1. Arsenic and nicotine co-exposure lead to some synergistic effects on oxidative stress and apoptotic markers in young rat blood, liver, kidneys and brain
- Author
-
Anshu Jain, Shruti Agrawal, and Swaran J.S. Flora
- Subjects
Arsenic nicotine co-exposure ,DNA damage ,Oxidative stress ,Apoptosis ,Synergism ,Toxicology. Poisons ,RA1190-1270 - Abstract
Arsenic and nicotine exposure has been a major health concern globally. Individually both these toxicants increase the risk to various diseases including cancers. However, limited information exists on the co-exposure. In this study, we evaluate the effects of their individual and combined exposure and if co-exposure to these toxicants might have a synergism or antagonism. Male rats were exposed to a very low dose of arsenic (25 ppm in drinking water) or nicotine (0.25 mg/kg, sub-cutaneously) for a period of 5 months and post exposure various biochemical variables indicative of oxidative stress and apoptosis evaluated. Almost all glutathione linked enzymes showed marked alteration in individual as well as co-exposure treated groups. While serum creatinine and apoptosis indicator, lactate dehydrogenase (LDH) were significantly increased in both treatments, an additive effect was noted in co-exposure group. A similar trend was also seen in brain and liver but not in kidneys. Gene expression studies showed marked reduction in catalase, Cu-Zn SOD, GST, there was a significant up regulation in Bax, caspase 3 in various tissues along with urinary 8-OHdG levels, indicative of DNA damage and apoptosis. Interestingly, a decrease in liver arsenic concentration was noted in co-exposed group compared to arsenic alone exposed group. In conclusion, the present study suggests that arsenic and nicotine exhibited significant toxicity during individual exposure whereas co-exposure to these toxins showed variable conditions (indicative of both synergism and antagonism) in male rats.
- Published
- 2015
- Full Text
- View/download PDF