0.15
- Published
- 2022
- Full Text
- View/download PDF
43. The DES view of the Eridanus supervoid and the CMB Cold Spot
- Author
-
Kovács, A., Jeffrey, N., Gatti, M., Chang, C., Whiteway, L., Hamaus, N., Lahav, O., Pollina, G., Bacon, D., Kacprzak, T., Mawdsley, B., Nadathur, S., Zeurcher, D., García-Bellido, J., Alarcon, A., Amon, A., Bechtol, K., Bernstein, G. M., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chen, R., Choi, A., Cordero, J., Davis, C., DeRose, J., Doux, C., Drlica-Wagner, A., Eckert, K., Elsner, F., Elvin-Poole, J., Everett, S., Ferté, A., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huff, E. M., Huterer, D., Kuropatkin, N., Jarvis, M., Leget, P. F., MacCrann, N., McCullough, J., Muir, J., Myles, J., Navarro-Alsina, A., Pandey, S., Prat, J., Raveri, M., Rollins, R. P., Ross, A. J., Rykoff, E. S., Sánchez, C., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Aguena, M., Allam, S., Andrade-Oliveira, F., Annis, J., Bertin, E., Brooks, D., Burke, D., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, T., De Vicente, J., Desai, S., Diehl, H. T., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., Gaztañaga, E., Gerdes, D., Giannantonio, T., Gschwend, J., Gutierrez, G., Hinton, S., Hollowood, D. L., Honscheid, K., James, D., Kuehn, K., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Ogando, R., Paz-Chinchon, F., Pieres, A., Plazas, A. A., Monroy, M. Rodriguez, Romer, K., Roodman, A., Sanchez, E., Schubnell, M., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C. -H., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Cold Spot is a puzzling large-scale feature in the Cosmic Microwave Background temperature maps and its origin has been subject to active debate. As an important foreground structure at low redshift, the Eridanus supervoid was recently detected, but it was subsequently determined that, assuming the standard $\Lambda$CDM model, only about 10-20$\%$ of the observed temperature depression can be accounted for via its Integrated Sachs-Wolfe imprint. However, $R\gtrsim100~h^{-1}\mathrm{Mpc}$ supervoids elsewhere in the sky have shown ISW imprints $A_{\mathrm{ISW}}\approx5.2\pm1.6$ times stronger than expected from $\Lambda$CDM ($A_{\mathrm{ISW}}=1$), which warrants further inspection. Using the Year-3 redMaGiC catalogue of luminous red galaxies from the Dark Energy Survey, here we confirm the detection of the Eridanus supervoid as a significant under-density in the Cold Spot's direction at $z<0.2$. We also show, with $\mathrm{S/N}\gtrsim5$ significance, that the Eridanus supervoid appears as the most prominent large-scale under-density in the dark matter mass maps that we reconstructed from DES Year-3 gravitational lensing data. While we report no significant anomalies, an interesting aspect is that the amplitude of the lensing signal from the Eridanus supervoid at the Cold Spot centre is about $30\%$ lower than expected from similar peaks found in N-body simulations based on the standard $\Lambda$CDM model with parameters $\Omega_{\rm m} = 0.279$ and $\sigma_8 = 0.82$. Overall, our results confirm the causal relation between these individually rare structures in the cosmic web and in the CMB, motivating more detailed future surveys in the Cold Spot region., Comment: accepted for publication by MNRAS, 14 pages, 10 figures
- Published
- 2021
- Full Text
- View/download PDF
44. Dark energy survey year 3 results: cosmological constraints from the analysis of cosmic shear in harmonic space
- Author
-
Doux, C, Jain, B, Zeurcher, D, Lee, J, Fang, X, Rosenfeld, R, Amon, A, Camacho, H, Choi, A, Secco, LF, Blazek, J, Chang, C, Gatti, M, Gaztanaga, E, Jeffrey, N, Raveri, M, Samuroff, S, Alarcon, A, Alves, O, Andrade-Oliveira, F, Baxter, E, Bechtol, K, Becker, MR, Bernstein, GM, Campos, A, Rosell, A Carnero, Kind, M Carrasco, Cawthon, R, Chen, R, Cordero, J, Crocce, M, Davis, C, DeRose, J, Dodelson, S, Drlica-Wagner, A, Eckert, K, Eifler, TF, Elsner, F, Elvin-Poole, J, Everett, S, Ferté, A, Fosalba, P, Friedrich, O, Giannini, G, Gruen, D, Gruendl, RA, Harrison, I, Hartley, WG, Herner, K, Huang, H, Huff, EM, Huterer, D, Jarvis, M, Krause, E, Kuropatkin, N, Leget, P-F, Lemos, P, Liddle, AR, MacCrann, N, McCullough, J, Muir, J, Myles, J, Navarro-Alsina, A, Pandey, S, Park, Y, Porredon, A, Prat, J, Rodriguez-Monroy, M, Rollins, RP, Roodman, A, Ross, AJ, Rykoff, ES, Sánchez, C, Sanchez, J, Sevilla-Noarbe, I, Sheldon, E, Shin, T, Troja, A, Troxel, MA, Tutusaus, I, Varga, TN, Weaverdyck, N, Wechsler, RH, Yanny, B, Yin, B, Zhang, Y, Zuntz, J, Abbott, TMC, Aguena, M, Allam, S, Annis, J, Bacon, D, Bertin, E, Bocquet, S, Brooks, D, Burke, DL, Carretero, J, Costanzi, M, da Costa, LN, and Pereira, MES
- Subjects
Particle and High Energy Physics ,Physical Sciences ,gravitational lensing: weak ,cosmological parameters ,large-scale structure of Universe ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudo-Cℓ method and complement the analysis of the two-point correlation functions in real space, as the two estimators are known to compress and select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and theoretical uncertainties, making this analysis an important cross-check. Using the same fiducial Lambda cold dark matter model as in the DES Y3 real-space analysis, we find S8 ≡σ8 √Ωm/0.3 = 0.793-0.025+0.038 , which further improves to S8 = 0.784±0.026 when including shear ratios. This result is within expected statistical fluctuations from the real-space constraint, and in agreement with DES Y3 analyses of non-Gaussian statistics, but favours a slightly higher value of S8 , which reduces the tension with the Planck 2018 constraints from 2.3σ in the real space analysis to 1.5σ here. We explore less conservative intrinsic alignments models than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include small scales, using an increased Fourier mode cut-off up to kmax = 5 h Mpc-1 , which allows to constrain baryonic feedback while leaving cosmological constraints essentially unchanged. Finally, we present an approximate reconstruction of the linear matter power spectrum at present time, found to be about 20 per cent lower than predicted by Planck 2018, as reflected by the lo wer S8 value.
- Published
- 2022
45. Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and Planck thermal Sunyaev-Zel’dovich effect observations. II. Modeling and constraints on halo pressure profiles
- Author
-
Pandey, S, Gatti, M, Baxter, E, Hill, JC, Fang, X, Doux, C, Giannini, G, Raveri, M, DeRose, J, Huang, H, Moser, E, Battaglia, N, Alarcon, A, Amon, A, Becker, M, Campos, A, Chang, C, Chen, R, Choi, A, Eckert, K, Elvin-Poole, J, Everett, S, Ferte, A, Harrison, I, Maccrann, N, Mccullough, J, Myles, J, Alsina, A Navarro, Prat, J, Rollins, RP, Sanchez, C, Shin, T, Troxel, M, Tutusaus, I, Yin, B, Aguena, M, Allam, S, Andrade-Oliveira, F, Bernstein, GM, Bertin, E, Bolliet, B, Bond, JR, Brooks, D, Calabrese, E, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, Cawthon, R, Costanzi, M, Crocce, M, da Costa, LN, Pereira, MES, De Vicente, J, Desai, S, Diehl, HT, Dietrich, JP, Doel, P, Dunkley, J, Evrard, AE, Ferraro, S, Ferrero, I, Flaugher, B, Fosalba, P, García-Bellido, J, Gaztanaga, E, Gerdes, DW, Giannantonio, T, Gruen, D, Gruendl, RA, Gschwend, J, Gutierrez, G, Herner, K, Hincks, AD, Hinton, SR, Hollowood, DL, Honscheid, K, Hughes, JP, Huterer, D, Jain, B, James, DJ, Jeltema, T, Krause, E, Kuehn, K, Lahav, O, Lima, M, Lokken, M, Madhavacheril, MS, Maia, MAG, Mcmahon, JJ, Melchior, P, Menanteau, F, Miquel, R, Mohr, JJ, Moodley, K, Morgan, R, Nati, F, Niemack, MD, Page, L, and Palmese, A
- Subjects
Nuclear and Plasma Physics ,Physical Sciences ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Mathematical physics ,Astronomical sciences ,Particle and high energy physics - Abstract
Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev-Zel'dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe and is sensitive to effects such as baryonic feedback. In a companion paper (Gatti et al. Phys. Rev. D 105, 123525 (2022)PRVDAQ2470-0010), we present tomographic measurements and validation tests of the cross-correlation between Galaxy shear measurements from the first three years of observations of the Dark Energy Survey and tSZ measurements from a combination of Atacama Cosmology Telescope and Planck observations. In this work, we use the same measurements to constrain models for the pressure profiles of halos across a wide range of halo mass and redshift. We find evidence for reduced pressure in low-mass halos, consistent with predictions for the effects of feedback from active Galactic nuclei. We infer the hydrostatic mass bias (BM500c/MSZ) from our measurements, finding B=1.8±0.1 when adopting the Planck-preferred cosmological parameters. We additionally find that our measurements are consistent with a nonzero redshift evolution of B, with the correct sign and sufficient magnitude to explain the mass bias necessary to reconcile cluster count measurements with the Planck-preferred cosmology. Our analysis introduces a model for the impact of intrinsic alignments (IAs) of galaxy shapes on the shear-tSZ correlation. We show that IA can have a significant impact on these correlations at current noise levels.
- Published
- 2022
46. Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and Planck thermal Sunyaev-Zel’dovich effect observations. I. Measurements, systematics tests, and feedback model constraints
- Author
-
Gatti, M, Pandey, S, Baxter, E, Hill, JC, Moser, E, Raveri, M, Fang, X, DeRose, J, Giannini, G, Doux, C, Huang, H, Battaglia, N, Alarcon, A, Amon, A, Becker, M, Campos, A, Chang, C, Chen, R, Choi, A, Eckert, K, Elvin-Poole, J, Everett, S, Ferte, A, Harrison, I, Maccrann, N, Mccullough, J, Myles, J, Alsina, A Navarro, Prat, J, Rollins, RP, Sanchez, C, Shin, T, Troxel, M, Tutusaus, I, Yin, B, Abbott, T, Aguena, M, Allam, S, Andrade-Oliveira, F, Annis, J, Bernstein, G, Bertin, E, Bolliet, B, Bond, JR, Brooks, D, Burke, DL, Calabrese, E, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, Cawthon, R, Costanzi, M, Crocce, M, da Costa, LN, da Silva Pereira, ME, De Vicente, J, Desai, S, Diehl, HT, Dietrich, JP, Doel, P, Dunkley, J, Evrard, AE, Ferraro, S, Ferrero, I, Flaugher, B, Fosalba, P, Frieman, J, García-Bellido, J, Gaztanaga, E, Gerdes, DW, Giannantonio, T, Gruen, D, Gruendl, RA, Gschwend, J, Gutierrez, G, Herner, K, Hincks, AD, Hinton, SR, Hollowood, DL, Honscheid, K, Hughes, JP, Huterer, D, Jain, B, James, DJ, Krause, E, Kuehn, K, Kuropatkin, N, Lahav, O, Lidman, C, Lima, M, Lokken, M, Madhavacheril, MS, Maia, MAG, Marshall, JL, Mcmahon, JJ, Melchior, P, Moodley, K, Mohr, JJ, Morgan, R, and Nati, F
- Subjects
Nuclear and Plasma Physics ,Physical Sciences ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Mathematical physics ,Astronomical sciences ,Particle and high energy physics - Abstract
We present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zel'dovich (TSZ) maps from Planck and the Atacama Cosmology Telescope and weak galaxy lensing shears measured during the first three years of observations of the Dark Energy Survey. This correlation is sensitive to the thermal energy in baryons over a wide redshift range and is therefore a powerful probe of astrophysical feedback. We detect the correlation at a statistical significance of 21σ, the highest significance to date. We examine the TSZ maps for potential contaminants, including cosmic infrared background and radio sources, finding that cosmic infrared background has a substantial impact on our measurements and must be taken into account in our analysis. We use the cross-correlation measurements to test different feedback models. In particular, we model the TSZ using several different pressure profile models calibrated against hydrodynamical simulations. Our analysis marginalizes over redshift uncertainties, shear calibration biases, and intrinsic alignment effects. We also marginalize over ωm and σ8 using Planck or DES priors. We find that the data prefer the model with a low amplitude of the pressure profile at small scales, compatible with a scenario with strong active galactic nuclei feedback and ejection of gas from the inner part of the halos. When using a more flexible model for the shear profile, constraints are weaker, and the data cannot discriminate between different baryonic prescriptions.
- Published
- 2022
47. Dark Energy Survey Year 3 results: Cosmology from combined galaxy clustering and lensing validation on cosmological simulations
- Author
-
DeRose, J, Wechsler, RH, Becker, MR, Rykoff, ES, Pandey, S, MacCrann, N, Amon, A, Myles, J, Krause, E, Gruen, D, Jain, B, Troxel, MA, Prat, J, Alarcon, A, Sánchez, C, Blazek, J, Crocce, M, Giannini, G, Gatti, M, Bernstein, GM, Zuntz, J, Dodelson, S, Fang, X, Friedrich, O, Secco, LF, Elvin-Poole, J, Porredon, A, Everett, S, Choi, A, Harrison, I, Cordero, J, Rodriguez-Monroy, M, McCullough, J, Cawthon, R, Chen, A, Alves, O, Andrade-Oliveira, F, Bechtol, K, Camacho, H, Campos, A, Rosell, A Carnero, Kind, M Carrasco, Diehl, HT, Drlica-Wagner, A, Eckert, K, Eifler, TF, Gruendl, RA, Hartley, WG, Huang, H, Huff, EM, Kuropatkin, N, Raveri, M, Rosenfeld, R, Ross, AJ, Sanchez, J, Sevilla-Noarbe, I, Sheldon, E, Yanny, B, Yin, B, Zhang, Y, Fosalba, P, Aguena, M, Allam, S, Annis, J, Avila, S, Bacon, D, Bhargava, S, Brooks, D, Buckley-Geer, E, Burke, DL, Carretero, J, Castander, FJ, Chang, C, Costanzi, M, da Costa, LN, Pereira, MES, De Vicente, J, Desai, S, Dietrich, JP, Doel, P, Evrard, AE, Ferrero, I, Ferté, A, Flaugher, B, Frieman, J, García-Bellido, J, Gaztanaga, E, Giannantonio, T, Gschwend, J, Gutierrez, G, Hinton, SR, Hollowood, DL, Honscheid, K, Huterer, D, James, DJ, Kuehn, K, Lahav, O, Lima, M, Maia, MAG, and Marshall, JL
- Subjects
Astronomical Sciences ,Physical Sciences - Abstract
We present a validation of the Dark Energy Survey Year 3 (DES Y3) 3×2-point analysis choices by testing them on Buzzard2.0, a new suite of cosmological simulations that is tailored for the testing and validation of combined galaxy clustering and weak-lensing analyses. We show that the buzzard2.0 simulations accurately reproduce many important aspects of the DES Y3 data, including photometric redshift and magnitude distributions, and the relevant set of two-point clustering and weak-lensing statistics. We then show that our model for the 3×2-point data vector is accurate enough to recover the true cosmology in simulated surveys assuming the true redshift distributions for our source and lens samples, demonstrating robustness to uncertainties in the modeling of the nonlinear matter power spectrum, nonlinear galaxy bias, and higher-order lensing corrections. Additionally, we demonstrate for the first time that our photometric redshift calibration methodology, including information from photometry, spectroscopy, clustering cross-correlations, and galaxy-galaxy lensing ratios, is accurate enough to recover the true cosmology in simulated surveys in the presence of realistic photometric redshift uncertainties.
- Published
- 2022
48. Dark Energy Survey Year 3 results: cosmology with moments of weak lensing mass maps
- Author
-
Gatti, M., Jain, B., Chang, C., Raveri, M., Zürcher, D., Secco, L., Whiteway, L., Jeffrey, N., Doux, C., Kacprzak, T., Bacon, D., Fosalba, P., Alarcon, A., Amon, A., Bechtol, K., Becker, M., Bernstein, G., Blazek, J., Campos, A., Choi, A., Davis, C., Derose, J., Dodelson, S., Elsner, F., Elvin-Poole, J., Everett, S., Ferte, A., Gruen, D., Harrison, I., Huterer, D., Jarvis, M., Krause, E., Leget, P. F., Lemos, P., Maccrann, N., Mccullough, J., Muir, J., Myles, J., Navarro, A., Pandey, S., Prat, J., Rollins, R. P., Roodman, A., Sanchez, C., Sheldon, E., Shin, T., Troxel, M., Tutusaus, I., Yin, B., Aguena, M., Allam, S., Andrade-Oliveira, F., Anni, J., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cawthon, R., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Drlica-Wagner, A., Eckert, K., Evrard, A. E., Ferrero, I., García-Bellido, J., Gaztanaga, E., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Laha, O., Lidman, C., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Reil, K., Rodriguez-Monroyv, M., Romer, A. K., Sanchez, E., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., To, C., and Varga, T. N.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a cosmological analysis using the second and third moments of the weak lensing mass (convergence) maps from the first three years of data (Y3) data of the Dark Energy Survey (DES). The survey spans an effective area of 4139 square degrees and uses the images of over 100 million galaxies to reconstruct the convergence field. The second moment of the convergence as a function of smoothing scale contains information similar to standard shear 2-point statistics. The third moment, or the skewness, contains additional non-Gaussian information. The data is analysed in the context of the $\Lambda$CDM model, varying 5 cosmological parameters and 19 nuisance parameters modelling astrophysical and measurement systematics. Our modelling of the observables is completely analytical, and has been tested with simulations in our previous methodology study. We obtain a 1.7\% measurement of the amplitude of fluctuations parameter $S_8\equiv \sigma_8 (\Omega_m/0.3)^{0.5} = 0.784\pm 0.013$. The measurements are shown to be internally consistent across redshift bins, angular scales, and between second and third moments. In particular, the measured third moment is consistent with the expectation of gravitational clustering under the $\Lambda$CDM model. The addition of the third moment improves the constraints on $S_8$ and $\Omega_{\rm m}$ by $\sim$15\% and $\sim$25\% compared to an analysis that only uses second moments. We compare our results with {\it Planck} constraints from the Cosmic Microwave Background (CMB), finding a $2.2$ \textendash $2.8\sigma$ tension in the full parameter space, depending on the combination of moments considered. The third moment independently is in $2.8\sigma$ tension with {\it Planck}, and thus provides a cross-check on analyses of 2-point correlations., Comment: 27 pages, 20 figures, accepted for publication in PRD
- Published
- 2021
49. Dark Energy Survey Year 3 results: Cosmology with peaks using an emulator approach
- Author
-
Zürcher, D., Fluri, J., Sgier, R., Kacprzak, T., Gatti, M., Doux, C., Whiteway, L., Refregier, A., Chang, C., Jeffrey, N., Jain, B., Lemos, P., Bacon, D., Alarcon, A., Amon, A., Bechtol, K., Becker, M., Bernstein, G., Campos, A., Chen, R., Choi, A., Davis, C., Derose, J., Dodelson, S., Elsner, F., Elvin-Poole, J., Everett, S., Ferte, A., Gruen, D., Harrison, I., Huterer, D., Jarvis, M., Leget, P. F., Maccrann, N., Mccullough, J., Muir, J., Myles, J., Alsina, A. Navarro, Pandey, S., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Sanchez, C., Secco, L. F., Sheldon, E., Shin, T., Troxel, M., Tutusaus, I., Yin, B., Aguena, M., Allam, S., Andrade-Oliveira, F., Annis, J., Bertin, E., Brooks, D., Burke, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F., Cawthon, R., Conselice, C., Costanzi, M., da Costa, L., Pereira, M. E. da Silva, Davis, T., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J., Doel, P., Eckert, K., Evrard, A., Ferrero, I., Flaugher, B., Fosalba, P., Friedel, D., Frieman, J., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D., Giannantonio, T., Gruendl, R., Gschwend, J., Gutierrez, G., Hinton, S., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., Lidman, C., Lima, M., Maia, M., Marshall, J., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchon, F., Pieres, A., Malagón, A. Plazas, Reil, K., Monroy, M. Rodriguez, Romer, K., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla, I., Smith, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Weller, J., and Wilkinson, R.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We constrain the matter density $\Omega_{\mathrm{m}}$ and the amplitude of density fluctuations $\sigma_8$ within the $\Lambda$CDM cosmological model with shear peak statistics and angular convergence power spectra using mass maps constructed from the first three years of data of the Dark Energy Survey (DES Y3). We use tomographic shear peak statistics, including cross-peaks: peak counts calculated on maps created by taking a harmonic space product of the convergence of two tomographic redshift bins. Our analysis follows a forward-modelling scheme to create a likelihood of these statistics using N-body simulations, using a Gaussian process emulator. We include the following lensing systematics: multiplicative shear bias, photometric redshift uncertainty, and galaxy intrinsic alignment. Stringent scale cuts are applied to avoid biases from unmodelled baryonic physics. We find that the additional non-Gaussian information leads to a tightening of the constraints on the structure growth parameter yielding $S_8~\equiv~\sigma_8\sqrt{\Omega_{\mathrm{m}}/0.3}~=~0.797_{-0.013}^{+0.015}$ (68% confidence limits), with a precision of 1.8%, an improvement of ~38% compared to the angular power spectra only case. The results obtained with the angular power spectra and peak counts are found to be in agreement with each other and no significant difference in $S_8$ is recorded. We find a mild tension of $1.5 \thinspace \sigma$ between our study and the results from Planck 2018, with our analysis yielding a lower $S_8$. Furthermore, we observe that the combination of angular power spectra and tomographic peak counts breaks the degeneracy between galaxy intrinsic alignment $A_{\mathrm{IA}}$ and $S_8$, improving cosmological constraints. We run a suite of tests concluding that our results are robust and consistent with the results from other studies using DES Y3 data.
- Published
- 2021
- Full Text
- View/download PDF
50. Dark Energy Survey Year 3 results: Marginalisation over redshift distribution uncertainties using ranking of discrete realisations
- Author
-
Cordero, Juan P., Harrison, Ian, Rollins, Richard P., Bernstein, G. M., Bridle, S. L., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Camacho, H., Campos, A., Choi, A., DeRose, J., Dodelson, S., Eckert, K., Eifler, T. F., Everett, S., Fang, X., Friedrich, O., Gruen, D., Gruendl, R. A., Hartley, W. G., Huff, E. M., Krause, E., Kuropatkin, N., MacCrann, N., McCullough, J., Myles, J., Pandey, S., Raveri, M., Rosenfeld, R., Rykoff, E. S., Sánchez, C., Sánchez, J., Sevilla-Noarbe, I., Sheldon, E., Troxel, M., Wechsler, R., Yanny, B., Yin, B., Zhang, Y., Aguena, M., Allam, S., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Costanzi, M., da Costa, L., Pereira, M. E. da Silva, De Vicente, J., Diehl, H. T., Dietrich, J., Doel, P., Elvin-Poole, J., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., Garcia-Bellido, J., Gerdes, D., Gschwend, J., Gutierrez, G., Hinton, S., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D., Kuehn, K., Lahav, O., Maia, M. A. G., March, M., Menanteau, F., Miquel, R., Morgan, R., Muir, J., Palmese, A., Paz-Chinchon, F., Pieres, A., Malagón, A. Plazas, Sánchez, E., Scarpine, V., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M., Tarle, G., Thomas, D., To, C., and Varga, T. N.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cosmological information from weak lensing surveys is maximised by dividing source galaxies into tomographic sub-samples for which the redshift distributions are estimated. Uncertainties on these redshift distributions must be correctly propagated into the cosmological results. We present hyperrank, a new method for marginalising over redshift distribution uncertainties in cosmological analyses, using discrete samples from the space of all possible redshift distributions. This is demonstrated in contrast to previous highly simplified parametric models of the redshift distribution uncertainty. In hyperrank the set of proposed redshift distributions is ranked according to a small (in this work between one and four) number of summary values, which are then sampled along with other nuisance parameters and cosmological parameters in the Monte Carlo chain used for inference. This can be regarded as a general method for marginalising over discrete realisations of data vector variation with nuisance parameters, which can consequently be sampled separately to the main parameters of interest, allowing for increased computational efficiency. We focus on the case of weak lensing cosmic shear analyses and demonstrate our method using simulations made for the Dark Energy Survey (DES). We show the method can correctly and efficiently marginalise over a range of models for the redshift distribution uncertainty. Finally, we compare hyperrank to the common mean-shifting method of marginalising over redshift uncertainty, validating that this simpler model is sufficient for use in the DES Year 3 cosmology results presented in companion papers., Comment: Accepted for publication in MNRAS. 17 pages, 12 figures, comments welcome Replacement: Added small comments suggested by referee
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.