Daniel Ramón, Patricia Martorell, Inés Tiscornia, Silvia Llopis, Salvador Genovés, Benoît Foligné, Mariela Bollati-Fogolín, Isabelle Chambaud, A. P. Mulet, Tamara Fernández-Calero, Agustín Montserrat, Gianfranco Grompone, Nuria González, Institut Pasteur de Montevideo, Réseau International des Instituts Pasteur (RIIP), Gut Microbiology & Probiotics Platform, Groupe DANONE, Department of Food Biotechnology, Biopolis, Universitat de València (UV), Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (CIIL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Danone Research Spain, Funders of this work were: ANII (Agencia Nacional de Investigacion e Innovacion, URUGUAY): PE_ALI_1_1702 and Danone Research, Botta, Mariella, Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, and Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)
International audience; Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2)O(2)). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans.