1. Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe
- Author
-
Claudia Traidl-Hoffmann, Mikhail Sofiev, Jonathan Peter, Elsa Caeiro, AYDAN ACAR ŞAHİN, Olga Sozinova, Agnieszka Lipiec, Jordina Belmonte, Beatriz Lara, Bernard Alain Clot, Mykyta Bortnyk, Rosa Pérez-Badia, Celia Antunes, Ana Galveias, Dorota Myszkowska, Annika Saarto, Maria P. Plaza, Barbora Werchan, Dariusz Jurkiewicz, Loretta Giuseppina PACE, Ana Rodrigues Costa, Monica González-Alonso, José Moreno, Thomas Hornick, Franziska Kolek, Elena Gottardini, Arnold Van Vliet, Branko Sikoparija, Arturo H. Ariño, Krystyna Piotrowska-Weryszko, Tamás Szigeti, Athanasios Damialis, Paul Beggs, Helena Ribeiro, Antonio Picornell Rodríguez, Beatriz Tavares, Andrzej Wieczorkiewicz, Ozlem GOKSEL, Victoria Rodinkova, Piotr Rapiejko, Ewa Kalinowska, Catherine Pashley, PAOLO MASCAGNI, Nicolas Bruffaerts, Anna Rapiejko, Stefanie Gilles-Stein, Oliver, Gilles, Pham-Thi, Nhân, Thibaudon, Michel, Arino, Arturo H., Belmonte, Jordina, Cervigon Morales, Patricia, De Linares, Concepción, Fernández, Delia, FernándezRodriguez, Santiago, Gabaldón Arguisuelas, Antonia, Galán, Carmen, González-Alonso, Mónica, Lara, Beatriz, Moreno Grau, José María, Oteros, Jose, Pérez-Badia, Rosa, Pérez-de-Zabalza, Anabel, Picornell, Antonio, Recio, Marta, Robles, Estrella, RodríguezFernández, Alberto, Rodríguez-Rajo, F. Javier, Rojo, Jesús, Ruiz Valenzuela, Luis, Karl-Christian, Bergmann, Werchan, Barbora, Werchan, Matthias, Buters, Jeroen T. M., Bastl, Maximilian, Dunker, Susanne, Hornick, Thomas, González Roldán, Nestor, Gilge, Stefan, Clot, Bernard, Finemann, Stanley, Ford, Linda, Gomez, Robert Anthony, Kamboj, Sanjay, Wilhelm, Wayne, Beggs, Paul J., Burton, Pamela, Davies, Janet M., Haberle, Simon Graeme, Katelaris, Constance Helen, Keaney, Ben, Milic, Andelija, Miller, Victoria, van Haeften, Shanice, Bonini, Maira, Bordin, Anna, Ceriotti, Valentina, Cristofolini, Fabiana, Cristofori, Antonella, Gottardini, Elena, Marcer, Guido, Marraccini, Paolo, Meriggi, Antonio, Mascagni, Paolo, Pace, Loretta, Tacca, Maria Cristina, Pini, Alberto, Bruffaerts, Nicolas, Hoebeke, Lucie, Adams-Groom, Beverley, Pashley, Catherine H., Satchwell, Jack, Skjøth, Carsten, Symon, Fiona A., Antunes, Celia M., Caeiro, Elsa, Camacho, Irene Gomes Câmara, Costa, Ana R., Deus, Ricardo João Ratola Capela, Ferreira, Manuel Branco, Fonseca, Joao Almeida Lopes, Galveias, Ana, Ribeiro, Helena, Tavares, Beatriz, Grewling, Łukasz, Grinn-Gofroń, Agnieszka, Jurkiewicz, Dariusz, Kalinowska, Ewa, Lipiec, Agnieszka, Myszkowska, Dorota, PiotrowskaWeryszko, Krystyna, Puc, Malgorzata, Rapiejko, Anna, Rapiejko, Piotr, WeryszkoChmielewska, Elżbieta, Ziemianin, Monika, Berman, Dilys, Hoek, Werner, Manjra, Ahmed Ismail, Peter, Jonathan, Dahl, Åslög, Ekebom, Agneta, Stjepanovic, Barbara, Večena, Ana, Celenk, Sevcan, Göksel, Özlem, Göksel, Tuncay, Guvensen, Aykut, Sackesen, Cansin, Pinar, Nur Munevver, Acar Sahin, Aydar, Uguz U, Ulas, Yazici, Duygu, Kajtor-Apatini, Dóra, Magyar, Donát, Szigeti, Tamás, Sikoparija, Branko, Kofol Seliger, Andreja, Simčič, Anja, Oh, Jae, Charalampopoulos, Athanasios, Vokou, Despoina, Rasmussen, Karen, Barrionuevo, Laura Beatriz, Ramon, German Dario, de Weger, Letty A., Koenders, Mieke M.J.F., van Vliet, Arnold J.H., Dušička, Jozef, Lafférsová, Janka, Ščevková, Jana, Coates, Frances, Jurgens, Dawn, Rybníček, Ondřej, Šaulienė, Ingrida, Traidl-Hoffmann, Claudia, Severova, Elena, Rodinkova, Victoria, Palamarchuk, Olena, Bortnyk, Mykyta, Yasniuk, Maryna, Louna-Korteniemi, Maria, Pätsi, Sanna, Saarto, Annika, Toiviainen, Linnea, Sozinova, Olga, and Jia, Peng
- Subjects
0301 basic medicine ,virus strain ,Veterinary medicine ,Internationality ,retrospective study ,environmental exposure ,adverse event ,Aerobiology ,Settore BIO/03 - BOTANICA AMBIENTALE E APPLICATA ,Q1 ,medicine.disease_cause ,Population density ,geography ,lockdown ,0302 clinical medicine ,environmental factor ,COVID-19 | pollen | viral infection | aerobiology ,COVID-19 ,Geography ,Humans ,Longitudinal Studies ,Pollen ,SARS-CoV-2 ,Covid-19 ,Viral Infection ,030212 general & internal medicine ,airborne particle ,Multidisciplinary ,international cooperation ,longitudinal study ,food and beverages ,particle size ,Biological Sciences ,ddc ,virology ,Milieusysteemanalyse ,environmental temperature ,epidemiology ,medicine.medical_specialty ,Social contact ,Longitudinal data ,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ,meteorological phenomena ,infection rate ,pollen ,viral infection ,aerobiology ,Article ,03 medical and health sciences ,coronavirus disease 2019 ,geographic distribution ,medicine ,otorhinolaryngologic diseases ,cross-sectional study ,human ,ddc:610 ,population density ,WIMEK ,nonhuman ,Wear particle ,infection prevention ,Infection rate ,Environmental Systems Analysis ,030104 developmental biology ,Viral infection ,time series analysis ,physiology ,Environmental Sciences - Abstract
Pollen exposure weakens the immunity against certain seasonal respiratory viruses by diminishing the antiviral interferon response. Here we investigate whether the same applies to the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is sensitive to antiviral interferons, if infection waves coincide with high airborne pollen concentrations. Our original hypothesis was that more airborne pollen would lead to increases in infection rates. To examine this, we performed a cross-sectional and longitudinal data analysis on SARS-CoV-2 infection, airborne pollen, and meteorological factors. Our dataset is the most comprehensive, largest possible worldwide from 130 stations, across 31 countries and five continents. To explicitly investigate the effects of social contact, we additionally considered population density of each study area, as well as lockdown effects, in all possible combinations: without any lockdown, with mixed lockdown?no lockdown regime, and under complete lockdown. We found that airborne pollen, sometimes in synergy with humidity and temperature, explained, on average, 44% of the infection rate variability. Infection rates increased after higher pollen concentrations most frequently during the four previous days. Without lockdown, an increase of pollen abundance by 100 pollen/m3 resulted in a 4% average increase of infection rates. Lockdown halved infection rates under similar pollen concentrations. As there can be no preventive measures against airborne pollen exposure, we suggest wide dissemination of pollen?virus coexposure dire effect information to encourage high-risk individuals to wear particle filter masks during high springtime pollen concentrations. © 2021 National Academy of Sciences. All rights reserved., 1.1.1.2/VIAA/2/18/283; European Cooperation in Science and Technology, COST: CA18226; Academy of Finland, AKA: 318194, PS4A; Ministerio de Educación, Cultura y Deporte, MECD: FPU15/01668; Department of the Environment, Australian Government; Lietuvos Mokslo Taryba; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, MPNTR: 451-03-68/2020-14/200358; European Social Fund, ESF: 09.3.3-LMT-K-712-01-0066; Helmholtz Association; Christine Kühne – Center for Allergy Research and Education, CK-CARE, ACKNOWLEDGMENTS. We thank Mr. Luis-Leopold Moelter and Mr. Mehmet Gökkaya for assistance in overall data curation. The study was partly implemented in the frame of the European Cooperation in Science and Technology (EU-COST) program, "New approaches in detection of pathogens and aeroallergens (ADOPT)," Grant CA18226 (EU Framework Program Horizon 2020). D.B. and C.T.-H. were supported by the Helmholtz Climate Initiative (HI-CAM), Mitigation and Adaptation. A.Ch. and D.V. were supported by the Municipality of Thessaloniki, Greece (Directorate for the Management of the Urban Environment, Department of Environment). This research has been partly supported by the European Social Fund (Project 09.3.3-LMT-K-712-01-0066) under grant agreement with the Research Council of Lithuania (LMTLT). The study was also partly conducted within the frame of the project of the European Community European Regional Development Fund (EC ERDF) and PostDoc Latvia (Grant 1.1.1.2/VIAA/2/18/283). M.S. acknowledges the Academy of Finland (Project PS4A, Grant 318194). We thank the Department of Health and Rehabilitation of Vinnytsia Regional Council, Ukraine, for providing the numbers of COVID-19 cases. A.H.A. acknowledges Angel Chaves and the Government of Navarra: Institute of Public and Labor Health of Navarra, within LIFE-IP NAdatpa-CC (LIFE16 IPC/ES/000001). A.P. was supported by a predoctoral grant financed by the Ministry of Education, Culture and Sports of Spain, in the Program for the Promotion of Talent and its Employability (Grant FPU15/01668). B.S. acknowledges the Ministry of Education, Science, and Technological Development of the Republic of Serbia (Grant 451-03-68/2020-14/200358). C.T.H. acknowledges the Christine Kühne–Center for Allergy Research and Education (CK-CARE), and The Initiative and Networking Fund of the Helmholtz Association (Immunology & Inflammation). We thank Jan Bumberger, Marcus Karsten, Paul Remmler, Jan C. Simon, and Regina Treudler for data provision and curation from Leipzig, Germany. We thank Claudia Langford Brown and Dana Flanders for statistical advice and scientific discussions. We thank Penelope Jones, Edith Bucher, Reyhan Gumusburun, Haydar Soydaner Karakus, Su Ozgur, and Asli Tetik Vardarli for data curation.
- Published
- 2021