1. Multiplexed single-molecule enzyme activity analysis for counting disease-related proteins in biological samples.
- Author
-
Sakamoto S, Komatsu T, Watanabe R, Zhang Y, Inoue T, Kawaguchi M, Nakagawa H, Ueno T, Okusaka T, Honda K, Noji H, and Urano Y
- Subjects
- Female, Humans, Male, Proof of Concept Study, Alkaline Phosphatase blood, Diabetes Mellitus blood, Protein Tyrosine Phosphatases blood, Single Molecule Imaging
- Abstract
We established an ultrasensitive method for identifying multiple enzymes in biological samples by using a multiplexed microdevice-based single-molecule enzymatic assay. We used a paradigm in which we "count" the number of enzyme molecules by profiling their single enzyme activity characteristics toward multiple substrates. In this proof-of-concept study of the single enzyme activity-based protein profiling (SEAP), we were able to detect the activities of various phosphoric ester-hydrolyzing enzymes such as alkaline phosphatases, tyrosine phosphatases, and ectonucleotide pyrophosphatases in blood samples at the single-molecule level and in a subtype-discriminating manner, demonstrating its potential usefulness for the diagnosis of diseases based on ultrasensitive detection of enzymes., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2020
- Full Text
- View/download PDF