1. Symplectomorphisms of exotic discs
- Author
-
Ivan Smith, Sylvain Courte, Ailsa Keating, Roger Casals, Keating, Ailsa [0000-0002-1288-3117], Apollo - University of Cambridge Repository, Instituto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Cientficas, Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut Fourier (IF ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Institut Fourier (IF), and Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
Engineering ,ComputingMilieux_THECOMPUTINGPROFESSION ,business.industry ,General Mathematics ,010102 general mathematics ,Foundation (engineering) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Library science ,01 natural sciences ,Computer Science::Digital Libraries ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,0103 physical sciences ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,010307 mathematical physics ,0101 mathematics ,business ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Mathematics::Symplectic Geometry ,ComputingMilieux_MISCELLANEOUS - Abstract
We construct a symplectic structure on a disc that admits a compactly supported symplectomorphism which is not smoothly isotopic to the identity. The symplectic structure has an overtwisted concave end; the construction of the symplectomorphism is based on a unitary version of the Milnor--Munkres pairing. En route, we introduce a symplectic analogue of the Gromoll filtration. The Appendix by S. Courte shows that for our symplectic structure the map from compactly supported symplectic mapping classes to compactly supported smooth mapping classes is in fact surjective.
- Published
- 2018
- Full Text
- View/download PDF