Emmanuel Dupoux, Jade Copet, Wei-Ning Hsu, Kushal Lakhotia, Eugene Kharitonov, Yossi Adi, Abdelrahman Mohamed, Adam Polyak, Facebook AI Research [Paris] (FAIR), Facebook, Laboratoire de sciences cognitives et psycholinguistique (LSCP), Département d'Etudes Cognitives - ENS Paris (DEC), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS), Apprentissage machine et développement cognitif (CoML), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)-Département d'Etudes Cognitives - ENS Paris (DEC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019), ANR-17-EURE-0017,FrontCog,Frontières en cognition(2017), ANR-10-IDEX-0001,PSL,Paris Sciences et Lettres(2010), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Inria de Paris, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de sciences cognitives et psycholinguistique (LSCP)
We propose using self-supervised discrete representations for the task of speech resynthesis. To generate disentangled representation, we separately extract low-bitrate representations for speech content, prosodic information, and speaker identity. This allows to synthesize speech in a controllable manner. We analyze various state-of-the-art, self-supervised representation learning methods and shed light on the advantages of each method while considering reconstruction quality and disentanglement properties. Specifically, we evaluate the F0 reconstruction, speaker identification performance (for both resynthesis and voice conversion), recordings' intelligibility, and overall quality using subjective human evaluation. Lastly, we demonstrate how these representations can be used for an ultra-lightweight speech codec. Using the obtained representations, we can get to a rate of 365 bits per second while providing better speech quality than the baseline methods. Audio samples can be found under the following link: speechbot.github.io/resynthesis., In Proceedings of Interspeech 2021