32 results on '"Sophie Cerf"'
Search Results
2. React to the Worst: Lightweight and Proactive Protection of Location Privacy.
- Author
-
Emilio Molina, Mirko Fiacchini, Sophie Cerf, and Bogdan Robu
- Published
- 2023
- Full Text
- View/download PDF
3. Adaptive Power Control for Sober High-Performance Computing.
- Author
-
Ismail Hawila, Sophie Cerf, Raphaël Bleuse, Swann Perarnau, and éric Rutten
- Published
- 2022
- Full Text
- View/download PDF
4. Sustaining Performance While Reducing Energy Consumption: A Control Theory Approach.
- Author
-
Sophie Cerf, Raphaël Bleuse, Valentin Reis, Swann Perarnau, and éric Rutten
- Published
- 2021
- Full Text
- View/download PDF
5. Automatic Privacy and Utility Preservation for Mobility Data: A Nonlinear Model-Based Approach.
- Author
-
Sophie Cerf, Sara Bouchenak, Bogdan Robu, Nicolas Marchand, Vincent Primault, Sonia Ben Mokhtar, Antoine Boutet, and Lydia Y. Chen
- Published
- 2021
- Full Text
- View/download PDF
6. Robust Anomaly Detection on Unreliable Data.
- Author
-
Zilong Zhao 0001, Sophie Cerf, Robert Birke, Bogdan Robu, Sara Bouchenak, Sonia Ben Mokhtar, and Lydia Y. Chen
- Published
- 2019
- Full Text
- View/download PDF
7. Feedback Control for Online Training of Neural Networks.
- Author
-
Zilong Zhao 0001, Sophie Cerf, Bogdan Robu, and Nicolas Marchand
- Published
- 2019
- Full Text
- View/download PDF
8. Event-Based Control for Online Training of Neural Networks.
- Author
-
Zilong Zhao 0001, Sophie Cerf, Bogdan Robu, and Nicolas Marchand
- Published
- 2020
- Full Text
- View/download PDF
9. Dynamic Modeling of Location Privacy Protection Mechanisms.
- Author
-
Sophie Cerf, Sonia Ben Mokhtar, Sara Bouchenak, Nicolas Marchand, and Bogdan Robu
- Published
- 2018
- Full Text
- View/download PDF
10. Can Adaptive Feedforward Control Improve Operation of Cloud Services?
- Author
-
Ioan Doré Landau, Jaime Saavedra, Sophie Cerf, Bogdan Robu, Nicolas Marchand, and Sara Bouchenak
- Published
- 2018
- Full Text
- View/download PDF
11. A Control-Theoretic Approach for Location Privacy in Mobile Applications.
- Author
-
Sophie Cerf, Bogdan Robu, Nicolas Marchand, Sonia Ben Mokhtar, and Sara Bouchenak
- Published
- 2018
- Full Text
- View/download PDF
12. Sustaining Performance While Reducing Energy Consumption: A Control Theory Approach.
- Author
-
éric Rutten, Sophie Cerf, Raphaël Bleuse, Valentin Reis, and Swann Perarnau
- Published
- 2021
13. PULP: Achieving Privacy and Utility Trade-Off in User Mobility Data.
- Author
-
Sophie Cerf, Vincent Primault, Antoine Boutet, Sonia Ben Mokhtar, Robert Birke, Sara Bouchenak, Lydia Y. Chen, Nicolas Marchand, and Bogdan Robu
- Published
- 2017
- Full Text
- View/download PDF
14. A robust control-theory-based exploration strategy in deep reinforcement learning for virtual network embedding.
- Author
-
Ghina Dandachi, Sophie Cerf, Yassine Hadjadj Aoul, Abdelkader Outtagarts, and éric Rutten
- Published
- 2022
- Full Text
- View/download PDF
15. Cost function based event triggered Model Predictive Controllers application to Big Data Cloud services.
- Author
-
Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, and Sara Bouchenak
- Published
- 2016
- Full Text
- View/download PDF
16. Privacy protection control for mobile apps users
- Author
-
Sophie Cerf, Bogdan Robu, Nicolas Marchand, Sara Bouchenak, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL], GIPSA - Modelling and Optimal Decision for Uncertain Systems [GIPSA-MODUS], GIPSA - COntrol, PErception, Robots, navigation and Intelligent Computing [GIPSA-COPERNIC], Institut National des Sciences Appliquées de Lyon [INSA Lyon], Laboratoire d'InfoRmatique en Image et Systèmes d'information [LIRIS], Distribution, Recherche d'Information et Mobilité [DRIM], Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), GIPSA - Modelling and Optimal Decision for Uncertain Systems (GIPSA-MODUS), GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA), GIPSA - COntrol, PErception, Robots, navigation and Intelligent Computing (GIPSA-COPERNIC), GIPSA Pôle Sciences des Données (GIPSA-PSD), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Distribution, Recherche d'Information et Mobilité (DRIM), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL)
- Subjects
Control and Systems Engineering ,Applied Mathematics ,control of computing systems location privacy differential-privacy modeling Sampled-Data Control ,[INFO]Computer Science [cs] ,Electrical and Electronic Engineering ,Computer Science Applications ,[SPI.AUTO]Engineering Sciences [physics]/Automatic - Abstract
International audience; Predominant in today society, mobile apps are rising as promising application systems for automatic control. An app can be viewed as a plant, processing input signals (queries, phone data, etc.) and generating outputs (such as a service or an answer). Guaranteeing that the app complies with a desired behavior is a major safety challenge. This work focuses on privacy issues for geolocated mobile apps. Many applications use the location data to provide a service (e.g., navigation, fitness) or to improve it (e.g., weather forecast, social media). This gain in service utility comes at the cost of personal data sharing. Such threat to user privacy can be leveraged by protection mechanisms, e.g., addition of noise to the location data. However, state-of-the-art techniques still lack means of ensuring both data utility and privacy in a dynamics utilization context. This paper presents the first non-linear analytical modeling followed by a control formulation for regulating the privacy level in a mobile app. The privacy is sensed using the well established notion of Point of Interest. Through modeling, we highlight the control challenges, namely the non-linearity and time-variance of the plant, its high sensibility to noise and the impact of the user's mobility pattern-seen a disturbance. A controller is designed, combining feedback with anticipation action. Evaluation is performed using mobility records from two real-world multi-users datasets. Our approach enables, with a unique and universal tuning, to robustly meet privacy objectives with preserved utility and negligible computational overhead. Control algorithm, experimental evaluation and analysis scripts are available online for reproducibility.
- Published
- 2023
17. Toward an Easy Configuration of Location Privacy Protection Mechanisms.
- Author
-
Sophie Cerf, Bogdan Robu, Nicolas Marchand, Antoine Boutet, Vincent Primault, Sonia Ben Mokhtar, and Sara Bouchenak
- Published
- 2016
- Full Text
- View/download PDF
18. Automatic Privacy and Utility Preservation for Mobility Data: A Nonlinear Model-Based Approach
- Author
-
Nicolas Marchand, Antoine Boutet, Sophie Cerf, Sonia Ben Mokhtar, Vincent Primault, Lydia Y. Chen, Sara Bouchenak, Bogdan Robu, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Privacy Models, Architectures and Tools for the Information Society (PRIVATICS), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA), IBM Research [Zurich], Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Inria Lyon, and Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Information privacy ,D48b Modeling and prediction ,Computer science ,Distributed computing ,media_common.quotation_subject ,Usability ,0211 other engineering and technologies ,Index Terms-D46 Security and Privacy Protection ,02 engineering and technology ,Configuration control ,J9a Location-dependent and sensitive ,D216b Configu- ration control ,Adaptability ,Data modeling ,[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,[INFO.INFO-CY]Computer Science [cs]/Computers and Society [cs.CY] ,Robustness (computer science) ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,Privacy protection ,Electrical and Electronic Engineering ,media_common ,Measurement ,021110 strategic, defence & security studies ,business.industry ,H20a Security ,Adaptation models ,Computational modeling ,and protec- tion ,Security ,integrity ,business ,Data privacy ,Personally identifiable information ,Mobile device ,Protection mechanism - Abstract
International audience; The widespread use of mobile devices and location-based services has generated a large number of mobility databases. While processing these data is highly valuable, privacy issues can occur if personal information is revealed. The prior art has investigated ways to protect mobility data by providing a wide range of Location Privacy Protection Mechanisms (LPPMs). However, the privacy level of the protected data significantly varies depending on the protection mechanism used, its configuration and on the characteristics of the mobility data. Meanwhile, the protected data still needs to enable some useful processing. To tackle these issues, we present PULP, a framework that finds the suitable protection mechanism and automatically configures it for each user in order to achieve user-defined objectives in terms of both privacy and utility. PULP uses nonlinear models to capture the impact of each LPPM on data privacy and utility levels. Evaluation of our framework is carried out with two protectionmechanisms from the literature and four real-world mobility datasets. Results show the efficiency of PULP, its robustness and adaptability. Comparisons between LPPMs’ configurators and the state of the art further illustrate that PULP better realizes users’ objectives, and its computation time is in orders of magnitude faster.
- Published
- 2021
19. Sustaining Performance While Reducing Energy Consumption: A Control Theory Approach
- Author
-
Raphaël Bleuse, Eric Rutten, Valentin Reis, Sophie Cerf, Swann Perarnau, Control for Autonomic computing systems (CTRL-A ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Argonne National Laboratory [Lemont] (ANL), Experiments presented in this paper were carried out using the Grid'5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr)., Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computer Research, under Contract DE-AC02-06CH11357. This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration., This research is partially supported by the NCSA-Inria-ANL-BSC-JSC-Riken-UTK Joint-Laboratory for Extreme Scale Computing (JLESC, https://jlesc.github.io/)., Grid'5000, GRID5000, JLESC - Joint Laboratory for Extreme Scale Computing, and JLESC
- Subjects
FOS: Computer and information sciences ,010302 applied physics ,Computer science ,Node (networking) ,Power regulation ,02 engineering and technology ,Energy consumption ,01 natural sciences ,020202 computer hardware & architecture ,Resource (project management) ,Computer Science - Distributed, Parallel, and Cluster Computing ,Control theory ,0103 physical sciences ,Dynamic demand ,HPC ,0202 electrical engineering, electronic engineering, information engineering ,Benchmark (computing) ,[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY] ,Resource management ,Distributed, Parallel, and Cluster Computing (cs.DC) ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Performance per watt - Abstract
Production high-performance computing systems continue to grow in complexity and size. As applications struggle to make use of increasingly heterogeneous compute nodes, maintaining high efficiency (performance per watt) for the whole platform becomes a challenge. Alongside the growing complexity of scientific workloads, this extreme heterogeneity is also an opportunity: as applications dynamically undergo variations in workload, due to phases or data/compute movement between devices, one can dynamically adjust power across compute elements to save energy without impacting performance. With an aim toward an autonomous and dynamic power management strategy for current and future HPC architectures, this paper explores the use of control theory for the design of a dynamic power regulation method. Structured as a feedback loop, our approach-which is novel in computing resource management-consists of periodically monitoring application progress and choosing at runtime a suitable power cap for processors. Thanks to a preliminary offline identification process, we derive a model of the dynamics of the system and a proportional-integral (PI) controller. We evaluate our approach on top of an existing resource management framework, the Argo Node Resource Manager, deployed on several clusters of Grid'5000, using a standard memory-bound HPC benchmark., The datasets and code generated and analyzed during the current studyare available in the Figshare repository: https://doi.org/10.6084/m9.figshare.14754468[5]
- Published
- 2021
20. Event-Based Control for Online Training of Neural Networks
- Author
-
Zilong Zhao, Nicolas Marchand, Bogdan Robu, Sophie Cerf, GIPSA - COntrol, PErception, Robots, navigation and Intelligent Computing (GIPSA-COPERNIC), GIPSA Pôle Sciences des Données (GIPSA-PSD), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA), GIPSA - Modelling and Optimal Decision for Uncertain Systems (GIPSA-MODUS), GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD), ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), SYSCO (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), and Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,0209 industrial biotechnology ,Control and Optimization ,Neural Networks ,Computer science ,Machine Learning (stat.ML) ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,Convolutional neural network ,Image (mathematics) ,Machine Learning (cs.LG) ,020901 industrial engineering & automation ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,Statistics - Machine Learning ,Convergence (routing) ,[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY] ,Event Based Control ,0105 earth and related environmental sciences ,Artificial neural network ,Contextual image classification ,Event (computing) ,Process (computing) ,Control and Systems Engineering ,Control system ,Gradient Methods ,Algorithm - Abstract
International audience; Convolutional Neural Network (CNN) has become the most used method for image classification tasks. During its training the learning rate and the gradient are two key factors to tune for influencing the convergence speed of the model. Usual learning rate strategies are time-based i.e. monotonous decay over time. Recent state-of-the-art techniques focus on adaptive gradient algorithms i.e. Adam and its versions. In this paper we consider an online learning scenario and we propose two Event-Based control loops to adjust the learning rate of a classical algorithm E (Exponential)/PD (Proportional Derivative)-Control. The first Event-Based control loop will be implemented to prevent sudden drop of the learning rate when the model is approaching the optimum. The second Event- Based control loop will decide, based on the learning speed, when to switch to the next data batch. Experimental evaluation is provided using two state-of-the-art machine learning image datasets (CIFAR-10 and CIFAR-100). Results show the Event- Based E/PD is better than the original algorithm (higher final accuracy, lower final loss value), and the Double-Event-Based E/PD can accelerate the training process, save up to 67% training time compared to state-of-the-art algorithms and even result in better performance.
- Published
- 2020
21. Feedback Control for Online Training of Neural Networks
- Author
-
Nicolas Marchand, Sophie Cerf, Bogdan Robu, Zilong Zhao, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019)
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,050210 logistics & transportation ,Artificial neural network ,Contextual image classification ,Computer science ,business.industry ,05 social sciences ,PID controller ,Machine Learning (stat.ML) ,Convolutional neural network ,Data modeling ,Exponential function ,Image (mathematics) ,Machine Learning (cs.LG) ,03 medical and health sciences ,0302 clinical medicine ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,Statistics - Machine Learning ,Robustness (computer science) ,0502 economics and business ,[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY] ,Artificial intelligence ,business ,030217 neurology & neurosurgery - Abstract
International audience; Convolutional neural networks (CNNs) are commonly used for image classification tasks, raising the challenge of their application on data flows. During their training, adaptation is often performed by tuning the learning rate. Usual learning rate strategies are time-based i.e. monotonously decreasing. In this paper, we advocate switching to a performance-based adaptation, in order to improve the learning efficiency. We present E (Exponential)/PI (Proportional Integral)-Control, a conditional learning rate strategy that combines a feedback PI controller based on the CNN loss function, with an exponential control signal to smartly boost the learning and adapt the PI parameters. Stability proof is provided as well as an experimental evaluation using two state of the art image datasets (CIFAR-10 and Fashion-MNIST). Results show better performances than the related works (faster network accuracy growth reaching higher levels) and robustness of the E/PI-Control regarding its parametrization.
- Published
- 2019
22. Active Learning from Unreliable Data
- Author
-
Zilong Zhao, Sophie Cerf, Robert Birke, Bogdan Robu, Sara Bouchenak, Sonia Ben Mokhtar, Lydia Chen, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), IBM Research Laboratory [Zurich], IBM Research [Zurich], Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), and ZHAO, Zilong
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,Machine Learning ,[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.EIAH] Computer Science [cs]/Technology for Human Learning ,Images ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.EIAH]Computer Science [cs]/Technology for Human Learning ,Deep Neural Network ,Attacks ,Unreliable Data ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; Classification algorithms have been widely adopted in big recommendation systems, e.g., products, images and advertisements, under the common assumption that the data source is clean, i.e., features and labels are correctly set. However, data collected from the field can be unreliable due to careless annotations or malicious data transformation. In our previous work, we proposed a two-layer learning framework for continuous learning in the presence of unreliable anomaly labels, it worked perfectly for two use cases, (i) detecting 10 classes of IoT attacks and (ii) predicting 4 classes of task failures of big data jobs. To continue this study, now we will challenge our framework with image dataset. The first layer of quality model filters the suspicious data, where the second layer of classification model predicts data instance's class. As we focus on the case of images, we will use widely studied datasets: MNIST, Cifar10, Cifar100 and Ima-geNet. Deep Neural Network (DNN) has demonstrated excellent performances in solving images classification problems, we will show that two collaborating DNN could construct a more robust and high accuracy model.
- Published
- 2019
23. A Control-Theoretic Approach for Location Privacy in Mobile Applications
- Author
-
Sara Bouchenak, Bogdan Robu, Nicolas Marchand, Sophie Cerf, Sonia Ben Mokhtar, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Université Lumière - Lyon 2 (UL2)
- Subjects
Focus (computing) ,Information privacy ,Service (systems architecture) ,Computer science ,media_common.quotation_subject ,Distributed computing ,020206 networking & telecommunications ,02 engineering and technology ,Data modeling ,System dynamics ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] ,[INFO.INFO-MC]Computer Science [cs]/Mobile Computing ,Control theory ,0202 electrical engineering, electronic engineering, information engineering ,[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY] ,020201 artificial intelligence & image processing ,Relevance (information retrieval) ,Quality (business) ,media_common - Abstract
International audience; The prevalent use of mobile applications using location information to improve the quality of their service has arisen privacy issues, particularly regarding the extraction of user's points on interest. Many studies in the literature focus on presenting algorithms that allow to protect the user of such applications. However, these solutions often require a high level of expertise to be understood and tuned properly. In this paper, the first control-based approach of this problem is presented. The protection algorithm is considered as the " physical " plant and its parameters as control signals that enable to guarantee privacy despite user's mobility pattern. The following of the paper presents the first control formulation of POI-related privacy measure, as well as dynamic modeling and a simple yet efficient PI control strategy. The evaluation using simulated mobility records shows the relevance and efficiency of the presented approach.
- Published
- 2018
24. Dynamic Modeling of Location Privacy Protection Mechanisms
- Author
-
Nicolas Marchand, Sara Bouchenak, Sophie Cerf, Sonia Ben Mokhtar, Bogdan Robu, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Université de Lyon-Institut National des Sciences Appliquées (INSA), Silvia Bonomi, and Etienne Rivière
- Subjects
Service (systems architecture) ,Points of interest ,Location privacy ,Point of interest ,Computer science ,Location Based Services ,Modeling ,020206 networking & telecommunications ,02 engineering and technology ,Computer security ,computer.software_genre ,Control of computing systems ,System dynamics ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,Ask price ,020204 information systems ,Metric (mathematics) ,Location-based service ,0202 electrical engineering, electronic engineering, information engineering ,Relevance (information retrieval) ,[INFO]Computer Science [cs] ,Mobile device ,computer - Abstract
International audience; Mobile applications tend to ask for users’ location in order to improve the service they provide. However, aside from increasing their service utility, they may also store these data, analyze them or share them with external parties. These privacy threats for users are a hot topic of research, leading to the development of so called Location Privacy Protection Mechanisms. LPPMs often are configurable algorithms that enable the tuning of the privacy protection they provide and thus the leveraging of the service utility. However, they usually do not provide ways to measure the achieved privacy in practice for all users of mobile devices, and even less clues on how a given configuration will impact privacy of the data given the specificities of everyone’s mobility. Moreover, as most Location Based Services require the user position in real time, these measures and predictions should be achieved in real time. In this paper we present a metric to evaluate privacy of obfuscated data based on users’ points of interest as well as a predictive model of the impact of a LPPM on these measure; both working in a real time fashion. The evaluation of the paper’s contributions is done using the state of the art LPPM Geo-I on synthetic mobility data generated to be representative of real-life users’ movements. Results highlight the relevance of the metric to capture privacy, the fitting of the model to experimental data, and the feasibility of the on-line mechanisms due to their low computing complexity.
- Published
- 2018
25. Adaptive Feedforward and Feedback Control for Cloud Services
- Author
-
Nicolas Marchand, Sophie Cerf, Ioan Doré Landau, Sara Bouchenak, Bogdan Robu, Mihaly Berekmeri, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR), ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011), European Project: 610535,EC:FP7:ICT,FP7-ICT-2013-10,AMADEOS(2013), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Adaptive control ,control of computing systems ,business.industry ,Computer science ,Concurrency ,Distributed computing ,cloud computing ,Feed forward ,cloud control ,Service level objective ,020206 networking & telecommunications ,Control engineering ,Cloud computing ,02 engineering and technology ,adaptive control ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,Control and Systems Engineering ,Robustness (computer science) ,PI and feedforward control ,020204 information systems ,Cloud testing ,0202 electrical engineering, electronic engineering, information engineering ,MapReduce ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,business - Abstract
International audience; The use of cloud services is becoming increasingly common. As the cost of these services is continuously decreasing, service performance is becoming a key differentiator between providers. Solutions that aim to guarantee Service Level Objectives (SLO) in term of performance by controlling cluster size are already used by cloud providers. However most of these control solutions are based on static if-then rules, they are therefore inefficient in handling the highly varying service dynamics of cloud environments. Client concurrency, network bottlenecks or non homogeneity of resources are just a few of the many causes that make the behavior of cloud services highly non linear and time varying. In this paper a novel control theoretical approach is presented that is robust to these phenomena. It consists of PI and feedforward controller adapted online. A stability analysis of the adaptive control configuration is provided. Simulations using a cloud service model taken from the literature illustrate the performance of the system under various conditions. The use of adaptation significantly improves control efficiency and robustness with respect to variations in the dynamic of the plant.
- Published
- 2017
26. Données de mobilité : protection de la vie privée vs. utilité des données
- Author
-
Sophie Cerf, Vincent Primault, Antoine Boutet, Sonia Ben Mokhtar, Sara Bouchenak, Nicolas Marchand, Bogdan Robu, Marchand, Nicolas, Laboratoires d'excellence - Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique - - PERSYVAL-lab2011 - ANR-11-LABX-0025 - LABX - VALID, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), and ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
- Subjects
[SPI.AUTO] Engineering Sciences [physics]/Automatic ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,[INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering ,[SPI.AUTO]Engineering Sciences [physics]/Automatic - Abstract
International audience; La généralisation des appareils mobiles a facilité l’apparition de bases de données de mobilité.Ces dernières peuvent poser des problèmes de divulgation de données sensibles lors deleur publication. Des Mécanismes de Protection de la vie Privée pour les données de Mobilité (LPPM) ont été développés pour garantir formellement les besoins de protection de vie privée. Cependant, cela ne se fait pas sans dégradation de l’utilité de la base de données résultante. La configuration des ces LPPM permet de jouer sur ce compromis entre vie privée et utilité. Nous proposons PULP, un mécanisme réalisant cette configuration de manière automatique en fonction d’objectifs de vie privée et d’utilité, en se basant sur la modélisation de l’impact de la configuration d’un LPPM sur la vie privée et l’utilité. Notre approche a été évaluée sur un LPPM de l’état de l’art et quatre bases de données, les résultats montrent l’efficacité de notre solution pour garantir les objectifs.
- Published
- 2017
27. Cost function based event triggered Model Predictive Controllers application to Big Data Cloud services
- Author
-
Sara Bouchenak, Nicolas Marchand, Mihaly Berekmeri, Bogdan Robu, Sophie Cerf, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011), European Project: 610535,EC:FP7:ICT,FP7-ICT-2013-10,AMADEOS(2013), Marchand, Nicolas, Laboratoires d'excellence - Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique - - PERSYVAL-lab2011 - ANR-11-LABX-0025 - LABX - VALID, Architecture for Multi-criticality Agile Dependable Evolutionary Open System-of-Systems - AMADEOS - - EC:FP7:ICT2013-10-01 - 2016-09-30 - 610535 - VALID, Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Université Lumière - Lyon 2 (UL2)
- Subjects
0209 industrial biotechnology ,Engineering ,business.industry ,Event (computing) ,Real-time computing ,Big data ,Control (management) ,Workload ,Cloud computing ,02 engineering and technology ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,[SPI.AUTO] Engineering Sciences [physics]/Automatic ,020901 industrial engineering & automation ,Control theory ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,0202 electrical engineering, electronic engineering, information engineering ,Trajectory ,020201 artificial intelligence & image processing ,State (computer science) ,business ,[INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering - Abstract
International audience; High rate cluster reconfigurations is a costly issue in Big Data Cloud services. Current control solutions manage to scale the cluster according to the workload, however they do not try to minimize the number of system reconfigurations. Event-based control is known to reduce the number of control updates typically by waiting for the system states to degrade below a given threshold before reacting. However, computer science systems often have exogenous inputs (such as clients connections) with delayed impacts that can enable to anticipate states degradation. In this paper, a novel event-triggered approach is proposed. This triggering mechanism relies on a Model Predictive Controller and is defined upon the value of the optimal cost function instead of the state or output error. This controller reduces the number of control changes, in the normal operation mode, through constraints in the MPC formulation but also assures a very reactive behavior to changes of exogenous inputs. This novel control approach is evaluated using a model validated on a real Big Data system. The controller efficiently scales the cluster according to specifications, meanwhile reducing its reconfigurations.
- Published
- 2016
28. Towards Control of MapReduce Performance and Availability
- Author
-
Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara Bouchenak, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Université de Lyon-Institut National des Sciences Appliquées (INSA), Matthieu Roy, Javier Alonso Lopez, Antonio Casimiro, and Roy, Matthieu
- Subjects
[INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] - Abstract
International audience; MapReduce is a popular programming model for distributed data processing and Big Data applications. Extensive research has been conducted either to improve the dependability or to increase performance of MapReduce, ranging from adaptive and on-demand fault-tolerance solutions, adaptive task scheduling techniques to optimized job execution mechanisms. This paper investigates a novel solution that controls MapReduce systems and provides guarantees in terms of both performance and availability, while reducing utilization costs. We follow a control theoretic approach for MapReduce cluster scaling and admission control. Preliminary results based on a simulation environment, previously validated on a real MapReduce cluster, show the effectiveness of the proposed control solutions for a Hadoop MapReduce cluster.
- Published
- 2016
29. Toward an Easy Configuration of Location Privacy Protection Mechanisms
- Author
-
Antoine Boutet, Vincent Primault, Nicolas Marchand, Sophie Cerf, Sara Bouchenak, Bogdan Robu, Sonia Ben Mokhtar, CERF, Sophie, Laboratoires d'excellence - Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique - - PERSYVAL-lab2011 - ANR-11-LABX-0025 - LABX - VALID, Architecture for Multi-criticality Agile Dependable Evolutionary Open System-of-Systems - AMADEOS - - EC:FP7:ICT2013-10-01 - 2016-09-30 - 610535 - VALID, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA), ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011), European Project: 610535,EC:FP7:ICT,FP7-ICT-2013-10,AMADEOS(2013), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Université Lumière - Lyon 2 (UL2)
- Subjects
[INFO.INFO-SY] Computer Science [cs]/Systems and Control [cs.SY] ,Privacy by Design ,business.industry ,Privacy software ,Computer science ,Privacy protection ,Context (language use) ,02 engineering and technology ,Modular design ,Computer security ,computer.software_genre ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,020204 information systems ,0202 electrical engineering, electronic engineering, information engineering ,[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY] ,[INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,020201 artificial intelligence & image processing ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,business ,computer - Abstract
Communication orale sur poster; International audience; The widespread adoption of Location-Based Services (LBSs) has come with controversy about privacy. While leverag-ing location information leads to improving services through geo-contextualization, it rises privacy concerns as new knowledge can be inferred from location records, such as home/work places, habits or religious beliefs. To overcome this problem, several Location Privacy Protection Mechanisms (LPPMs) have been proposed in the literature these last years. However , every mechanism comes with its own configuration parameters that directly impact the privacy guarantees and the resulting utility of protected data. In this context, it can be difficult for a non-expert system designer to choose appropriate configuration parameters to use according to the expected privacy and utility. In this paper, we present a framework enabling the easy configuration of LPPMs. To achieve that, our framework performs an offline, in-depth automated analysis of LPPMs to provide the formal relationship between their configuration parameters and both privacy and the utility metrics. This framework is modular: by using different metrics, a system designer is able to fine-tune her LPPM according to her expected privacy and utility guarantees (i.e., the guarantee itself and the level of this guarantee). To illustrate the capability of our framework, we analyse Geo-Indistinguishability (a well known differentially private LPPM) and we provide the formal relationship between its configuration parameter and two privacy and utility metrics.
- Published
- 2016
30. Adaptive Modelling and Control in Distributed Systems
- Author
-
Sophie Cerf, Mihaly Berekmeri, Nicolas Marchand, Sara Bouchenak, Bogdan Robu, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), McGill University, and Robu, Bogdan
- Subjects
[INFO.INFO-SY] Computer Science [cs]/Systems and Control [cs.SY] ,[SPI.AUTO] Engineering Sciences [physics]/Automatic ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY] ,[INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering ,[SPI.AUTO]Engineering Sciences [physics]/Automatic - Abstract
International audience; Companies have growing amounts of data to store and to process. In response to these new processing challenges, Google developed MapReduce, a parallel programming paradigm which is becoming the major tool for BigData treatment. Even if MapReduce is used by most IT companies, ensuring its performances while minimizing costs is a real challenge requiring a high level of expertise. Modelling and control of MapReduce have been developed in the last years, however there are still many problems caused by the software's high variability. To tackle the latter issue, this paper proposes an on-line model estimation algorithm for MapReduce systems. An adaptive control strategy is developed and implemented to guarantee response time performances under a concurrent workload while minimizing resource use. Results have been validated using a 40 nodes MapReduce cluster under a data intensive Business Intelligence workload running on Grid5000, a French national cloud. The experiments show that the adaptive control algorithm manages to guarantee performances and low costs even in a highly variable environment.
- Published
- 2015
31. PULP: Achieving Privacy and Utility Trade-off in User Mobility Data
- Author
-
Bogdan Robu, Antoine Boutet, Nicolas Marchand, Sonia Ben Mokhtar, Sophie Cerf, Vincent Primault, Lydia Y. Chen, Sara Bouchenak, Robert Birke, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria), Privacy Models, Architectures and Tools for the Information Society (PRIVATICS), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon, IBM Research Laboratory [Zurich], IBM Research [Zurich], LABEX IMU (ANR-0-LABX-0088), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Grenoble - Rhône-Alpes, and CERF, Sophie
- Subjects
[INFO.INFO-SY] Computer Science [cs]/Systems and Control [cs.SY] ,Service (business) ,Information privacy ,Privacy by Design ,Privacy software ,business.industry ,Computer science ,Internet privacy ,020207 software engineering ,02 engineering and technology ,Service provider ,Computer security ,computer.software_genre ,Data modeling ,[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] ,Work (electrical) ,0202 electrical engineering, electronic engineering, information engineering ,[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY] ,020201 artificial intelligence & image processing ,business ,computer ,[INFO.INFO-CR] Computer Science [cs]/Cryptography and Security [cs.CR] ,Dependency (project management) - Abstract
International audience; Leveraging location information in location-based services leads to improving service utility through geo-contextualization. However, this raises privacy concerns as new knowledge can be inferred from location records, such as user's home and work places, or personal habits. Although Location Privacy Protection Mechanisms (LPPMs) provide a means to tackle this problem, they often require manual configuration posing significant challenges to service providers and users. Moreover, their impact on data privacy and utility is seldom assessed. In this paper, we present PULP, a model-driven system which automatically provides user-specific privacy protection and contributes to service utility via choosing adequate LPPM and configuring it. At the heart of PULP is nonlinear models that can capture the complex dependency of data privacy and utility for each individual user under given LPPM considered, i.e., Geo-Indistinguishability and Promesse. According to users' preferences on privacy and utility, PULP efficiently recommends suitable LPPM and corresponding configuration. We evaluate the accuracy of PULP's models and its effectiveness to achieve the privacy-utility trade-off per user, using four real-world mobility traces of 770 users in total. Our extensive experimentation shows that PULP ensures the contribution to location service while adhering to privacy constraints for a great percentage of users, and is orders of magnitude faster than non-model based alternatives.
32. Adaptive Optimal Control of MapReduce Performance, Availability and Costs
- Author
-
Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara Bouchenak, GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011), Marchand, Nicolas, and Laboratoires d'excellence - Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique - - PERSYVAL-lab2011 - ANR-11-LABX-0025 - LABX - VALID
- Subjects
optimal control ,[SPI.AUTO] Engineering Sciences [physics]/Automatic ,control of computing systems ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,cloud computing ,adaptive control ,[INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering ,[SPI.AUTO]Engineering Sciences [physics]/Automatic - Abstract
International audience; MapReduce is a popular programming model for distributed data processing and Big Data applications running on clouds. Extensive research has been conducted either to improve the dependability or to increase performance of MapReduce, ranging from adaptive and on-demand fault-tolerance solutions, adaptive task scheduling techniques to optimized job execution mechanisms. This paper investigates an optimization-based solution to control MapReduce systems in order to provide guarantees in terms of both performance and availability while reducing utilization costs. We follow a control theoretical approach for MapReduce cluster scaling and admission control. Moreover, we aim to be robust to changes in MapRe-duce and in it's environment by adapting the controller online to those changes. This paper highlights the major challenges of combining system adaptation and optimal control to take the best of both approaches. CCS Concepts • Networks → Cloud computing; • Software and its engineering → Software configuration management and version control systems; • Computer systems organization → Dependable and fault-tolerant systems and networks
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.